Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Intracranial aneurysms: from vessel wall pathology to therapeutic approach

Abstract

An aneurysm is a focal dilatation of an arterial blood vessel. Luminal forces, such as high blood flow, shear stress and turbulence, are implicated in the pathogenesis of intracranial aneurysms, and luminal characteristics, such as sac size and morphology, are usually essential to the clinical decision-making process. Despite frequent clinical emphasis on the vessel lumen, however, the pathology underlying the formation, growth and rupture of an aneurysm mainly resides in the vessel wall. Research on the morphology and histopathology of the vessel wall reveals that intracranial aneurysms do not constitute a single disease, but are a shared manifestation of a wide range of diseases, each of which has a unique natural history and optimum therapy. This Review classifies intracranial aneurysms by vessel wall pathology, and demonstrates that understanding the morphology and pathology of this structure is important in determining the therapeutic approach. The article concludes that aneurysms represent a symptom of an underlying vascular disease rather than constituting a disease on their own.

Key Points

  • Intracranial aneurysms do not constitute a single disease, but are a manifestation of a wide range of diseases

  • Aneurysmal diseases vary in their natural histories and optimum treatment strategies

  • Despite frequent clinical emphasis on the vessel lumen, the pathology underlying aneurysm formation, growth and rupture mainly resides in the vessel wall

  • A classification of intracranial aneurysms based on vessel wall pathology is important to understand these life-threatening conditions and to determine the best therapeutic approaches

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ruptured classic saccular aneurysm.
Figure 2: Dissection with aneurysm.
Figure 3: Intramural hemorrhage with aneurysm.
Figure 4: Intramural hemorrhage.
Figure 5: Microbial aneurysms caused by endovascular spreading of infection.
Figure 6: Microbial aneurysms from direct extension of infection in a patient with subdural empyema.

Similar content being viewed by others

References

  1. Schievink, W. I. Intracranial aneurysms. N. Engl. J. Med. 336, 28–40 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Wiebers, D. O. et al. Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet 362, 103–110 (2003).

    Article  PubMed  Google Scholar 

  3. Hashimoto, T., Meng, H. & Young, W. L. Intracranial aneurysms: links among inflammation, hemodynamics and vascular remodeling. Neurol. Res. 28, 372–380 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Burton, C. & Johnston, J. Multiple cerebral aneurysms and cardiac myxoma. N. Engl. J. Med. 282, 35–36 (1970).

    Article  CAS  PubMed  Google Scholar 

  5. Mizutani, T., Kojima, H., Asamoto, S. & Miki, Y. Pathological mechanism and three-dimensional structure of cerebral dissecting aneurysms. J. Neurosurg. 94, 712–717 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Tulamo, R., Frosen, J., Hernesniemi, J. & Niemela, M. Inflammatory changes in the aneurysm wall: a review. J. NeuroIntervent. Surg. 2, 120–130 (2010).

    Article  Google Scholar 

  7. Stehbens, W. E. Etiology of intracranial berry aneurysms. J. Neurosurg. 70, 823–831 (1989).

    Article  CAS  PubMed  Google Scholar 

  8. Stehbens, W. E. Analysis of definitions and word misusage in vascular pathology. Cardiovasc. Pathol. 10, 251–257 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Park, J. K. et al. Imaging of intracranial plaques with black-blood double inversion recovery MR imaging and CT. J. Neuroimaging 21, e64–e68 (2011).

    Article  PubMed  Google Scholar 

  10. Alpers, B. J., Berry, R. G. & Paddison, R. M. Anatomical studies of the circle of Willis in normal brain. AMA Arch. Neurol. Psychiatry 81, 409–418 (1959).

    Article  CAS  PubMed  Google Scholar 

  11. Kamath, S. Observations on the length and diameter of vessels forming the circle of Willis. J. Anat. 133, 419–423 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Atlas, S. W. Magnetic resonance imaging of intracranial aneurysms. Neuroimaging Clin. N. Am. 7, 709–720 (1997).

    CAS  PubMed  Google Scholar 

  13. Vlak, M. H., Algra, A., Brandenburg, R. & Rinkel, G. J. Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: a systematic review and meta-analysis. Lancet Neurol. 10, 626–636 (2011).

