Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Protein kinase Cα suppresses Kras-mediated lung tumor formation through activation of a p38 MAPK-TGFβ signaling axis

Abstract

Protein kinase C alpha (PKCα) can activate both pro- and anti-tumorigenic signaling depending upon cellular context. Here, we investigated the role of PKCα in lung tumorigenesis in vivo. Gene expression data sets revealed that primary human non-small lung cancers (NSCLC) express significantly decreased PKCα levels, indicating that loss of PKCα expression is a recurrent event in NSCLC. We evaluated the functional relevance of PKCα loss during lung tumorigenesis in three murine lung adenocarcinoma models (LSL-Kras, LA2-Kras and urethane exposure). Genetic deletion of PKCα resulted in a significant increase in lung tumor number, size, burden and grade, bypass of oncogene-induced senescence, progression from adenoma to carcinoma and a significant decrease in survival in vivo. The tumor promoting effect of PKCα loss was reflected in enhanced Kras-mediated expansion of bronchio-alveolar stem cells (BASCs), putative tumor-initiating cells, both in vitro and in vivo. LSL-Kras/Prkca−/− mice exhibited a decrease in phospho-p38 MAPK in BASCs in vitro and in tumors in vivo, and treatment of LSL-Kras BASCs with a p38 inhibitor resulted in increased colony size indistinguishable from that observed in LSL-Kras/Prkca−/− BASCs. In addition, LSL-Kras/Prkca−/− BASCs exhibited a modest but reproducible increase in TGFβ1 mRNA, and addition of exogenous TGFβ1 to LSL-Kras BASCs results in enhanced growth similar to untreated BASCs from LSL-Kras/Prkca−/− mice. Conversely, a TGFβR1 inhibitor reversed the effects of PKCα loss in LSL-Kras/Prkca−/− BASCs. Finally, we identified the inhibitors of DNA binding (Id) Id1-3 and the Wilm’s Tumor 1 as potential downstream targets of PKCα-dependent tumor suppressor activity in vitro and in vivo. We conclude that PKCα suppresses tumor initiation and progression, at least in part, through a PKCα-p38MAPK-TGFβ signaling axis that regulates tumor cell proliferation and Kras-induced senescence. Our results provide the first direct evidence that PKCα exhibits tumor suppressor activity in the lung in vivo.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Siegel R, Naishadham D, Jemal A . Cancer statistics, 2012. CA Cancer J Clin 2012; 62: 10–29.

    Article  PubMed  Google Scholar 

  2. Castagna M, Takai Y, Kaibuchi K, Sano K, Kikkawa U, Nishizuka Y . Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem 1982; 257: 7847–7851.

    CAS  PubMed  Google Scholar 

  3. Kikkawa U, Takai Y, Tanaka Y, Miyake R, Nishizuka Y . Protein kinase C as a possible receptor protein of tumor-promoting phorbol esters. J Biol Chem 1983; 258: 11442–11445.

    CAS  PubMed  Google Scholar 

  4. Fields AP, Murray NR . Protein kinase C isozymes as therapeutic targets for treatment of human cancers. Adv Enzyme Regul 2008; 48: 166–178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cacace AM, Ueffing M, Philipp A, Han EK, Kolch W, Weinstein IB . PKC epsilon functions as an oncogene by enhancing activation of the Raf kinase. Oncogene 1996; 13: 2517–2526.

    CAS  PubMed  Google Scholar 

  6. Mischak H, Goodnight JA, Kolch W, Martiny-Baron G, Schaechtle C, Kazanietz MG et al. Overexpression of protein kinase C-delta and -epsilon in NIH 3T3 cells induces opposite effects on growth, morphology, anchorage dependence, and tumorigenicity. J Biol Chem 1993; 268: 6090–6096.

    CAS  PubMed  Google Scholar 

  7. Reddig PJ, Dreckschmidt NE, Ahrens H, Simsiman R, Tseng CP, Zou J et al. Transgenic mice overexpressing protein kinase Cdelta in the epidermis are resistant to skin tumor promotion by 12-O-tetradecanoylphorbol-13-acetate. Cancer Res 1999; 59: 5710–5718.

