Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Microglial and macrophage polarization—new prospects for brain repair

Abstract

The traditional view of the adult brain as a static organ has changed in the past three decades, with the emergence of evidence that it remains plastic and has some regenerative capacity after injury. In the injured brain, microglia and macrophages clear cellular debris and orchestrate neuronal restorative processes. However, activation of these cells can also hinder CNS repair and expand tissue damage. Polarization of macrophage populations toward different phenotypes at different stages of injury might account for this dual role. This Perspectives article highlights the specific roles of polarized microglial and macrophage populations in CNS repair after acute injury, and argues that therapeutic approaches targeting cerebral inflammation should shift from broad suppression of microglia and macrophages towards subtle adjustment of the balance between their phenotypes. Breakthroughs in the identification of regulatory molecules that control these phenotypic shifts could ultimately accelerate research towards curing brain disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phenotypic polarization of microglia and macrophages.
Figure 2: Factors that promote phenotype switching.

Similar content being viewed by others

References

  1. Lo, E. H. Degeneration and repair in central nervous system disease. Nat. Med. 16, 1205–1209 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chu, M. et al. Focal cerebral ischemia activates neurovascular restorative dynamics in mouse brain. Front. Biosci. (Elite Ed.) 4, 1926–1936 (2012).

    Article  Google Scholar 

  3. Gutiérrez-Fernández, M. et al. Trophic factors and cell therapy to stimulate brain repair after ischaemic stroke. J. Cell. Mol. Med. 16, 2280–2290 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Zhang, J. H. et al. The vascular neural network—a new paradigm in stroke pathophysiology. Nat. Rev. Neurol. 8, 711–716 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hanisch, U. K. & Kettenmann, H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat. Neurosci. 10, 1387–1394 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Thored, P. et al. Long-term accumulation of microglia with proneurogenic phenotype concomitant with persistent neurogenesis in adult subventricular zone after stroke. Glia 57, 835–849 (2009).

    Article  PubMed  Google Scholar 

  7. Kwon, M. J. et al. Contribution of macrophages to enhanced regenerative capacity of dorsal root ganglia sensory neurons by conditioning injury. J. Neurosci. 33, 15095–15108 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Miron, V. E. et al. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat. Neurosci. 16, 1211–1218 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ekdahl, C. T., Claasen, J. H., Bonde, S., Kokaia, Z. & Lindvall, O. Inflammation is detrimental for neurogenesis in adult brain. Proc. Natl Acad. Sci. USA 100, 13632–13637 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu, Z. et al. Chronic treatment with minocycline preserves adult new neurons and reduces functional impairment after focal cerebral ischemia. Stroke 38, 146–152 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Mosser, D. M. & Edwards, J. P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8, 958–969 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. David, S. & Kroner, A. Repertoire of microglial and macrophage responses after spinal cord injury. Nat. Rev. Neurosci. 12, 388–399 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Moore, K. J., Sheedy, F. J. & Fisher, E. A. Macrophages in atherosclerosis: a dynamic balance. Nat. Rev. Immunol. 13, 709–721 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Boche, D., Perry, V. H. & Nicoll, J. A. Review: activation patterns of microglia and their identification in the human brain. Neuropathol. Appl. Neurobiol. 39, 3–18 (2013).

    Article  CAS  PubMed  Google Scholar 

  15. Hu, X. et al. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke 43, 3063–3070 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Wang, G. et al. Microglia/macrophage polarization dynamics in white matter after traumatic brain injury. J. Cereb. Blood Flow Metab. 33, 1864–1874 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kigerl, K. A. et al. Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J. Neurosci. 29, 13435–13444 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Davalos, D. et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci. 8, 752–758 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Thiel, A. & Heiss, W. D. Imaging of microglia activation in stroke. Stroke 42, 507–512 (2011).