    Article  PubMed  Google Scholar 

  14. Bonneville, F., Sourour, N. & Biondi, A. Intracranial aneurysms: an overview. Neuroimaging Clin. N. Am. 16, 371–382 (2006).

    Article  PubMed  Google Scholar 

  15. Krings, T., Geibprasert, S. & terBrugge, K. G. Pathomechanisms and treatment of pediatric aneurysms. Childs Nerv. Syst. 26, 1309–1318 (2010).

    Article  PubMed  Google Scholar 

  16. Hashimoto, N. et al. Experimental induction of cerebral aneurysms in monkeys. J. Neurosurg. 67, 903–905 (1987).

    Article  CAS  PubMed  Google Scholar 

  17. Hazama, F. & Hashimoto, N. An animal model of cerebral aneurysms. Neuropathol. Appl. Neurobiol. 13, 77–90 (1987).

    Article  CAS  PubMed  Google Scholar 

  18. Hazama, F. et al. Early changes of experimentally induced cerebral aneurysms in rats. Light-microscopic study. Am. J. Pathol. 124, 399–404 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kojima, M., Handa, H., Hashimoto, N., Kim, C. & Hazama, F. Early changes of experimentally induced cerebral aneurysms in rats: scanning electron microscopic study. Stroke 17, 835–841 (1986).

    Article  CAS  PubMed  Google Scholar 

  20. Hashimoto, N., Handa, H. & Hazama, F. Experimentally induced cerebral aneurysms in rats: part III. Pathology. Surg. Neurol. 11, 299–304 (1979).

    CAS  PubMed  Google Scholar 

  21. Hassler, O. Experimental carotid ligation followed by aneurysmal formation and other morphological changes in the Circle of Willis. J. Neurosurg. 20, 1–7 (1963).

    Article  CAS  PubMed  Google Scholar 

  22. Rinkel, G. J. Natural history, epidemiology and screening of unruptured intracranial aneurysms. J. Neuroradiol. 35, 99–103 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Juvela, S., Hillbom, M., Numminen, H. & Koskinen, P. Cigarette smoking and alcohol consumption as risk factors for aneurysmal subarachnoid hemorrhage. Stroke 24, 639–646 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Ruigrok, Y. M. & Rinkel, G. J. From GWAS to the clinic: risk factors for intracranial aneurysms. Genome Med. 2, 61 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Casimiro, M. V., McEvoy, A. W., Watkins, L. D. & Kitchen, N. D. A comparison of risk factors in the etiology of mirror and nonmirror multiple intracranial aneurysms. Surg. Neurol. 61, 541–545 (2004).

    Article  PubMed  Google Scholar 

  26. Etchevers, H. C., Vincent, C., Le Douarin, N. M. & Couly, G. F. The cephalic neural crest provides pericytes and smooth muscle cells to all blood vessels of the face and forebrain. Development 128, 1059–1068 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Lasjaunias, P. L. Segmental identity and vulnerability in cerebral arteries. Interv. Neuroradiol. 6, 113–124 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Valavanis, A. Environment of aneurysms and endovascular considerations. Interv. Neuroradiol. 14 (Suppl. 1), 48–49 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  29. San Millan Ruiz, D. et al. The perianeurysmal environment: influence on saccular aneurysm shape and rupture. AJNR Am. J. Neuroradiol. 27, 504–512 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kataoka, K. et al. Structural fragility and inflammatory response of ruptured cerebral aneurysms. A comparative study between ruptured and unruptured cerebral aneurysms. Stroke 30, 1396–1401 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Hassler, O. Morphological studies on the large cerebral arteries, with reference to the aetiology of subarachnoid haemorrhage. Acta Psychiatr. Scand. Suppl. 154, 1–145 (1961).

    CAS  PubMed  Google Scholar 

  32. Rajesh, B. J., Sandhyamani, S. & Bhattacharya, R. N. Clinico-pathological study of cerebral aneurysms. Neurol. India 52, 82–86 (2004).