    CAS  PubMed  Google Scholar 

  8. Reddig PJ, Dreckschmidt NE, Zou J, Bourguignon SE, Oberley TD, Verma AK . Transgenic mice overexpressing protein kinase C epsilon in their epidermis exhibit reduced papilloma burden but enhanced carcinoma formation after tumor promotion. Cancer Res 2000; 60: 595–602.

    CAS  PubMed  Google Scholar 

  9. Fields AP, Frederick LA, Regala RP . Targeting the oncogenic protein kinase Ciota signalling pathway for the treatment of cancer. Biochem Soc Trans 2007; 35 (Pt 5): 996–1000.

    Article  CAS  PubMed  Google Scholar 

  10. Justilien V, Fields A . Atypical PKCs as targets for cancer therapy. In: Kazanietz M, eds. Protein Kinase C in Cancer Signaling and Therapy. Springer, London, 2010.

    Google Scholar 

  11. Regala RP, Weems C, Jamieson L, Khoor A, Edell ES, Lohse CM et al. Atypical protein kinase C iota is an oncogene in human non-small cell lung cancer. Cancer Res 2005; 65: 8905–8911.

    Article  CAS  PubMed  Google Scholar 

  12. Regala RP, Weems C, Jamieson L, Copland JA, Thompson EA, Fields AP . Atypical protein kinase Ciota plays a critical role in human lung cancer cell growth and tumorigenicity. J Biol Chem 2005; 280: 31109–31115.

    Article  CAS  PubMed  Google Scholar 

  13. Regala RP, Davis RK, Kunz A, Khoor A, Leitges M, Fields AP . Atypical protein kinase Cι is required for bronchioalveolar stem cell expansion and lung tumorigenesis. Cancer Res 2009; 69: 7603–7611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Murray NR, Jamieson L, Yu W, Zhang J, Gokmen-Polar Y, Sier D et al. Protein kinase Ciota is required for Ras transformation and colon carcinogenesis in vivo. J Cell Biol 2004; 164: 797–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Eder AM, Sui X, Rosen DG, Nolden LK, Cheng KW, Lahad JP et al. Atypical PKCiota contributes to poor prognosis through loss of apical-basal polarity and cyclin E overexpression in ovarian cancer. Proc Natl Acad Sci USA 2005; 102: 12519–12524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang L, Huang J, Yang N, Liang S, Barchetti A, Giannakakis A et al. Integrative genomic analysis of protein kinase C (PKC) family identifies PKCiota as a biomarker and potential oncogene in ovarian carcinoma. Cancer Res 2006; 66: 4627–4635.

    Article  CAS  PubMed  Google Scholar 

  17. Jamieson L, Carpenter L, Biden TJ, Fields AP . Protein kinase Ciota activity is necessary for Bcr-Abl-mediated resistance to drug-induced apoptosis. J Biol Chem 1999; 274: 3927–3930.

    Article  CAS  PubMed  Google Scholar 

  18. Murray NR, Fields AP . Atypical protein kinase Ciota protects human leukemia cells against drug-induced apoptosis. J Biol Chem 1997; 272: 27521–27524.

    Article  CAS  PubMed  Google Scholar 

  19. Scotti ML, Bamlet WR, Smyrk TC, Fields AP, Murray NR . Protein kinase Cι is required for pancreatic cancer cell transformed growth and tumorigenesis. Cancer Res 2010; 70: 2064–2074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Scotti ML, Smith KE, Butler AM, Calcagno SR, Crawford HC, Leitges M et al. Protein kinase Ciota regulates pancreatic acinar-to-ductal metaplasia. PLoS One 2012; 7: e30509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kikuchi K, Soundararajan A, Zarzabal LA, Weems CR, Nelon LD, Hampton ST et al. Protein kinase Ciota as a therapeutic target in alveolar rhabdomyosarcoma. Oncogene 2013; 32: 286–295.

    Article  CAS  PubMed  Google Scholar 

  22. Erdogan E, Lamark T, Stallings-Mann M, Lee J, Pellecchia M, Thompson EA et al. Aurothiomalate inhibits transformed growth by targeting the PB1 domain of protein kinase Ciota. J Biol Chem 2006; 281: 28450–28459.

    Article  CAS  PubMed  Google Scholar 

  23. Stallings-Mann M, Jamieson L, Regala RP, Weems C, Murray NR, Fields AP . A novel small-molecule inhibitor of protein kinase Ciota blocks transformed growth of non-small-cell lung cancer cells. Cancer Res 2006; 66: 1767–1774.

    Article  CAS  PubMed  Google Scholar 

  24. Nazarenko I, Jenny M, Keil J, Gieseler C, Weisshaupt K, Sehouli J et al. Atypical protein kinase C zeta exhibits a proapoptotic function in ovarian cancer. Mol Cancer Res 2010; 8: 919–934.

    Article  CAS  PubMed  Google Scholar 

  25. Galvez AS, Duran A, Linares JF, Pathrose P, Castilla EA, Abu-Baker S et al. Protein kinase Czeta represses the interleukin-6 promoter and impairs tumorigenesis in vivo. Mol Cell Biol 2009; 29: 104–115.

    Article  CAS  PubMed  Google Scholar 

  26. Hsieh YH, Wu TT, Huang CY, Hsieh YS, Hwang JM, Liu JY . p38 mitogen-activated protein kinase pathway is involved in protein kinase Calpha-regulated invasion in human hepatocellular carcinoma cells. Cancer Res 2007; 67: 4320–4327.

    Article  CAS  PubMed  Google Scholar 

  27. Tanaka Y, Gavrielides MV, Mitsuuchi Y, Fujii T, Kazanietz MG . Protein kinase C promotes apoptosis in LNCaP prostate cancer cells through activation of p38 MAPK and inhibition of the Akt survival pathway. J Biol Chem 2003; 278: 33753–33762.

    Article  CAS  PubMed  Google Scholar 

  28. Oster H, Leitges M . Protein kinase C alpha but not PKCzeta suppresses intestinal tumor formation in ApcMin/+ mice. Cancer Res 2006; 66: 6955–6963.

    Article  CAS  PubMed  Google Scholar 

  29. Oliva JL, Caino MC, Senderowicz AM, Kazanietz MG . S-phase-specific activation of PKCα induces senescence in non-small cell lung cancer cells. J Biol Chem 2008; 283: 5466–5476.

    Article  CAS  PubMed  Google Scholar 

  30. Nakagawa M, Oliva JL, Kothapalli D, Fournier A, Assoian RK, Kazanietz MG . Phorbol ester-induced G1 phase arrest selectively mediated by protein kinase Cdelta-dependent induction of p21. J Biol Chem 2005; 280: 33926–33934.

    Article  CAS  PubMed  Google Scholar 

  31. Jackson EL, Willis N, Mercer K, Bronson RT, Crowley D, Montoya R et al. Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev 2001; 15: 3243–3248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Johnson L, Mercer K, Greenbaum D, Bronson RT, Crowley D, Tuveson DA et al. Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature 2001; 410: 1111–1116.

    Article  CAS  PubMed  Google Scholar 

  33. Nikitin AY, Alcaraz A, Anver MR, Bronson RT, Cardiff RD, Dixon D et al. Classification of proliferative pulmonary lesions of the mouse: recommendations of the mouse models of human cancers consortium. Cancer Res 2004; 64: 2307–2316.

    Article  CAS  PubMed  Google Scholar 

  34. Collado M, Serrano M . Senescence in tumours: evidence from mice and humans. Nat Rev Cancer 2010; 10: 51–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW . Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 1997; 88: 593–602.

    Article  CAS  PubMed  Google Scholar 

  36. Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 2005; 121: 823–835.

    Article  CAS  PubMed  Google Scholar 

  37. Iwasa H, Han J, Ishikawa F . Mitogen-activated protein kinase p38 defines the common senescence-signalling pathway. Genes Cells 2003; 8: 131–144.

    Article  CAS  PubMed  Google Scholar 

  38. Wang W, Chen JX, Liao R, Deng Q, Zhou JJ, Huang S et al. Sequential activation of the MEK-extracellular signal-regulated kinase and MKK3/6-p38 mitogen-activated protein kinase pathways mediates oncogenic ras-induced premature senescence. Mol Cell Biol 2002; 22: 3389–3403.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ventura JJ, Tenbaum S, Perdiguero E, Huth M, Guerra C, Barbacid M et al. p38alpha MAP kinase is essential in lung stem and progenitor cell proliferation and differentiation. Nat Genet 2007; 39: 750–758.

    Article  CAS  PubMed  Google Scholar 

  40. Grunert S, Jechlinger M, Beug H . Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis. Nat Rev Mol Cell Biol 2003; 4: 657–665.

    Article  PubMed  Google Scholar 

  41. Hao F, Pysz MA, Curry KJ, Haas KN, Seedhouse SJ, Black AR et al. Protein kinase Calpha signaling regulates inhibitor of DNA binding 1 in the intestinal epithelium. J Biol Chem 2011; 286: 18104–18117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pysz MA, Leontieva OV, Bateman NW, Uronis JM, Curry KJ, Threadgill DW et al. PKCα tumor suppression in the intestine is associated with transcriptional and translational inhibition of cyclin D1. Exp Cell Res 2009; 315: 1415–1428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vicent S, Chen R, Sayles LC, Lin C, Walker RG, Gillespie AK et al. Wilms tumor 1 (WT1) regulates KRAS-driven oncogenesis and senescence in mouse and human models. J Clin Invest 2010; 120: 3940–3952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fields AP, Gustafson WC . Protein kinase C in disease: cancer. Methods Mol Biol 2003; 233: 519–537.

    CAS  PubMed  Google Scholar 

  45. Bivona TG, Quatela SE, Bodemann BO, Ahearn IM, Soskis MJ, Mor A et al. PKC regulates a farnesyl-electrostatic switch on K-Ras that promotes its association with Bcl-XL on mitochondria and induces apoptosis. Mol Cell 2006; 21: 481–493.

    Article  CAS  PubMed  Google Scholar 

  46. Tossidou I, Starker G, Kruger J, Meier M, Leitges M, Haller H et al. PKC-alpha modulates TGF-beta signaling and impairs podocyte survival. Cell Physiol Biochem 2009; 24: 627–634.

    Article  CAS  PubMed  Google Scholar 

  47. Lindschau C, Quass P, Menne J, Guler F, Fiebeler A, Leitges M et al. Glucose-induced TGF-beta1 and TGF-beta receptor-1 expression in vascular smooth muscle cells is mediated by protein kinase C-alpha. Hypertension 2003; 42: 335–341.

    Article  CAS  PubMed  Google Scholar 

  48. Luo X, Ding L, Xu J, Chegini N . Gene expression profiling of leiomyoma and myometrial smooth muscle cells in response to transforming growth factor-beta. Endocrinology 2005; 146: 1097–1118.

    Article  CAS  PubMed  Google Scholar 

  49. Dean N, McKay R, Miraglia L, Howard R, Cooper S, Giddings J et al. Inhibition of growth of human tumor cell lines in nude mice by an antisense of oligonucleotide inhibitor of protein kinase C-alpha expression. Cancer Res 1996; 56: 3499–3507.

    CAS  PubMed  Google Scholar 

  50. Geiger T, Muller M, Dean NM, Fabbro D . Antitumor activity of a PKC-alpha antisense oligonucleotide in combination with standard chemotherapeutic agents against various human tumors transplanted into nude mice. Anticancer Drug Des 1998; 13: 35–45.

    CAS  PubMed  Google Scholar 

  51. Advani R, Peethambaram P, Lum BL, Fisher GA, Hartmann L, Long HJ et al. A phase II trial of aprinocarsen, an antisense oligonucleotide inhibitor of protein kinase C alpha, administered as a 21-day infusion to patients with advanced ovarian carcinoma. Cancer 2004; 100: 321–326.

    Article  CAS  PubMed  Google Scholar 

  52. Grossman SA, Alavi JB, Supko JG, Carson KA, Priet R, Dorr FA et al. Efficacy and toxicity of the antisense oligonucleotide aprinocarsen directed against protein kinase C-alpha delivered as a 21-day continuous intravenous infusion in patients with recurrent high-grade astrocytomas. Neuro Oncol 2005; 7: 32–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Paz-Ares L, Douillard JY, Koralewski P, Manegold C, Smit EF, Reyes JM et al. Phase III study of gemcitabine and cisplatin with or without aprinocarsen, a protein kinase C-alpha antisense oligonucleotide, in patients with advanced-stage non-small-cell lung cancer. J Clin Oncol 2006; 24: 1428–1434.

    Article  CAS  PubMed  Google Scholar 

  54. Dalgaard P . Introductory Statistics with R. 2nd edition, (ed) Springer, New York, 2008.

    Book  Google Scholar 

  55. Smyth GK . Limma: linear models for microarray data. Bioinformatics and Computational Biology Solutions using R and Bioconductor In: Gentleman R., Carey V., Dudoit S., Irizarry R., Huber W, (eds). Springer, New York, pp 397–420.

  56. Sanchez-Palencia A, Gomez-Morales M, Gomez-Capilla JA, Pedraza V, Boyero L, Rosell R et al. Gene expression profiling reveals novel biomarkers in nonsmall cell lung cancer. Int J Cancer 2011; 129: 355–364.

    Article  CAS  PubMed  Google Scholar 

  57. Hou J, Aerts J, den Hamer B, van Ijcken W, den Bakker M, Riegman P et al. Gene expression-based classification of non-small cell lung carcinomas and survival prediction. PLoS One 2010; 5: e10312.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Dehan E, Ben-Dor A, Liao W, Lipson D, Frimer H, Rienstein S et al. Chromosomal aberrations and gene expression profiles in non-small cell lung cancer. Lung Cancer 2007; 56: 175–184.

    Article  CAS  PubMed  Google Scholar 

  59. Leitges M, Plomann M, Standaert ML, Bandyopadhyay G, Sajan MP, Kanoh Y et al. Knockout of PKC alpha enhances insulin signaling through PI3K. Mol Endocrinol 2002; 16: 847–858.

    PubMed  Google Scholar 

  60. Fasbender A, Lee JH, Walters RW, Moninger TO, Zabner J, Welsh MJ . Incorporation of adenovirus in calcium phosphate precipitates enhances gene transfer to airway epithelia in vitro and in vivo. J Clin Invest 1998; 102: 184–193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tuveson DA, Shaw AT, Willis NA, Silver DP, Jackson EL, Chang S et al. Endogenous oncogenic K-ras(G12D) stimulates proliferation and widespread neoplastic and developmental defects. Cancer Cell 2004; 5: 375–387.

    Article  CAS  PubMed  Google Scholar 

  62. Malkinson AM, Nesbitt MN, Skamene E . Susceptibility to urethan-induced pulmonary adenomas between A/J and C57BL/6J mice: use of AXB and BXA recombinant inbred lines indicating a three-locus genetic model. J Natl Cancer Inst 1985; 75: 971–974.

    Article  CAS  PubMed  Google Scholar 

  63. Regala R, Justilien V, Walsh MP, Weems C, Khoor A, Murray NR et al. Matrix metalloproteinase-10 promotes kras-mediated bronchio-alveolar stem cell expansion and lung cancer formation. PLoS One 2011; 6: e26439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yang Y, Iwanaga K, Raso MG, Wislez M, Hanna AE, Wieder ED et al. Phosphatidylinositol 3-kinase mediates bronchioalveolar stem cell expansion in mouse models of oncogenic K-ras-induced lung cancer. PLoS One 2008; 3: e2220.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Brandy Edenfield for immunohistochemical staining procedures, Capella Weems for technical assistance, Justin Weems and Dr Lee Jamieson for animal husbandry and members of the Fields laboratory for support, encouragement and critical review of the manuscript. This work was supported in part by grants from the National Cancer Institute (R01 CA081436-16 to APF and R01 CA140290-03 to NRM). APF is the Monica Flynn Jacoby Endowed Professor of Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A P Fields.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hill, K., Erdogan, E., Khoor, A. et al. Protein kinase Cα suppresses Kras-mediated lung tumor formation through activation of a p38 MAPK-TGFβ signaling axis. Oncogene 33, 2134–2144 (2014). https://doi.org/10.1038/onc.2013.147

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.147

Keywords

This article is cited by

Search

Quick links