Skip to main content
Log in

Pharmacokinetics and Pharmacodynamics of Tenecteplase in Fibrinolytic Therapy of Acute Myocardial Infarction

  • Review Article
  • Drug Disposition
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Tenecteplase is a novel fibrinolytic protein bioengineered from human tissue plasminogen activator (alteplase) for the therapy of acute ST-segment elevation myocardial infarction. Specific mutations at three sites in the alteplase molecule result in 15-fold higher fibrin specificity, 80-fold reduced binding affinity to the physiological plasminogen activator inhibitor PAI-1 and 6-fold prolonged plasma half-life (22 vs 3.5 minutes). Consequently, tenecteplase can be administered as a single intravenous bolus of 30–50mg (0.53 mg/kg bodyweight) over 5–10 seconds, in contrast to the 90-minute accelerated infusion regimen of alteplase.

Tenecteplase plasma concentration-time profiles have been obtained from a total of 179 patients with acute myocardial infarction. Tenecteplase exhibited biphasic disposition; the initial disposition phase was predominant with a mean half-life of 17–24 minutes, and the mean terminal half-life was 65–132 min. Over the clinically relevant dose range of 30–50mg, mean clearance (CL) was 105 ml/min. The mean initial volume of distribution V1 was 4.2–6.3L, approximating plasma volume, and volume of distribution at steady state was 6.1–9.9L, suggesting limited extravascular distribution or binding. Bodyweight and age were found to influence significantly both CL and V1. Total bodyweight explained 19% of the variability in CL and 11% of the variability in V1, and a 10kg increase in total bodyweight resulted in a 9.6 ml/min increase in CL. This relationship aided the development of a rationale for the weight-adjusted dose regimen for tenecteplase. Age explained only a further 11% of the variability in CL.

The percentage of patients who achieved normal coronary blood flow was clearly related to AUC. More than 75% of patients achieved normal flow at 90 minutes after administration when their partial AUC2–90 exceeded 320 μg · min/ml, corresponding to an average plasma concentration of 3.6 μg/ml. Systemic exposure to tenecteplase at all times after bolus administration of 30–50mg was higher than for alteplase 100mg.

Tenecteplase has demonstrated equivalent efficacy and improved safety compared with the current gold standard alteplase in a large mortality trial (ASSENT-2). This suggests that the reduced clearance, greater fibrin specificity and higher PAI-1 resistance of tenecteplase allow higher plasma concentrations and thus a more rapid restoration of coronary patency to be attained, while providing a reduction in major non-cerebral bleeding events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Table I
Table II
Table III
Table IV
Fig. 3
Fig. 4
Table V
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Use of tradenames is for product identification only and does not imply endorsement.

References

  1. Tanswell P, Tebbe U, Neuhaus KL, et al. Pharmacokinetics and fibrin specificity of alteplase during accelerated infusions in acute myocardial infarction. J Am Coll Cardiol 1992; 19: 1071–5

    Article  PubMed  CAS  Google Scholar 

  2. Topol E. An international, randomized trial comparing four thrombolytic strategies for acute myocardial infarction. N Engl J Med 1993; 329: 673–82

    Article  Google Scholar 

  3. Sobel BE. Fibrin specificity of plasminogen activators, rebound generation of thrombin, and their therapeutic implications. Coron Artery Dis 2001; 12: 232–332

    Google Scholar 

  4. Collen D, De Bono DP, Lijnen HR, et al. Development of novel thrombolytic agents: mini-symposium on the role of the fibrinolytic system in the pathophysiology and treatment of thrombosis; 1993 Oct; Leuven. J Intern Med 1994; 236: 433–7

    Article  PubMed  CAS  Google Scholar 

  5. Huber K. Plasminogen activator inhibitor type-I (part two): role for failure of thrombolytic therapy. PAI-1 resistance as a potential benefit for new fibrinolytic agents. J Thrombosis Thrombolysis 2001; 11: 195–202

    Article  CAS  Google Scholar 

  6. Keyt B, Paoni N, Refino C, et al. A faster-acting and more potent form of tissue plasminogen activator. Proc Natl Acad Sci U S A 1994; 91(1): 3670–4

    Article  PubMed  CAS  Google Scholar 

  7. Modi NB, Fox NL, Fong WC, et al. Pharmacokinetics and pharmacodynamics of tenecteplase: results from a phase II study in patients with acute myocardial infarction. J Clin Pharmacol 2000; 40: 508–15

    Article  PubMed  CAS  Google Scholar 

  8. Stewart RJ, Fredenburgh JC, Leslie BA, et al. Identification of the mechanism responsible for the increased fibrin specificity of TNK-tissue plasminogen activator relative to tissue plasminogen activator. J Biol Chem 2000; 275: 10112–20

    Article  PubMed  CAS  Google Scholar 

  9. Van de Werf F, Adgey J, Ardissino D, et al. Single bolus tenecteplase compared with front-loaded alteplase in acute myocardial infarction: the ASSENT 2 double-blind randomised trial. Lancet 1999; 354(9180): 716–22

    Article  Google Scholar 

  10. Martin U, Kaufmann B, Neugebauer G. Current clinical use of reteplase for thrombolysis: a pharmacokinetic-pharmacodynamic perspective. Clin Pharmacokinet 1999; 36: 265–76

    Article  PubMed  Google Scholar 

  11. Kohnert U, Rudolph R, Verheijen JH, et al. Biochemical properties of the kringle-2 and protease domains are maintained in the refolded t-PA deletion variant BM 06.022. Protein Eng 1992; 5: 95–100

    Article  Google Scholar 

  12. GUSTO III Investigators. A comparison of reteplase with alteplase for acute myocardial infarction. N Engl J Med 1997; 337: 1118–23

    Article  Google Scholar 

  13. Dunn CJ, Goa KL. Tenecteplase: a review of its pharmacology and therapeutic efficacy in patients with acute myocardial infarction. Am J Cardiovasc Drugs 2001; 1: 51–66

    Article  PubMed  CAS  Google Scholar 

  14. Van de Werf F, Barron HV, Armstrong PW, et al. Incidence and predictors of bleeding events after fibrinolytic therapy with fibrin-specific agents. Eur Heart J 2001; 22: 2253–61

    Article  PubMed  Google Scholar 

  15. Wang-Clow F, Fox NL, Cannon CP, et al. Determination of a weight adjusted dose of TNK-tissue plasminogen activator. Am Heart J 2001; 141: 33–50

    Article  PubMed  CAS  Google Scholar 

  16. Gibson CM, Marble SJ. Issues in the assessment of the safety and efficacy of tenecteplase (TNK-tPA). Clin Cardiol 2001; 24: 577–84

    Article  PubMed  CAS  Google Scholar 

  17. Angeja BG, Alexander JH, Chin R, et al. Safety of the weightadjusted dosing regimen of tenecteplase in the ASSENT trial. Am J Cardiol 2001; 88: 1240–5

    Article  PubMed  CAS  Google Scholar 

  18. Collen D, Lijnen HR. Molecular basis of fibrinolysis, as relevant for thrombolytic therapy. Thromb Haemost 1995; 74: 167–71

    PubMed  CAS  Google Scholar 

  19. Lijnen H, Collen D. Strategies for the improvement of thrombolytic agents. Thromb Haemost 1991; 66: 88–110

    PubMed  CAS  Google Scholar 

  20. Bennett WF, Paoni NF, Keyt BA, et al. High resolution analysis of functional determinants on human tissue-type plasminogen activator. J Biol Chem 1991; 266: 5191–201

    PubMed  CAS  Google Scholar 

  21. Parekh RB, Dwek RA, Thomas JR, et al. Cell-type-specific and site-specific N-glycosylation of type I and type II human tissue plasminogen activator. Biochemistry 1989; 28: 7644–62

    Article  PubMed  CAS  Google Scholar 

  22. Noorman F, Rijken DC. Regulation of tissue-type plasminogen activator concentrations by clearance via the mannose receptor and other receptors. Fibrinolysis Proteolysis 1997; 11: 173–86

    Article  CAS  Google Scholar 

  23. McCluskey ER, Keyt BA, Refino CJ, et al. Biochemistry, pharmacology and initial clinical experience with TNK-tPA. In: Sasahara AA, Loscalzo J, editors. New therapeutic agents in thrombosis and thrombolysis. New York: Marcel Dekker, Inc., 1997: 475–93

    Google Scholar 

  24. Benedict CR, Refino CJ, Keyt BA, et al. New variant of human tissue plasminogen activator (TPA) with enhanced efficacy and lower incidence of bleeding compared with recombinant human TPA. Circulation 1995; 92: 3032–40

    Article  PubMed  CAS  Google Scholar 

  25. Eppler S, Senn T, Gilkerson E, et al. Pharmacokinetics and pharmacodynamics of recombinant tissue-type plasminogen activator following intravenous administration in rabbits; comparison of three dosing regimens. Biopharm Drug Dispos 1998; 19: 31–8

    Article  PubMed  CAS  Google Scholar 

  26. Modi NB, Eppler S, Breed J, et al. Pharmacokinetics of a slower clearing tissue plasminogen activator variant, TNK-tPA, in patients with acute myocardial infarction. Thromb Haemost 1998; 79: 134–9

    PubMed  CAS  Google Scholar 

  27. Mohler MA, Refino CJ, Chen SA, et al. D-Phe-Pro-Arg-chloromethyl ketone: its potential use in inhibiting the formation of in vitro artifacts in blood collected during tissue-type plasminogen activator thrombolytic therapy. Thromb Haemost 1986; 56: 160–4

    PubMed  CAS  Google Scholar 

  28. Seifried E, Tanswell P. Comparison of specific antibody, D-Phe-Pro-Arg-CH2C1 and aprotinin for prevention of in vitro effects of recombinant tissue-type plasminogen activator on haemostasis parameters. Thromb Haemost 1987; 58: 921–6

    PubMed  CAS  Google Scholar 

  29. Reed BR, Chen AB, Tanswell P, et al. Low incidence of antibodies to recombinant human tissue-type plasminogen activator in treated patients. Thromb Haemost 1990; 64: 276–80

    PubMed  CAS  Google Scholar 

  30. Gibaldi M, Perrier D, editors. Pharmacokinetics. 2nd ed. New York: Marcel Dekker, 1982

    Google Scholar 

  31. Ette EL, Ludden TM. Population pharmacokinetic modeling: the importance of informative graphics. Pharm Res 1995; 12: 1845–55

    Article  PubMed  CAS  Google Scholar 

  32. DeGuzman G, Richarson L, Berleau L, et al. Hepatic uptake and processing of TNK-tPA [abstract]. Pharm Res 1995; 123: 332

    Google Scholar 

  33. Tanswell P, Stassen JM, Platz S. Regulatory submission to EMEA. Metalyse® (tenecteplase): expert report on the toxico-pharmacological documentation. Biberach: Boehringer Ingelheim, 1999. (Data on file)

    Google Scholar 

  34. Keyt BA, Berleau LT, Nguyen HV, et al. Radioiodination of the active site of tissue plasminogen activator: a method for radiolabeling serine proteases with tyrosylprolyarginyl chloromethyl ketone. Anal Biochem 1992; 206: 73–83

    Article  PubMed  CAS  Google Scholar 

  35. Bakhit C, Lewis D, Busch U, et al. Biodisposition and catabolism of tissue-type plasminogen activator in rats and rabbits. Fibrinolysis 1988; 2: 31–6

    CAS  Google Scholar 

  36. Lucore CL, Sobel BE. Interactions of tissue-type plasminogen activator with plasma inhibitors and their pharmacologic implications. Circulation 1988; 77: 660–9

    Article  PubMed  CAS  Google Scholar 

  37. Tanswell P, Seifried E, Stang E, et al. Pharmacokinetics and hepatic catabolism of tissue-type plasminogen activator. Arzneimittel Forschung 1991; 41: 1310–9

    PubMed  CAS  Google Scholar 

  38. Krause J. Hepatic catabolism of tissue-type plasminogen activator (t-PA), its variants, mutants and hybrids. Fibrinolysis 1988; 2: 133–42

    CAS  Google Scholar 

  39. Bu G, Williams S, Strickland DK, et al. Low density lipoprotein receptor-related protein/alpha(2)-macroglobulin receptor is an hepatic receptor for tissue-type plasminogen activator. Proc Natl Acad Sci U S A 1992; 89: 7427–31

    Article  PubMed  CAS  Google Scholar 

  40. Smedsrod B, Einarsson M. Clearance of tissue plasminogen activator by mannose and galactose receptors in the liver. Thromb Haemost 1990; 63: 60–6

    PubMed  CAS  Google Scholar 

  41. Tanswell P, Heinzel G, Greischel A, et al. Nonlinear pharmacokinetics of tissue-type plasminogen activator in three animal species and isolated perfused rat liver. J Pharmacol Exp Ther 1990; 255: 318–24

    PubMed  CAS  Google Scholar 

  42. Cannon CP, Gibson CM, McCabe CH, et al. TIMI 10B Investigators. TNK tissue plasminogen activator compared with front-loaded alteplase in acute myocardial infarction: results of the TIMI 10B trial. Circulation 1998; 98: 2805–14

    Article  PubMed  CAS  Google Scholar 

  43. Van de Werf F, Cannon CP, Luyten A, et al. Safety assessment of single-bolus administration of TNK tissue-plasminogen activator in acute myocardial infarction: the ASSENT-1 trial. The ASSENT-1 Investigators. Am Heart J 1999; 137: 786–91

    Article  PubMed  Google Scholar 

  44. Tanswell P, Seifried E, Su CAPF, et al. Pharmacokinetics and systemic effects of tissue-type plasminogen activator in normal subjects. Clin Pharmacol Ther 1989; 46: 155–62

    Article  PubMed  CAS  Google Scholar 

  45. Cannon CP, McCabe CH, Gibson CM, et al. TNK-tissue plasminogen activator in acute myocardial infarction: results of the Thrombolysis In Myocardial Infarction (TIMI) 10A doseranging trial. Circulation 1997; 95: 351–6

    Article  PubMed  CAS  Google Scholar 

  46. Van de Werf F, ASSENT-3 investigators. Efficacy and safety of tenecteplase in combination with enoxaparin, abciximab, or unfractionated heparin: the ASSENT—3 randomised trial in acute myocardial infarction. Lancet 2001; 358: 605–13

    Article  Google Scholar 

  47. Sulikowski T, Patson PA. The inhibition of TNK-tPA by C1inhibitor. Blood Coagul Fibrinolysis 2001; 12: 75–7

    Article  PubMed  CAS  Google Scholar 

  48. Van Griensven JMT, Koster RW, Burggraaf J, et al. Effects of liver blood flow on the pharmacokinetics of tissue-type plasminogen activator (alteplase) during thrombolysis in patients with acute myocardial infarction. Clin Pharmacol Ther 1998; 63: 39–47

    Article  PubMed  Google Scholar 

  49. Sobel BE, Gross RW, Robison AK. Thrombolysis, clot selectivity, and kinetics. Circulation 1984; 70: 160–4

    Article  PubMed  CAS  Google Scholar 

  50. Thomaseth K, Boniollo B. Simulation of plasmatic enzymatic reactions during thrombolytic therapy with recombinant tissue-type plasminogen activator: from in vitro knowledge to new assumptions in vivo. Simulation 1996; 66: 219–28

    Article  Google Scholar 

  51. Sharma A, Jusko WJ. Characteristics of indirect pharmacodynamic models and application to clinical drug responses. Br J Clin Pharmacol 1998; 48: 229–39

    Google Scholar 

  52. Hoylaerts M, Rijken DC, Lijnen HR, et al. Kinetics of the activation of plasminogen by human plasminogen activator: role of fibrin. J Biol Chem 1982; 257: 2912–9

    PubMed  CAS  Google Scholar 

  53. Lee LV, Ewald GA, McKenzie CR, et al. The relationship of soluble fibrin and cross-linked fibrin degradation products to the clinical course of myocardial infarction. Arterioscler Thromb Vasc Biol 1997; 17: 628–33

    Article  PubMed  CAS  Google Scholar 

  54. Seifried E, Tanswell P, Rijken DC, et al. Fibrin degradation products are not specific markers for thrombolysis in myocardial infarction. Lancet 1987; II: 333–4

    Article  Google Scholar 

  55. Walker JB, Nesheim ME. The molecular weights, mass distribution, chain composition, and structure of soluble fibrin degradation products released from a fibrin clot perfused with plasmin. J Biol Chem 1999; 274: 5201–12

    Article  PubMed  CAS  Google Scholar 

  56. Binbrek A, Rao N, Absher M, et al. The relative rapidity of recanalization induced by recombinant tissue-type plasminogen activator (r-tPA) and TNK-tPA, assessed with enzymatic methods. Coron Artery Dis 2000; 11(5): 429–35

    Article  PubMed  CAS  Google Scholar 

  57. Ohman EM, Armstrong PW, White HD, et al. GUSTO-III Investigators. Risk stratification with a point-of-care cardiac troponin T test in acute myocardial infarction. Am J Cardiol 1999; 84: 1281–6

    Article  PubMed  CAS  Google Scholar 

  58. Antman EM, Tanasijevic MJ, Thompson B, et al. Cardiac specific troponin I levels to predict the risk of mortality in patients with acute coronary syndromes. N Engl J Med 1996; 335: 1342–9

    Article  PubMed  CAS  Google Scholar 

  59. The TIMI study group. The thrombolysis in myocardial infarction (TIMI) trial. N Engl J Med 1985; 312: 932–6

    Google Scholar 

  60. Gibson CM, Cannon CP, Daley WL, et al. TIMI Frame Count: a quantitative method of assessing coronary artery flow. Circulation 1996; 93: 879–88

    Article  PubMed  CAS  Google Scholar 

  61. Mehta SR, Eikeboom JW, Yusuf S. Risk of intracranial haemorrhage with bolus vs infusion thrombolytic therapy: a metaanalysis. Lancet 2000; 356: 449–54

    Article  PubMed  CAS  Google Scholar 

  62. Liao WC, Beierle FA, Stouffer BC, et al. Single bolus regimen of lanoteplase (nPA) in acute myocardial infarction: pharmacokinetic evaluation from the InTIME-1 study. Circulation 1997; 96 Suppl. I: 1260–1

    Google Scholar 

  63. Gibson CM, Cannon CP, Murphy SA, et al. Weight-adjusted dosing of TNK-tissue plasminogen activator and its relation to angiographic outcomes in the thrombolysis in myocardial infarction 10 B trial. Am J Cardiol 1999; 84: 976–80

    Article  PubMed  CAS  Google Scholar 

  64. Hammann GF, Okada Y, del Zoppo GJ. Hemorrhagic transformation and microvascular integrity during focal cerebral ischemia/reperfusion. J Cereb Blood Flow Metab 1996; 16: 1373–8

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank Drs K. Schleenhain and G. Heusel for expert help in the preparation of the manuscript. The authors are or were employed by Boehringer Ingelheim or Genetech, Inc. These companies sponsored the clinical trials described in the review and also manufacture and market tenecteplase.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Tanswell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanswell, P., Modi, N., Combs, D. et al. Pharmacokinetics and Pharmacodynamics of Tenecteplase in Fibrinolytic Therapy of Acute Myocardial Infarction. Clin Pharmacokinet 41, 1229–1245 (2002). https://doi.org/10.2165/00003088-200241150-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200241150-00001

Keywords

Navigation