    CAS  PubMed  Google Scholar 

  33. Frosen, J. et al. Remodeling of saccular cerebral artery aneurysm wall is associated with rupture: histological analysis of 24 unruptured and 42 ruptured cases. Stroke 35, 2287–2293 (2004).

    Article  PubMed  Google Scholar 

  34. Greenhill, N. S. & Stehbens, W. E. Scanning electron microscopic investigation of the afferent arteries of experimental femoral arteriovenous fistulae in rabbits. Pathology 19, 22–27 (1987).

    Article  CAS  PubMed  Google Scholar 

  35. Okamoto, E. et al. Perivascular inflammation after balloon angioplasty of porcine coronary arteries. Circulation 104, 2228–2235 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Intengan, H. D. & Schiffrin, E. L. Vascular remodeling in hypertension: roles of apoptosis, inflammation, and fibrosis. Hypertension 38, 581–587 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Scanarini, M., Mingrino, S., Giordano, R. & Baroni, A. Histological and ultrastructural study of intracranial saccular aneurysmal wall. Acta Neurochir. (Wien) 43, 171–182 (1978).

    Article  CAS  Google Scholar 

  38. Stehbens, W. E. Histopathology of cerebral aneurysms. Arch. Neurol. 8, 272–285 (1963).

    Article  CAS  PubMed  Google Scholar 

  39. Shi, C. et al. Genomics of human intracranial aneurysm wall. Stroke 40, 1252–1261 (2009).

    Article  PubMed  Google Scholar 

  40. Mitchell, P. & Jakubowski, J. Estimate of the maximum time interval between formation of cerebral aneurysm and rupture. J. Neurol. Neurosurg. Psychiatry 69, 760–767 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Saam, T. et al. High-resolution black-blood contrast-enhanced T1 weighted images for the diagnosis and follow-up of intracranial arteritis. Br. J. Radiol. 83, e182–e184 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Park, J. K., Lee, C. S., Sim, K. B., Huh, J. S. & Park, J. C. Imaging of the walls of saccular cerebral aneurysms with double inversion recovery black-blood sequence. J. Magn. Reson. Imaging 30, 1179–1183 (2009).

    Article  PubMed  Google Scholar 

  43. Redekop, G., TerBrugge, K., Montanera, W. & Willinsky, R. Arterial aneurysms associated with cerebral arteriovenous malformations: classification, incidence, and risk of hemorrhage. J. Neurosurg. 89, 539–546 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Cantore, G., Santoro, A. & Da Pian, R. Spontaneous occlusion of supraclinoid aneurysms after the creation of extra-intracranial bypasses using long grafts: report of two cases. Neurosurgery 44, 216–219 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Hans, F. J., Krings, T., Reinges, M. H. & Mull, M. Spontaneous regression of two supraophthalmic internal cerebral artery aneurysms following flow pattern alteration. Neuroradiology 46, 469–473 (2004).

    CAS  PubMed  Google Scholar 

  46. Ebina, K., Iwabuchi, T. & Suzuki, S. Histological change in permanently clipped or ligated cerebral arterial wall. Part II: Autopsy cases of aneurysmal neck clipping. Acta Neurochir. (Wien) 66, 23–42 (1982).

    Article  CAS  Google Scholar 

  47. Molyneux, A. et al. International Subarachnoid Aneurysm Trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised trial. Lancet 360, 1267–1274 (2002).

    Article  PubMed  Google Scholar 

  48. Holmin, S. et al. Intradural saccular aneurysms treated by Guglielmi detachable bare coils at a single institution between and 2005: clinical long-term follow-up for a total of 1810 patient-years in relation to morphological treatment results. Stroke 39, 2288–2297 (2008).

    Article  PubMed  Google Scholar 

  49. Tamatani, S. et al. Evaluation of the stability of aneurysms after embolization using detachable coils: correlation between stability of aneurysms and embolized volume of aneurysms. AJNR Am. J. Neuroradiol. 23, 762–767 (2002).

    PubMed  PubMed Central  Google Scholar 

  50. D'Urso, P. I., Lanzino, G., Cloft, H. J. & Kallmes, D. F. Flow diversion for intracranial aneurysms: a review. Stroke 42, 2363–2368 (2011).

    Article  PubMed  Google Scholar 

  51. Kulcsar, Z. et al. Intra-aneurysmal thrombosis as a possible cause of delayed aneurysm rupture after flow-diversion treatment. AJNR Am. J. Neuroradiol. 32, 20–25 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hegedus, K. Ectasia of the basilar artery with special reference to possible pathogenesis. Surg. Neurol. 24, 463–469 (1985).

    Article  CAS  PubMed  Google Scholar 

  53. Nakatomi, H. et al. Clinicopathological study of intracranial fusiform and dolichoectatic aneurysms: insight on the mechanism of growth. Stroke 31, 896–900 (2000).

    Article  CAS  PubMed  Google Scholar 

  54. Hirsch, C. S. & Roessmann, U. Arterial dysplasia with ruptured basilar artery aneurysm: report of a case. Hum. Pathol. 6, 749–758 (1975).

    Article  CAS  PubMed  Google Scholar 

  55. Mizutani, T., Miki, Y., Kojima, H. & Suzuki, H. Proposed classification of nonatherosclerotic cerebral fusiform and dissecting aneurysms. Neurosurgery 45, 253–259 (1999).

    Article  CAS  PubMed  Google Scholar 

  56. Mizutani, T. et al. Recurrent subarachnoid hemorrhage from untreated ruptured vertebrobasilar dissecting aneurysms. Neurosurgery 36, 905–911 (1995).

    Article  CAS  PubMed  Google Scholar 

  57. Passero, S. G. & Rossi, S. Natural history of vertebrobasilar dolichoectasia. Neurology 70, 66–72 (2008).

    Article  PubMed  Google Scholar 

  58. Flemming, K. D. et al. The natural history of radiographically defined vertebrobasilar nonsaccular intracranial aneurysms. Cerebrovasc. Dis. 20, 270–279 (2005).

    Article  PubMed  Google Scholar 

  59. Klisch, J., Turk, A., Turner, R., Woo, H. H. & Fiorella, D. Very late thrombosis of flow-diverting constructs after the treatment of large fusiform posterior circulation aneurysms. AJNR Am. J. Neuroradiol. 32, 627–632 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hara, M. & Yamamoto, I. Introduction to symposium: intracranial dissecting aneurysms. Neuropathology 20, 83–84 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Sasaki, O., Ogawa, H., Koike, T., Koizumi, T. & Tanaka, R. A clinicopathological study of dissecting aneurysms of the intracranial vertebral artery. J. Neurosurg. 75, 874–882 (1991).

    Article  CAS  PubMed  Google Scholar 

  62. Gur, A. Y. & Bornstein, N. M. TCD and the Diamox test for testing vasomotor reactivity: clinical significance. Neurol. Neurochir. Pol. 35 (Suppl. 3), 51–56 (2001).

    PubMed  Google Scholar 

  63. Caplan, L. Posterior Circulation Disease: Clinical Findings, Diagnosis, and Management (Blackwell Publishing, Cambridge, MA, 1996).

    Google Scholar 

  64. Endo, S., Nishijima, M., Nomura, H., Takaku, A. & Okada, E. A pathological study of intracranial posterior circulation dissecting aneurysms with subarachnoid hemorrhage: report of three autopsied cases and review of the literature. Neurosurgery 33, 732–738 (1993).

    CAS  PubMed  Google Scholar 

  65. Mizutani, T. & Kojima, H. Clinicopathological features of non-atherosclerotic cerebral arterial trunk aneurysms. Neuropathology 20, 91–97 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Zhao, W. Y. et al. Management of spontaneous haemorrhagic intracranial vertebrobasilar dissection: review of 21 consecutive cases. Acta Neurochir. (Wien) 149, 585–596 (2007).

    Article  CAS  Google Scholar 

  67. Rabinov, J. D., Hellinger, F. R., Morris, P. P., Ogilvy, C. S. & Putman, C. M. Endovascular management of vertebrobasilar dissecting aneurysms. AJNR Am. J. Neuroradiol. 24, 1421–1428 (2003).

    PubMed  PubMed Central  Google Scholar 

  68. Yonas, H., Agamanolis, D., Takaoka, Y. & White, R. J. Dissecting intracranial aneurysms. Surg. Neurol. 8, 407–415 (1977).

    CAS  PubMed  Google Scholar 

  69. Nakagawa, K. et al. Long-term follow-up study of unruptured vertebral artery dissection: clinical outcomes and serial angiographic findings. J. Neurosurg. 93, 19–25 (2000).

    Article  CAS  PubMed  Google Scholar 

  70. Day, A. L., Gaposchkin, C. G., Yu, C. J., Rivet, D. J. & Dacey, R. G. Jr. Spontaneous fusiform middle cerebral artery aneurysms: characteristics and a proposed mechanism of formation. J. Neurosurg. 99, 228–240 (2003).

    Article  PubMed  Google Scholar 

  71. Du Boulay, G. H. Some observations on the natural history of intracranial aneurysms. Br. J. Radiol. 38, 721–757 (1965).

    Article  CAS  PubMed  Google Scholar 

  72. Krings, T. et al. Growth and rupture mechanism of partially thrombosed aneurysms. Interv. Neuroradiol. 13, 117–126 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Teng, M. M. et al. MR imaging of giant intracranial aneurysm. J. Clin. Neurosci. 10, 460–464 (2003).

    Article  PubMed  Google Scholar 

  74. Schubiger, O., Valavanis, A. & Wichmann, W. Growth-mechanism of giant intracranial aneurysms; demonstration by CT and MR imaging. Neuroradiology 29, 266–271 (1987).

    Article  CAS  PubMed  Google Scholar 

  75. Schubiger, O., Valavanis, A. & Hayek, J. Computed tomography in cerebral aneurysms with special emphasis on giant intracranial aneurysms. J. Comput. Assist. Tomogr. 4, 24–32 (1980).

    Article  CAS  PubMed  Google Scholar 

  76. Katayama, Y. et al. Growth of totally thrombosed giant aneurysm within the posterior cranial fossa. Diagnostic and therapeutic considerations. Neuroradiology 33, 168–170 (1991).

    Article  CAS  PubMed  Google Scholar 

  77. Iihara, K. et al. Continued growth of and increased symptoms from a thrombosed giant aneurysm of the vertebral artery after complete endovascular occlusion and trapping: the role of vasa vasorum. Case report. J. Neurosurg. 98, 407–413 (2003).

    Article  PubMed  Google Scholar 

  78. Takaba, M. et al. Vasa vasorum of the intracranial arteries. Acta Neurochir. (Wien) 140, 411–416 (1998).

    Article  CAS  Google Scholar 

  79. Krings, T. et al. Segmental unfused basilar artery with kissing aneurysms: report of three cases and literature review. Acta Neurochir. (Wien) 149, 567–574 (2007).

    Article  CAS  Google Scholar 

  80. Berenstein, A., Lasjaunias, P. & terBrugge, K. in Surgical Neuroangiography Vol. 2.2 (Springer, Berlin, 2004).

    Book  Google Scholar 

  81. Nagahiro, S., Takada, A., Goto, S., Kai, Y. & Ushio, Y. Thrombosed growing giant aneurysms of the vertebral artery: growth mechanism and management. J. Neurosurg. 82, 796–801 (1995).

    Article  CAS  PubMed  Google Scholar 

  82. Zhao, L. et al. The 5-lipoxygenase pathway promotes pathogenesis of hyperlipidemia-dependent aortic aneurysm. Nat. Med. 10, 966–973 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Kumamoto, M., Nakashima, Y. & Sueishi, K. Intimal neovascularization in human coronary atherosclerosis: its origin and pathophysiological significance. Hum. Pathol. 26, 450–456 (1995).

    Article  CAS  PubMed  Google Scholar 

  84. Longo, G. M. et al. Matrix metalloproteinases 2 and 9 work in concert to produce aortic aneurysms. J. Clin. Invest. 110, 625–632 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Daugherty, A. & Cassis, L. A. Mechanisms of abdominal aortic aneurysm formation. Curr. Atheroscler. Rep. 4, 222–227 (2002).