    Article  PubMed  Google Scholar 

  20. Perego, C., Fumagalli, S. & De Simoni, M. G. Temporal pattern of expression and colocalization of microglia/macrophage phenotype markers following brain ischemic injury in mice. J. Neuroinflammation 8, 174 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Koh, T. J. & DiPietro, L. A. Inflammation and wound healing: the role of the macrophage. Expert Rev. Mol. Med. 13, e23 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Girard, S. et al. Microglia and macrophages differentially modulate cell death after brain injury caused by oxygen-glucose deprivation in organotypic brain slices. Glia 61, 813–824 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Durafourt, B. A. et al. Comparison of polarization properties of human adult microglia and blood-derived macrophages. Glia 60, 717–727 (2012).

    Article  PubMed  Google Scholar 

  24. Nakayama, D. et al. Injury-induced neural stem/progenitor cells in post-stroke human cerebral cortex. Eur. J. Neurosci. 31, 90–98 (2010).

    Article  PubMed  Google Scholar 

  25. Lu, K. T. et al. Hippocampal neurogenesis after traumatic brain injury is mediated by vascular endothelial growth factor receptor-2 and the Raf/MEK/ERK cascade. J. Neurotrauma 28, 441–450 (2011).

    Article  PubMed  Google Scholar 

  26. Hart, A. D., Wyttenbach, A., Perry, V. H. & Teeling, J. L. Age related changes in microglial phenotype vary between CNS regions: grey versus white matter differences. Brain Behav. Immun. 26, 754–765 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Norden, D. M. & Godbout, J. P. Review: microglia of the aged brain: primed to be activated and resistant to regulation. Neuropathol. Appl. Neurobiol. 39, 19–34 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hickman, S. E. et al. The microglial sensome revealed by direct RNA sequencing. Nat. Neurosci. 16, 1896–1905 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jung, S. & Schwartz, M. Non-identical twins—microglia and monocyte-derived macrophages in acute injury and autoimmune inflammation. Front. Immunol. 3, 89 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Butovsky, O. et al. Microglia activated by IL-4 or IFN-γ differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells. Mol. Cell Neurosci. 31, 149–160 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Roughton, K., Andreasson, U., Blomgren, K. & Kalm, M. Lipopolysaccharide-induced inflammation aggravates irradiation-induced injury to the young mouse brain. Dev. Neurosci. 35, 406–415 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Nikolakopoulou, A. M., Dutta, R., Chen, Z., Miller, R. H. & Trapp, B. D. Activated microglia enhance neurogenesis via trypsinogen secretion. Proc. Natl Acad. Sci. USA 110, 8714–8719 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yan, Y. P., Lang, B. T., Vemuganti, R. & Dempsey, R. J. Galectin-3 mediates post-ischemic tissue remodeling. Brain Res. 1288, 116–124 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Choi, Y. S., Cho, H. Y., Hoyt, K. R., Naegele, J. R. & Obrietan, K. IGF-1 receptor-mediated ERK/MAPK signaling couples status epilepticus to progenitor cell proliferation in the subgranular layer of the dentate gyrus. Glia 56, 791–800 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kobayashi, K. et al. Minocycline selectively inhibits M1 polarization of microglia. Cell Death Dis. 4, e525 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kim, B. J. et al. Reduced neurogenesis after suppressed inflammation by minocycline in transient cerebral ischemia in rat. J. Neurol. Sci. 279, 70–75 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Cafferty, W. B., McGee, A. W. & Strittmatter, S. M. Axonal growth therapeutics: regeneration or sprouting or plasticity? Trends Neurosci. 31, 215–220 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Horn, K. P., Busch, S. A., Hawthorne, A. L., van Rooijen, N. & Silver, J. Another barrier to regeneration in the CNS: activated macrophages induce extensive retraction of dystrophic axons through direct physical interactions. J. Neurosci. 28, 9330–9341 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kitayama, M., Ueno, M., Itakura, T. & Yamashita, T. Activated microglia inhibit axonal growth through RGMa. PLoS ONE 6, e25234 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shechter, R. et al. Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice. PLoS Med. 6, e1000113 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Yin, Y. et al. Oncomodulin is a macrophage-derived signal for axon regeneration in retinal ganglion cells. Nat. Neurosci. 9, 843–852 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Yin, Y. et al. Oncomodulin links inflammation to optic nerve regeneration. Proc. Natl Acad. Sci. USA 106, 19587–19592 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Paolicelli, R. C. et al. Synaptic pruning by microglia is necessary for normal brain development. Science 333, 1456–1458 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Wake, H., Moorhouse, A. J., Jinno, S., Kohsaka, S. & Nabekura, J. Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J. Neurosci. 29, 3974–3980 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ji, K., Akgul, G., Wollmuth, L. P. & Tsirka, S. E. Microglia actively regulate the number of functional synapses. PLoS ONE 8, e56293 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhan, Y. et al. Deficient neuron–microglia signaling results in impaired functional brain connectivity and social behavior. Nat. Neurosci. 17, 400–406 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Stevens, B. et al. The classical complement cascade mediates CNS synapse elimination. Cell 131, 1164–1178 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Schafer, D. P. et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74, 691–705 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Stellwagen, D. & Malenka, R. C. Synaptic scaling mediated by glial TNF-α. Nature 440, 1054–1059 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Medina, R. J. et al. Myeloid angiogenic cells act as alternative M2 macrophages and modulate angiogenesis through interleukin-8. Mol. Med. 17, 1045–1055 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zajac, E. et al. Angiogenic capacity of M1- and M2-polarized macrophages is determined by the levels of TIMP-1 complexed with their secreted proMMP-9. Blood 122, 4054–4067 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Willenborg, S. et al. CCR2 recruits an inflammatory macrophage subpopulation critical for angiogenesis in tissue repair. Blood 120, 613–625 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Welser, J. V., Li, L. & Milner, R. Microglial activation state exerts a biphasic influence on brain endothelial cell proliferation by regulating the balance of TNF and TGF-β1. J. Neuroinflammation 7, 89 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Flögel, U. et al. In vivo monitoring of inflammation after cardiac and cerebral ischemia by fluorine magnetic resonance imaging. Circulation 118, 140–148 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Nimmerjahn, A., Kirchhoff, F. & Helmchen, F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308, 1314–1318 (2005).

    Article  CAS  PubMed  Google Scholar 

  56. Venneti, S., Lopresti, B. J. & Wiley, C. A. Molecular imaging of microglia/macrophages in the brain. Glia 61, 10–23 (2013).

    Article  PubMed  Google Scholar 

  57. Chhor, V. et al. Characterization of phenotype markers and neuronotoxic potential of polarised primary microglia in vitro. Brain Behav. Immun. 32, 70–85 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Rolls, A. et al. Two faces of chondroitin sulfate proteoglycan in spinal cord repair: a role in microglia/macrophage activation. PLoS Med. 5, e171 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Verma, S., Nakaoke, R., Dohgu, S. & Banks, W. A. Release of cytokines by brain endothelial cells: a polarized response to lipopolysaccharide. Brain Behav. Immun. 20, 449–455 (2006).

    Article  CAS  PubMed  Google Scholar 

  60. Biswas, S. K. & Mantovani, A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat. Immunol. 11, 889–896 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Beers, D. R. et al. Endogenous regulatory T lymphocytes ameliorate amyotrophic lateral sclerosis in mice and correlate with disease progression in patients with amyotrophic lateral sclerosis. Brain 134, 1293–1314 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Jang, E. et al. Secreted protein lipocalin-2 promotes microglial M1 polarization. FASEB J. 27, 1176–1190 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Starossom, S. C. et al. Galectin-1 deactivates classically activated microglia and protects from inflammation-induced neurodegeneration. Immunity 37, 249–263 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jiang, M. H. et al. Substance P induces M2-type macrophages after spinal cord injury. Neuroreport 23, 786–792 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Rocher, C. & Singla, D. K. SMAD–PI3K–Akt–mTOR pathway mediates BMP-7 polarization of monocytes into M2 macrophages. PLoS ONE 8, e84009 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Gong, D. et al. TGFβ signaling plays a critical role in promoting alternative macrophage activation. BMC Immunol. 13, 31 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Maiorino, C. et al. Lentiviral-mediated administration of IL-25 in the CNS induces alternative activation of microglia. Gene Ther. 20, 487–96 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. Sica, A. & Bronte, V. Altered macrophage differentiation and immune dysfunction in tumor development. J. Clin. Invest. 117, 1155–1166 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Qin, H. et al. SOCS3 deficiency promotes M1 macrophage polarization and inflammation. J. Immunol. 189, 3439–3448 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Martinez-Nunez, R. T., Louafi, F. & Sanchez-Elsner, T. The interleukin 13 (IL-13) pathway in human macrophages is modulated by microRNA-155 via direct targeting of interleukin 13 receptor α1 (IL13Rα1). J. Biol. Chem. 286, 1786–1794 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Sheldon, K. E. et al. Shaping the murine macrophage phenotype: IL-4 and cyclic AMP synergistically activate the arginase I promoter. J. Immunol. 191, 2290–2298 (2013).

    Article  CAS  PubMed  Google Scholar 

  72. Koscsó, B. et al. Adenosine augments IL-10-induced STAT3 signaling in M2c macrophages. J. Leukoc. Biol. 94, 1309–1315 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Qin, H. et al. Signal transducer and activator of transcription-3/suppressor of cytokine signaling-3 (STAT3/SOCS3) axis in myeloid cells regulates neuroinflammation. Proc. Natl Acad. Sci. USA 109, 5004–5009 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Weis, N., Weigert, A., von Knethen, A. & Brüne, B. Heme oxygenase-1 contributes to an alternative macrophage activation profile induced by apoptotic cell supernatants. Mol. Biol. Cell 20, 1280–1288 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Sanson, M., Distel, E. & Fisher, E. A. HDL induces the expression of the M2 macrophage markers arginase 1 and Fizz-1 in a STAT6-dependent process. PLoS ONE 8, e74676 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bouhlel, M. A. et al. PPARγ activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metab. 6, 137–143 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Hasegawa-Moriyama, M. et al. Peroxisome proliferator-activated receptor-γ agonist rosiglitazone attenuates inflammatory pain through the induction of heme oxygenase-1 in macrophages. Pain 154, 1402–1412 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Zhao, X. et al. Hematoma resolution as a target for intracerebral hemorrhage treatment: role for peroxisome proliferator-activated receptor γ in microglia/macrophages. Ann. Neurol. 61, 352–362 (2007).

    Article  CAS  PubMed  Google Scholar 

  79. Satoh, T. et al. The Jmjd3–Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat. Immunol. 11, 936–944 (2010).

    Article  CAS  PubMed  Google Scholar 

  80. Krausgruber, T. et al. IRF5 promotes inflammatory macrophage polarization and TH1–TH17 responses. Nat. Immunol. 12, 231–238 (2011).

    Article  CAS  PubMed  Google Scholar 

  81. Xu, H. et al. Notch–RBP-J signaling regulates the transcription factor IRF8 to promote inflammatory macrophage polarization. Nat. Immunol. 13, 642–650 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ruffell, D. et al. A CREB-C/EBPβ cascade induces M2 macrophage-specific gene expression and promotes muscle injury repair. Proc. Natl Acad. Sci. USA 106, 17475–17480 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Graff, J. W., Dickson, A. M., Clay, G., McCaffrey, A. P. & Wilson, M. E. Identifying functional microRNAs in macrophages with polarized phenotypes. J. Biol. Chem. 287, 21816–21825 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ponomarev, E. D., Veremeyko, T. & Weiner, H. L. MicroRNAs are universal regulators of differentiation, activation, and polarization of microglia and macrophages in normal and diseased CNS. Glia 61, 91–103 (2013).

    Article  PubMed  Google Scholar 

  85. Cai, X. et al. Re-polarization of tumor-associated macrophages to pro-inflammatory M1 macrophages by microRNA-155. J. Mol. Cell Biol. 4, 341–343 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Moore, C. S. et al. miR-155 as a multiple sclerosis-relevant regulator of myeloid cell polarization. Ann. Neurol. 74, 709–720 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Ponomarev, E. D., Veremeyko, T., Barteneva, N., Krichevsky, A. M. & Weiner, H. L. MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-α–PU.1 pathway. Nat. Med. 17, 64–70 (2011).

    Article  CAS  PubMed  Google Scholar 

  88. Banerjee, S. et al. MicroRNA let-7c regulates macrophage polarization. J. Immunol. 190, 6542–6549 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Schulte, L. N., Westermann, A. J. & Vogel, J. Differential activation and functional specialization of miR-146 and miR-155 in innate immune sensing. Nucleic Acids Res. 41, 542–553 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Guo, S. et al. IRF4 is a novel mediator for neuronal survival in ischaemic stroke. Cell Death Differ. 21, 888–903 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Xiang, M. et al. Interferon regulatory factor 8 protects against cerebral ischaemic-reperfusion injury. J. Neurochem. 129, 988–1001 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. Hou, Y. C. et al. Preventive effect of silymarin in cerebral ischemia-reperfusion-induced brain injury in rats possibly through impairing NF-κB and STAT-1 activation. Phytomedicine 17, 963–973 (2010).

    Article  CAS  PubMed  Google Scholar 

  93. Willemen, H. L. et al. MicroRNA-124 as a novel treatment for persistent hyperalgesia. J. Neuroinflammation 9, 143 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Desestret, V. et al. In vitro and in vivo models of cerebral ischemia show discrepancy in therapeutic effects of M2 macrophages. PLoS ONE 8, e67063 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Mikita, J. et al. Altered M1/M2 activation patterns of monocytes in severe relapsing experimental rat model of multiple sclerosis. Amelioration of clinical status by M2 activated monocyte administration. Mult. Scler. 17, 2–15 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Zhu, W. et al. Insulin growth factor-1 gene transfer enhances neurovascular remodeling and improves long-term stroke outcome in mice. Stroke 39, 1254–1261 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Courties, G. et al. In vivo silencing of the transcription factor IRF5 reprograms the macrophage phenotype and improves infarct healing. J. Am. Coll. Cardiol. 63, 1556–1566 (2014).

    Article  CAS  PubMed  Google Scholar 

  98. Hall, J. L. & Wei, L. N. Could silencing IRF5 improve healing of a myocardial infarct through the reprogramming of the macrophage population? J. Am. Coll. Cardiol 63, 1567–1568 (2014).

    Article  PubMed  Google Scholar 

  99. Eames, H. L. et al. KAP1/TRIM28: an inhibitor of IRF5 function in inflammatory macrophages. Immunobiology 217, 1315–1324 (2012).

    Article  CAS  PubMed  Google Scholar 

  100. Xiong, X. et al. Increased brain injury and worsened neurological outcome in interleukin-4 knockout mice after transient focal cerebral ischemia. Stroke 42, 2026–2032 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Boehler, R. et al. Lentivirus delivery of IL-10 to promote and sustain macrophage polarization towards an anti-inflammatory phenotype. Biotechnol. Bioeng. 111, 1210–1221 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhao, B. Q. et al. Role of matrix metalloproteinases in delayed cortical responses after stroke. Nat. Med. 12, 441–445 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Hanania, R. et al. Classically activated macrophages use stable microtubules for matrix metalloproteinase-9 (MMP-9) secretion. J. Biol. Chem. 287, 8468–8483 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Komohara, Y., Ohnishi, K., Kuratsu, J. & Takeya, M. Possible involvement of the M2 anti-inflammatory macrophage phenotype in growth of human gliomas. J. Pathol. 216, 15–24 (2008).

    Article  CAS  PubMed  Google Scholar 

  105. Smith, A. M. & Dragunow, M. The human side of microglia. Trends Neurosci. 37, 125–135 (2014).

    Article  CAS  PubMed  Google Scholar 

  106. Planas, A. M., Justicia, C. & Ferrer, I. Stat1 in developing and adult rat brain. Induction after transient focal ischemia. Neuroreport 8, 1359–1362 (1997).

    Article  CAS  PubMed  Google Scholar 

  107. Wu, Y., Yang, L., Mei, X. & Yu, Y. Selective inhibition of STAT1 reduces spinal cord injury in mice. Neurosci. Lett. 580, 7–11 (2013).

    Article  PubMed  CAS  Google Scholar 

  108. Liu, D. Z. et al. Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures. J. Cereb. Blood Flow Metab. 30, 92–101 (2010).

    Article  PubMed  CAS  Google Scholar 

  109. Luo, Y. et al. Neuroprotection against focal ischemic brain injury by the peroxisome proliferator-activated receptor-γ agonist rosiglitazone. J. Neurochem. 97, 435–448 (2006).

    Article  CAS  PubMed  Google Scholar 

  110. Erdö, F., Trapp, T., Mies, G. & Hossmann, K. A. Immunohistochemical analysis of protein expression after middle cerebral artery occlusion in mice. Acta Neuropathol. 107, 127–136 (2004).

    Article  PubMed  CAS  Google Scholar 

  111. Shrivastava, K. et al. Temporal expression of cytokines and signal transducer and activator of transcription factor 3 activation after neonatal hypoxia/ischemia in mice. Dev. Neurosci. 35, 212–225 (2013).

    Article  CAS  PubMed  Google Scholar 

  112. Bouhy, D. et al. Delayed GM-CSF treatment stimulates axonal regeneration and functional recovery in paraplegic rats via an increased BDNF expression by endogenous macrophages. FASEB J. 20, 1239–1241 (2006).

    Article  CAS  PubMed  Google Scholar 

  113. Batchelor, P. E. et al. Macrophages and microglia produce local trophic gradients that stimulate axonal sprouting toward but not beyond the wound edge. Mol. Cell. Neurosci. 21, 436–453 (2002).

    Article  CAS  PubMed  Google Scholar 

  114. Ardelt, A. A., Bhattacharyya, B. J., Belmadani, A., Ren, D. & Miller, R. J. Stromal derived growth factor-1 (CXCL12) modulates synaptic transmission to immature neurons during post-ischemic cerebral repair. Exp. Neurol. 248, 246–253 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Yan, Y. P., Lang, B. T., Vemuganti, R. & Dempsey, R. J. Osteopontin is a mediator of the lateral migration of neuroblasts from the subventricular zone after focal cerebral ischemia. Neurochem. Int. 55, 826–832 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

X.H. is supported by the American Heart Association (grant no. 13SDG14570025) and the Ethyl Vincent pilot grant in multiple sclerosis from the Department of Neurology, University of Pittsburgh. R.K.L. is supported by a Commonwealth Universal Research Enhancement (CURE) Award from the Pennsylvania Department of Health, and a Michael J. Fox Foundation Innovation Award. Y.G. is supported by Chinese Natural Science Foundation grants 81171149 and 81371306. J.C. is supported by NIH grants NS45048, NS62157, NS59806 and NS36736, Chinese Natural Science Foundation grant no. 81228008, and a Veterans Administration Merit Review.

Author information

Authors and Affiliations

Authors

Contributions

X.H., Y.S., Y.G. and P.Z. researched the data for the article. X.H., R.K.L. and J.C. provided substantial contributions to discussions of the content. X.H. wrote the article. X.H., R.K.L., J.S. and J.C. contributed to review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Jun Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Leak, R., Shi, Y. et al. Microglial and macrophage polarization—new prospects for brain repair. Nat Rev Neurol 11, 56–64 (2015). https://doi.org/10.1038/nrneurol.2014.207

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2014.207

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing