Global SUMOylation facilitates the multimodal neuroprotection afforded by quercetin against the deleterious effects of oxygen/glucose deprivation and the restoration of oxygen/glucose

J Neurochem. 2016 Jul;138(1):101-16. doi: 10.1111/jnc.13643. Epub 2016 Jun 6.

Abstract

The putative neuroprotective properties of various flavonoids have long been reported. Among this class of chemicals, quercetin, a major flavone/flavonol naturally occurring in plants, deserves focused attention because of the myriad of beneficial effects observed in various in vitro and in vivo models of central nervous system damage/degeneration. However, the mechanisms governing the beneficial outcomes mediated by quercetin remain to be elucidated. In an effort to define the underlying molecular mechanisms, our study employed human/rat neuroblastoma cell lines (SHSY5Y and B35, respectively) and E18-derived rat primary cortical neurons upon which the effects of various flavonoids were examined. Of note, increases in the levels of global SUMOylation, a post-translational modification with the Small Ubiquitin-like MOdifier (SUMO) were pronounced. Quercetin treatment increased SUMOylation levels in both SHSY5Y cells and rat cortical neurons in a dose and time-dependent manner, possibly via the direct inactivation of certain SENPs (SUMO-specific isopeptidases). Of particular interest, cells treated with quercetin displayed increased tolerance to oxygen/glucose deprivation exposure, an in vitro model of ischemia. SHSY5Y cells treated with quercetin also increased the expression of Nrf2 (via a decrease in the levels of Keap1), heme oxygenase-1 (HO-1), and nitric oxide synthase 1 (NOS1), which provide further protection from oxidative stress. In addition, the increased SUMOylation of HIF-1α was noted and deemed to be significant. We hypothesize that SUMOylated HIF-1α plays a fundamental role in the protection afforded and may underlie some of quercetin's ability to protect cells from oxygen/glucose deprivation-induced cell death, via an up-regulation of HO-1 and NOS1, which ultimately leads to the induction of pro-life NOS1/protein kinase G signaling. Quercetin acts to increase survival in the face of ischemia via an increase of SENP3 expression, the possible inactivation of SENPs 1/2, and via a decrease in KEAP1 levels (thereby increasing Nrf2 stability). These changes may then lead to increase in HIF-1α SUMOylation and HO-1 activation, followed by an up-regulation of NOS1/PKG signaling. Pathways altered via quercetin treatment within our experimental system are represented by blue arrowheads. Solid black arrows represent relationships that have been explored while a dotted arrow represents a relationship that has yet to be confirmed.

Keywords: SUMO-specific isopeptidase (SENPs); SUMOylation; flavonoids; hypoxia-inducible factor-1 alpha (HIF-1α); oxygen/glucose deprivation (OGD); quercetin.

Publication types

  • Research Support, N.I.H., Intramural

MeSH terms

  • Animals
  • Cell Death / drug effects
  • Cell Hypoxia / drug effects
  • Cell Line, Tumor
  • Cells, Cultured
  • Cerebral Cortex / cytology
  • Female
  • Glucose / deficiency*
  • Humans
  • Hypoxia / drug therapy*
  • L-Lactate Dehydrogenase / metabolism
  • Neuroblastoma / pathology
  • Neurons / drug effects
  • Neuroprotective Agents / pharmacology*
  • Pregnancy
  • Quercetin / pharmacology*
  • RNA, Small Interfering / genetics
  • RNA, Small Interfering / metabolism
  • Rats
  • Rats, Sprague-Dawley
  • Small Ubiquitin-Related Modifier Proteins / metabolism*
  • Sumoylation / drug effects*
  • Up-Regulation / drug effects

Substances

  • Neuroprotective Agents
  • RNA, Small Interfering
  • Small Ubiquitin-Related Modifier Proteins
  • Quercetin
  • L-Lactate Dehydrogenase
  • Glucose