    Article  PubMed  Google Scholar 

  86. van Rooij, W. J. & Sluzewski, M. Endovascular treatment of large and giant aneurysms. AJNR Am. J. Neuroradiol. 30, 12–18 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Bergqvist, D. Historical aspects on aneurysmal disease. Scand. J. Surg. 97, 90–99 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Barrow, D. L. & Prats, A. R. Infectious intracranial aneurysms: comparison of groups with and without endocarditis. Neurosurgery 27, 562–572 (1990).

    Article  CAS  PubMed  Google Scholar 

  89. Marsot-Dupuch, K., Riachi, S., Berthet, K. & Azizi, L. Infectious aneurysms of the cavernous carotid artery. J. Radiol. 81, 891–898 (2000).

    CAS  PubMed  Google Scholar 

  90. Kannoth, S. & Thomas, S. V. Intracranial microbial aneurysm (infectious aneurysm): current options for diagnosis and management. Neurocrit. Care 11, 120–129 (2009).

    Article  PubMed  Google Scholar 

  91. Kelley, R. E., Stokes, N., Reyes, P. & Harik, S. I. Cerebral transmural angiitis and ruptured aneurysm: a complication of systemic lupus erythematosus. Arch. Neurol. 37, 526–527 (1980).

    Article  CAS  PubMed  Google Scholar 

  92. Takahashi, J. C. et al. Subarachnoid hemorrhage from a ruptured anterior cerebral artery aneurysm caused by polyarteritis nodosa. Case report. J. Neurosurg. 96, 132–134 (2002).

    Article  PubMed  Google Scholar 

  93. Love, S., Renowden, S. & Carter, M. Ruptured vertebrobasilar aneurysm associated with giant cell arteritis in a young boy. Clin. Neurol. Neurosurg. 110, 92–96 (2008).

    Article  PubMed  Google Scholar 

  94. Ducruet, A. F. et al. Intracranial infectious aneurysms: a comprehensive review. Neurosurg. Rev. 33, 37–46 (2010).

    Article  PubMed  Google Scholar 

  95. Bhattacharyya, A. et al. Endovascular management of infective intracranial aneurysms with acrylic glue. A report of two cases. Interv. Neuroradiol. 15, 443–447 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Modi, G., Ranchod, K., Modi, M. & Mochan, A. Human immunodeficiency virus associated intracranial aneurysms: report of three adult patients with an overview of the literature. J. Neurol. Neurosurg. Psychiatry 79, 44–46 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Goldstein, D. A., Timpone, J. & Cupps, T. R. HIV-associated intracranial aneurysmal vasculopathy in adults. J. Rheumatol. 37, 226–233 (2010).

    Article  PubMed  Google Scholar 

  98. Husson, R. N. et al. Cerebral artery aneurysms in children infected with human immunodeficiency virus. J. Pediatr. 121, 927–930 (1992).

    Article  CAS  PubMed  Google Scholar 

  99. Park, Y. D. et al. Stroke in pediatric acquired immunodeficiency syndrome. Ann. Neurol. 28, 303–311 (1990).

    Article  CAS  PubMed  Google Scholar 

  100. Joshi, V. V. et al. Arteriopathy in children with acquired immune deficiency syndrome. Pediatr. Pathol. 7, 261–275 (1987).

    CAS  PubMed  Google Scholar 

  101. Lane, J. H. et al. Neuroinvasion by simian immunodeficiency virus coincides with increased numbers of perivascular macrophages/microglia and intrathecal immune activation. J. Neurovirol. 2, 423–432 (1996).

    Article  CAS  PubMed  Google Scholar 

  102. Marazzi, M. G., Bondi, E., Giannattasio, A., Strozzi, M. & Savioli, C. Intracranial aneurysm associated with chronic mucocutaneous candidiasis. Eur. J. Pediatr. 167, 461–463 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Kure, K. et al. Immunohistochemical localization of an HIV epitope in cerebral aneurysmal arteriopathy in pediatric acquired immunodeficiency syndrome (AIDS). Pediatr. Pathol. 9, 655–667 (1989).

    Article  CAS  PubMed  Google Scholar 

  104. Dubrovsky, T. et al. Cerebral aneurysmal arteriopathy in childhood AIDS. Neurology 51, 560–565 (1998).

    Article  CAS  PubMed  Google Scholar 

  105. Tipping, B., de Villiers, L., Candy, S. & Wainwright, H. Stroke caused by human immunodeficiency virus-associated intracranial large-vessel aneurysmal vasculopathy. Arch. Neurol. 63, 1640–1642 (2006).

    Article  PubMed  Google Scholar 

  106. Rodriguez, F. J. et al. Embolic atrial myxoma with neoplastic aneurysm formation and haemorrhage: a diagnostic challenge. Neuropathol. Appl. Neurobiol. 32, 213–216 (2006).

    Article  CAS  PubMed  Google Scholar 

  107. Lee, V. H., Connolly, H. M. & Brown, R. D. Jr. Central nervous system manifestations of cardiac myxoma. Arch. Neurol. 64, 1115–1120 (2007).

    Article  PubMed  Google Scholar 

  108. Stoane, L., Allen, J. H. Jr & Collins, H. A. Radiologic observations in cerebral embolization from left heart myxomas. Radiology 87, 262–266 (1966).

    Article  CAS  PubMed  Google Scholar 

  109. Price, D. L., Harris, J. L., New, P. F. & Cantu, R. C. Cardiac myxoma. A clinicopathologic and angiographic study. Arch. Neurol. 23, 558–567 (1970).

    Article  CAS  PubMed  Google Scholar 

  110. New, P. F., Price, D. L. & Carter, B. Cerebral angiography in cardiac myxoma. Correlation of angiographic and histopathological findings. Radiology 96, 335–345 (1970).

    Article  CAS  PubMed  Google Scholar 

  111. Furuya, K. et al. Histologically verified cerebral aneurysm formation secondary to embolism from cardiac myxoma. Case report. J. Neurosurg. 83, 170–173 (1995).

    Article  CAS  PubMed  Google Scholar 

  112. Nucifora, P. G. & Dillon, W. P. MR diagnosis of myxomatous aneurysms: report of two cases. AJNR Am. J. Neuroradiol. 22, 1349–1352 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Sabolek, M., Bachus-Banaschak, K., Bachus, R., Arnold, G. & Storch, A. Multiple cerebral aneurysms as delayed complication of left cardiac myxoma: a case report and review. Acta Neurol. Scand. 111, 345–350 (2005).

    Article  CAS  PubMed  Google Scholar 

  114. Tamuleviciute, E., Taeshineetanakul, P., Terbrugge, K. & Krings, T. Myxomatous aneurysms. A case report and literature review. Interv. Neuroradiol. 17, 188–194 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Krings, T., Geibprasert, S. & Lasjaunias, P. L. Cerebrovascular trauma. Eur. Radiol. 18, 1531–1545 (2008).

    Article  PubMed  Google Scholar 

  116. Cohen, J. E. et al. Results of endovascular treatment of traumatic intracranial aneurysms. Neurosurgery 63, 476–485 (2008).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to Prof. Pierre Lasjaunias who trained us and taught us to look beyond the lumen. L. Barclay, freelance writer and reviewer, is the author of and is solely responsible for the content of the learning objectives, questions and answers of the Medscape, LLC-accredited continuing medical education activity associated with this article.

Author information

Authors and Affiliations

Authors

Contributions

The article was written by T. Krings, D. M. Mandell, F.-J. Hans and T.-R. Kiehl. T. Krings, S. Geibprasert, T.-R. Kiehl and F.-J. Hans researched the data for the article, and D. M. Mandell, K. G. terBrugge, T.-R. Kiehl, M. Tymianski and H. Alvarez made substantial contributions to discussions of its content. S. Geibprasert, K. G. terBrugge, M. Tymianski, H. Alvarez and F.-J. Hans also contributed to reviewing and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Timo Krings.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krings, T., Mandell, D., Kiehl, TR. et al. Intracranial aneurysms: from vessel wall pathology to therapeutic approach. Nat Rev Neurol 7, 547–559 (2011). https://doi.org/10.1038/nrneurol.2011.136

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2011.136

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing