Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The gut microbiota, bacterial metabolites and colorectal cancer

Key Points

  • Dietary intake has an important effect on the gut environment, much of which is mediated by the metabolic activities of the intestinal microbiota on dietary compounds. Different microbial metabolites have the potential to promote and protect against colorectal cancer (CRC).

  • Accumulating evidence suggests that microbial-derived short chain fatty acids control inflammation and regulatory T cell populations. This involves the inhibition of host histone deacetylases and interactions with cell surface receptors.

  • Multiple species in the gut microbiota have complex roles in releasing and converting diet-derived phytochemicals and host-derived bile acids and glycoconjugates, all of which influence the overall microbial metabolome.

  • Alterations in the composition of the gut microbiota can be detected both in faecal samples and in tumour-associated communities that are associated with CRC. Although many of these changes may be consequential, some specific pathogens seem to contribute to causation and disease progression.

  • It is unlikely that the aetiology of CRC can be ascribed to the presence and activities of single pathogenic species, and it is proposed that the cumulative effects of microbial metabolites should be considered to better predict and prevent cancer progression.

Abstract

Accumulating evidence suggests that the human intestinal microbiota contributes to the aetiology of colorectal cancer (CRC), not only via the pro-carcinogenic activities of specific pathogens but also via the influence of the wider microbial community, particularly its metabolome. Recent data have shown that the short-chain fatty acids acetate, propionate and butyrate function in the suppression of inflammation and cancer, whereas other microbial metabolites, such as secondary bile acids, promote carcinogenesis. In this Review, we discuss the relationship between diet, microbial metabolism and CRC and argue that the cumulative effects of microbial metabolites should be considered in order to better predict and prevent cancer progression.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pathways that are responsible for the biosynthesis of the major microbial metabolites that result from carbohydrate fermentation and bacterial cross-feeding.
Figure 2: Anti-inflammatory and anti-apoptotic effects of colonic bacteria and their metabolites that are thought to mitigate colorectal carcinogenesis.
Figure 3: Pro-inflammatory and DNA-damaging effects of colonic bacteria and their metabolites that are thought to contribute to colorectal carcinogenesis.
Figure 4: Major microbial metabolites formed from dietary and environmental compounds that are involved in the initiation and/or progression of colorectal cancer.

Similar content being viewed by others

References

  1. Jemal, A. et al. Global cancer statistics. CA Cancer J. Clin. 61, 69–90 (2011).

    PubMed  Google Scholar 

  2. Fearon, E. R. & Vogelstein, B. A genetic model for colorectal tumorigenesis. Cell 61, 759–767 (1990).

    CAS  PubMed  Google Scholar 

  3. Rabeneck, L., Davila, J. A. & El-Serag, H. B. Is there a true 'shift' to the right colon in the incidence of colorectal cancer? Am. J. Gastroenterol. 98, 1400–1409 (2003).

    PubMed  Google Scholar 

  4. Gill, C. I. R. & Rowland, I. R. Diet and cancer: assessing the risk. Br. J. Nutr. 88, S73–S87 (2002).

    CAS  PubMed  Google Scholar 

  5. Burn, J. et al. Long-term effect of aspirin on cancer risk in carriers of hereditary colorectal cancer: an analysis from the CAPP2 randomised controlled trial. Lancet 378, 2081–2087 (2011).

    PubMed  PubMed Central  Google Scholar 

  6. World Cancer Research Fund and American Institute for Cancer Research. Food, Nutrition, Physical Activity, and the Prevention of Cancer: A Global Perspective. (AICR, 2007).

  7. Jess, T., Gamborg, M., Matzen, P., Munkholm, P. & Sørensen, T. I. A. Increased risk of intestinal cancer in Crohn's disease: a meta-analysis of population-based cohort studies. Am. J. Gastroenterol. 100, 2724–2729 (2005).

    PubMed  Google Scholar 

  8. Danese, S., Malesci, A. & Vetrano, S. Colitis-associated cancer: the dark side of inflammatory bowel disease. Gut 60, 1609–1610 (2011).

    CAS  PubMed  Google Scholar 

  9. Schwabe, R. F. & Jobin, C. The microbiome and cancer. Nature Rev. Cancer 13, 800–812 (2013).

    CAS  Google Scholar 

  10. Kostic, A. D. et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor–immune microenvironment. Cell Host Microbe 14, 207–215 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Tjalsma, H., Boleij, A., Marchesi, J. R. & Dutilh, B. E. A bacterial driver–passenger model for colorectal cancer: beyond the usual suspects. Nature Rev. Microbiol. 10, 575–582 (2012).

    CAS  Google Scholar 

  12. Elinav, E. et al. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nature Rev. Cancer 13, 759–771 (2013).

    CAS  Google Scholar 

  13. Sears, C. L. & Garrett, W. S. Microbes, microbiota and colon cancer. Cell Host Microbe 15, 317–328 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Flint, H. J., Scott, K. P., Louis, P. & Duncan, S. H. The role of the gut microbiota in nutrition and health. Nature Rev. Gastroenterol. Hepatol. 9, 577–589 (2012).

    CAS  Google Scholar 

  15. Eckburg, P. B. et al. Microbiology: diversity of the human intestinal microbial flora. Science 308, 1635–1638 (2005).

    PubMed  PubMed Central  Google Scholar 

  16. Walker, A. W. et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J. 5, 220–230 (2011). This study is a carefully controlled human dietary trial that demonstrates rapid and reversible changes in the relative abundance of specific bacterial groups in response to carbohydrate intake.

    CAS  PubMed  Google Scholar 

  17. David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).

    CAS  PubMed  Google Scholar 

  18. Flint, H. J., Scott, K. P., Duncan, S. H., Louis, P. & Forano, E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes 3, 289–306 (2012).

    PubMed  PubMed Central  Google Scholar 

  19. Salonen, A. et al. Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men. ISME J. http://dx.doi.org/10.1038/ismej.2014.63 (2014).

  20. Duncan, S. H. et al. Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl. Environ. Microbiol. 73, 1073–1078 (2007).

    CAS  PubMed  Google Scholar 

  21. Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. De Filippo, C. et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl Acad. Sci. USA 107, 14691–14696 (2010).

    PubMed  Google Scholar 

  23. Le Chatelier, E. et al. Richness of human gut microbiome correlates with metabolic markers. Nature 500, 541–546 (2013).

    CAS  PubMed  Google Scholar 

  24. Cotillard, A. et al. Dietary intervention impact on gut microbial gene richness. Nature 500, 585–588 (2013).

    CAS  PubMed  Google Scholar 

  25. Aune, D. et al. Dietary fibre, whole grains, and risk of colorectal cancer: systematic review and dose-response meta-analysis of prospective studies. BMJ 343, 1082 (2011).

    Google Scholar 

  26. Chen, H. -M. et al. Decreased dietary fiber intake and structural alteration of gut microbiota in patients with advanced colorectal adenoma. Am. J. Clin. Nutr. 97, 1044–1052 (2013).

    CAS  PubMed  Google Scholar 

  27. Ou, J. et al. Diet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans. Am. J. Clin. Nutr. 98, 111–120 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Marcobal, A. et al. A metabolomic view of how the human gut microbiota impacts the host metabolome using humanized and gnotobiotic mice. ISME J. 7, 1933–1943 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Macfarlane, G. T. & Gibson, G. R in Gastrointestinal Microbiology Vol. 1 (eds Maie, R. I. & White, B. A.) 269–318 (Chapman and Hall, 1997).

    Google Scholar 

  30. Sieber, J. R., McInerney, M. J. & Gunsalus, R. P. Genomic insights into syntrophy: the paradigm for anaerobic metabolic cooperation. Annu. Rev. Microbiol. 66, 429–452 (2012).

    CAS  PubMed  Google Scholar 

  31. Baughn, A. D. & Malamy, M. H. The strict anaerobe Bacteroides fragilis grows in and benefits from nanomolar concentrations of oxygen. Nature 427, 441–444 (2004).

    CAS  PubMed  Google Scholar 

  32. Khan, M. T. et al. The gut anaerobe Faecalibacterium prausnitzii uses an extracellular electron shuttle to grow at oxic–anoxic interphases. ISME J. 6, 1578–1585 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Circu, M. L. & Aw, T. Y. Intestinal redox biology and oxidative stress. Semin. Cell Dev. Biol. 23, 729–737 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Nava, G. M., Carbonero, F., Croix, J. A., Greenberg, E. & Gaskins, H. R. Abundance and diversity of mucosa-associated hydrogenotrophic microbes in the healthy human colon. ISME J. 6, 57–70 (2012).

    CAS  PubMed  Google Scholar 

  35. Carbonero, F., Benefiel, A. C. & Gaskins, H. R. Contributions of the microbial hydrogen economy to colonic homeostasis. Nature Rev. Gastroenterol. Hepatol. 9, 504–518 (2012).

    CAS  Google Scholar 

  36. Lewis, S. & Cochrane, S. Alteration of sulfate and hydrogen metabolism in the human colon by changing intestinal transit rate. Am. J. Gastroenterol. 102, 624–633 (2007).

    CAS  PubMed  Google Scholar 

  37. Miller, T. L. & Wolin, M. J. Pathways of acetate, propionate, and butyrate formation by the human fecal microbial flora. Appl. Environ. Microbiol. 62, 1589–1592 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Belenguer, A. et al. Impact of pH on lactate formation and utilization by human fecal microbial communities. Appl. Environ. Microbiol. 73, 6526–6533 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Walker, A. W., Duncan, S. H., McWilliam Leitch, E. C., Child, M. W. & Flint, H. J. pH and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon. Appl. Environ. Microbiol. 71, 3692–3700 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Reichardt, N. et al. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J. 8, 1323–1335 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Louis, P. et al. Restricted distribution of the butyrate kinase pathway among butyrate-producing bacteria from the human colon. J. Bacteriol. 186, 2099–2106 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Louis, P., Young, P., Holtrop, G. & Flint, H. J. Diversity of human colonic butyrate-producing bacteria revealed by analysis of the butyryl-CoA:acetate CoA-transferase gene. Environ. Microbiol. 12, 304–314 (2010).

    CAS  PubMed  Google Scholar 

  43. Louis, P. & Flint, H. J. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol. Lett. 294, 1–8 (2009).

    CAS  PubMed  Google Scholar 

  44. Barcenilla, A. et al. Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl. Environ. Microbiol. 66, 1654–1661 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Sleeth, M. L., Thompson, E. L., Ford, H. E., Zac-Varghese, S. E. K. & Frost, G. Free fatty acid receptor 2 and nutrient sensing: a proposed role for fibre, fermentable carbohydrates and short-chain fatty acids in appetite regulation. Nutr. Res. Rev. 23, 135–145 (2010).

    CAS  PubMed  Google Scholar 

  46. Fung, K. Y. C., Cosgrove, L., Lockett, T., Head, R. & Topping, D. L. A review of the potential mechanisms for the lowering of colorectal oncogenesis by butyrate. Br. J. Nutr. 108, 820–831 (2012).

    CAS  PubMed  Google Scholar 

  47. Wilson, A. J. et al. Apoptotic sensitivity of colon cancer cells to histone deacetylase inhibitors is mediated by an Sp1/Sp3-activated transcriptional program involving immediate-early gene induction. Cancer Res. 70, 609–620 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hamer, H. M. et al. Review article: the role of butyrate on colonic function. Aliment. Pharmacol. Ther. 27, 104–119 (2008).

    CAS  PubMed  Google Scholar 

  49. Chang, P. V., Hao, L., Offermanns, S. & Medzhitov, R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc. Natl Acad. Sci. USA 111, 2247–2252 (2014). This study provides evidence that the inhibition of HDACs by butyrate is responsible for anti-inflammatory effects in colonic macrophages.

    CAS  PubMed  Google Scholar 

  50. Smith, P. M. et al. The microbial metabolites, short-chain fatty acids, regulate colonic T reg cell homeostasis. Science 341, 569–573 (2013). This study shows that propionate has an anti-inflammatory effect via the modulation of cT Reg cells.

    CAS  PubMed  Google Scholar 

  51. Furusawa, Y. et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504, 446–450 (2013).

    CAS  PubMed  Google Scholar 

  52. Atarashi, K. et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331, 337–341 (2011).

    CAS  PubMed  Google Scholar 

  53. Geuking, M. et al. Intestinal bacterial colonization induces mutualistic regulatory T cell responses. Immunity 34, 794–806 (2011).

    CAS  PubMed  Google Scholar 

  54. Round, J. L. & Mazmanian, S. K. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc. Natl Acad. Sci. USA 107, 12204–12209 (2010).

    CAS  PubMed  Google Scholar 

  55. O'Mahony, C. et al. Commensal-induced regulatory T cells mediate protection against pathogen-stimulated NF-κB activation. PLoS Pathog. 4, e1000112 (2008).

    PubMed  PubMed Central  Google Scholar 

  56. Chung, H. et al. Gut immune maturation depends on colonization with a host-specific microbiota. Cell 149, 1578–1593 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Arpaia, N. et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504, 451–455 (2013). This study shows that propionate and butyrate, but not acetate, promote the generation of anti-inflammatory T Reg cells via the inhibition of HDACs.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Latham, T. et al. Lactate, a product of glycolytic metabolism, inhibits histone deacetylase activity and promotes changes in gene expression. Nucleic Acids Res. 40, 4794–4803 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Ganapathy, V., Thangaraju, M., Prasad, P. D., Martin, P. M. & Singh, N. Transporters and receptors for short-chain fatty acids as the molecular link between colonic bacteria and the host. Curr. Opin. Pharmacol. 13, 869–874 (2013).

    CAS  PubMed  Google Scholar 

  60. Frank, H. et al. Lactaturia and loss of sodium-dependent lactate uptake in the colon of SLC5A8-deficient mice. J. Biol. Chem. 283, 24729–24737 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Brown, A. J. et al. The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem. 278, 11312–11319 (2003).

    CAS  PubMed  Google Scholar 

  62. Singh, N. et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 40, 128–139 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Thangaraju, M. et al. GPFM 09A is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon. Cancer Res. 69, 2826–2832 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Maslowski, K. M. et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461, 1282–1286 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Buda, A. et al. Butyrate downregulates a2ß1 integrin: a possible role in the induction of apoptosis in colorectal cancer cell lines. Gut 52, 729–734 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Clarke, J. M., Topping, D. L., Bird, A. R., Young, G. P. & Cobiac, L. Effects of high-amylose maize starch and butyrylated high-amylose maize starch on azoxymethane-induced intestinal cancer in rats. Carcinogenesis 29, 2190–2194 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Nepelska, M. et al. Butyrate produced by commensal bacteria potentiates phorbol esters induced AP-1 response in human intestinal epithelial cells. PLoS ONE 7, e52869 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Belcheva, A. et al. Gut microbial metabolism drives transformation of Msh2-deficient colon epithelial cells. Cell 158, 288–299 (2014).

    CAS  PubMed  Google Scholar 

  69. Ramos, S. Cancer chemoprevention and chemotherapy: dietary polyphenols and signalling pathways. Mol. Nutr. Food Res. 52, 507–526 (2008).

    CAS  PubMed  Google Scholar 

  70. Herr, I. & Büchler, M. W. Dietary constituents of broccoli and other cruciferous vegetables: implications for prevention and therapy of cancer. Cancer Treat. Rev. 36, 377–383 (2010).

    CAS  PubMed  Google Scholar 

  71. Chiva-Blanch, G. & Visioli, F. Polyphenols and health: moving beyond antioxidants. J. Berry Res. 2, 63–71 (2012).

    CAS  Google Scholar 

  72. Bennett, L. L., Rojas, S. & Seefeldt, T. Role of antioxidants in the prevention of cancer. J. Exp. Clin. Med. 4, 215–222 (2012).

    CAS  Google Scholar 

  73. Russell, W. & Duthie, G. Plant secondary metabolites and gut health: the case for phenolic acids. Proc. Nutr. Soc. 70, 389–396 (2011).

    CAS  PubMed  Google Scholar 

  74. Russell, W. R., Hoyles, L., Flint, H. J. & Dumas, M. -E. Colonic bacterial metabolites and human health. Curr. Opin. Microbiol. 16, 246–254 (2013).

    CAS  PubMed  Google Scholar 

  75. Cardona, F., Andrés-Lacueva, C., Tulipani, S., Tinahones, F. J. & Queipo-Ortuño, M. I. Benefits of polyphenols on gut microbiota and implications in human health. J. Nutr. Biochem. 24, 1415–1422 (2013).

    CAS  PubMed  Google Scholar 

  76. Russell, W. R., Labat, A., Scobbie, L. & Duncan, S. H. Availability of blueberry phenolics for microbial metabolism in the colon and the potential inflammatory implications. Mol. Nutr. Food Res. 51, 726–731 (2007).

    CAS  PubMed  Google Scholar 

  77. Larrosa, M. et al. Polyphenol metabolites from colonic microbiota exert anti-inflammatory activity on different inflammation models. Mol. Nutr. Food Res. 53, 1044–1054 (2009).

    CAS  PubMed  Google Scholar 

  78. Etxeberria, U. et al. Impact of polyphenols and polyphenol-rich dietary sources on gut microbiota composition. J. Agr. Food Chem. 61, 9517–9533 (2013).

    CAS  Google Scholar 

  79. Kim, D. -H. & Jin, Y. -H. Intestinal bacterial ß-glucuronidase activity of patients with colon cancer. Arch. Pharm. Res. 24, 564–567 (2001).

    CAS  PubMed  Google Scholar 

  80. Humblot, C. et al. ß-glucuronidase in human intestinal microbiota is necessary for the colonic genotoxicity of the food-borne carcinogen 2-amino-3-methylimidazo[4,5-f]quinoline in rats. Carcinogenesis 28, 2419–2425 (2007).

    CAS  PubMed  Google Scholar 

  81. McIntosh, F. M. et al. Phylogenetic distribution of genes encoding β-glucuronidase activity in human colonic bacteria and the impact of diet on faecal glycosidase activities. Environ. Microbiol. 14, 1876–1887 (2012).

    CAS  PubMed  Google Scholar 

  82. Wallace, B. D. et al. Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science 330, 831–835 (2010). This paper describes the design of an inhibitor that specifically targets bacterial β-glucuronidases, which protects against chemotherapy-associated toxicity in a mouse model.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Russell, W. R. et al. High-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health. Am. J. Clin. Nutr. 93, 1062–1072 (2011). This human intervention study shows that a diet that is low in carbohydrates and high in protein decreases faecal cancer-protective metabolites and butyrate, whereas levels of potentially harmful N -nitroso compounds increase.

    CAS  PubMed  Google Scholar 

  84. Windey, K., de Preter, V. & Verbeke, K. Relevance of protein fermentation to gut health. Mol. Nutr. Food Res. 56, 184–196 (2012).

    CAS  PubMed  Google Scholar 

  85. Russell, W. R. et al. Major phenylpropanoid-derived metabolites in the human gut can arise from microbial fermentation of protein. Mol. Nutr. Food Res. 57, 523–535 (2013).

    CAS  PubMed  Google Scholar 

  86. Loh, Y. H. et al. N-nitroso compounds and cancer incidence: The European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk Study. Am. J. Clin. Nutr. 93, 1053–1061 (2011).

    CAS  PubMed  Google Scholar 

  87. Hughes, R. & Rowland, I. R. Metabolic activities of the gut microflora in relation to cancer. Microb. Ecol. Health Dis. 12, 179–185 (2000).

    Google Scholar 

  88. Di Martino, M. L. et al. Polyamines: emerging players in bacteria–host interactions. Int. J. Med. Microbiol. 303, 484–491 (2013).

    CAS  PubMed  Google Scholar 

  89. Pegg, A. E. Toxicity of polyamines and their metabolic products. Chem. Res. Toxicol. 26, 1782–1800 (2013).

    CAS  PubMed  Google Scholar 

  90. Hanfrey, C. C. et al. Alternative spermidine biosynthetic route is critical for growth of Campylobacter jejuni and is the dominant polyamine pathway in human gut microbiota. J. Biol. Chem. 286, 43301–43312 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Toden, S., Bird, A. R., Topping, D. L. & Conlon, M. A. Resistant starch prevents colonic DNA damage induced by high dietary cooked red meat or casein in rats. Cancer Biol. Ther. 5, 267–272 (2006).

    CAS  PubMed  Google Scholar 

  92. Windey, K. et al. Modulation of protein fermentation does not affect fecal water toxicity: a randomized cross-over study in healthy subjects. PLoS ONE 7, e52387 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Kuhnle, G. G. C. et al. Diet-induced endogenous formation of nitroso compounds in the GI tract. Free Radic. Bio. Med. 43, 1040–1047 (2007).

    CAS  Google Scholar 

  94. Magee, E. A., Richardson, C. J., Hughes, R. & Cummings, J. H. Contribution of dietary protein to sulfide production in the large intestine: an in vitro and a controlled feeding study in humans. Am. J. Clin. Nutr. 72, 1488–1494 (2000).

    CAS  PubMed  Google Scholar 

  95. Marquet, P., Duncan, S. H., Chassard, C., Bernalier-Donadille, A. & Flint, H. J. Lactate has the potential to promote hydrogen sulphide formation in the human colon. FEMS Microbiol. Lett. 299, 128–134 (2009).

    CAS  PubMed  Google Scholar 

  96. Roediger, W. E. W., Moore, J. & Babidge, W. Colonic sulfide in pathogenesis and treatment of ulcerative colitis. Dig. Dis. Sci. 42, 1571–1579 (1997).

    CAS  PubMed  Google Scholar 

  97. Attene-Ramos, M. S. et al. DNA damage and toxicogenomic analyses of hydrogen sulfide in human intestinal epithelial FHs 74 int cells. Environ. Mol. Mutag. 51, 304–314 (2010).

    CAS  Google Scholar 

  98. Attene-Ramos, M. S., Wagner, E. D., Gaskins, H. R. & Plewa, M. J. Hydrogen sulfide induces direct radical-associated DNA damage. Mol. Cancer Res. 5, 455–459 (2007).

    CAS  PubMed  Google Scholar 

  99. Barrasa, J. I., Olmo, N., Lizarbe, M. A. & Turnay, J. Bile acids in the colon, from healthy to cytotoxic molecules. Toxicol. In Vitro 27, 964–977 (2013).

    CAS  PubMed  Google Scholar 

  100. Bernstein, H., Bernstein, C., Payne, C. M. & Dvorak, K. Bile acids as endogenous etiologic agents in gastrointestinal cancer. World J. Gastroentero. 15, 3329–3340 (2009).

    CAS  Google Scholar 

  101. Ou, J., DeLany, J. P., Zhang, M., Sharma, S. & O'Keefe, S. J. D. Association between low colonic short-chain fatty acids and high bile acids in high colon cancer risk populations. Nutr. Cancer 64, 34–40 (2012).

    CAS  PubMed  Google Scholar 

  102. Yoshimoto, S. et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499, 97–101 (2013).

    CAS  PubMed  Google Scholar 

  103. Islam, K. B. M. S. et al. Bile acid is a host factor that regulates the composition of the cecal microbiota in rats. Gastroenterology 141, 1773–1781 (2011). This study shows that bile acids have a strong modulatory effect on the gut microbiota, which suggests that they contribute to changes in the microbiota in response to high-fat diets.

    CAS  PubMed  Google Scholar 

  104. Ridlon, J. M., Kang, D. -J. & Hylemon, P. B. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 47, 241–259 (2006).

    CAS  PubMed  Google Scholar 

  105. Jones, B. V., Begley, M., Hill, C., Gahan, C. G. M. & Marchesi, J. R. Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc. Natl Acad. Sci. USA 105, 13580–13585 (2008).

    CAS  PubMed  Google Scholar 

  106. Ridlon, J. M. & Hylemon, P. B. Identification and characterization of two bile acid coenzyme A transferases from Clostridium scindens, a bile acid 7a-dehydroxylating intestinal bacterium. J. Lipid Res. 53, 66–76 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Májer, F. et al. New highly toxic bile acids derived from deoxycholic acid, chenodeoxycholic acid and lithocholic acid. Bioorgan. Med. Chem. 22, 256–268 (2014).

    Google Scholar 

  108. Lee, J. Y. et al. Contribution of the 7β-hydroxysteroid dehydrogenase from Ruminococcus gnavus N53 to ursodeoxycholic acid formation in the human colon. J. Lipid Res. 54, 3062–3069 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Devkota, S. et al. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il 10−/− mice. Nature 486, 104–108 (2012).

    Google Scholar 

  110. Homann, N. Alcohol and upper gastrointestinal tract cancer: the role of local acetaldehyde production. Addict. Biol. 6, 309–323 (2001).

    CAS  PubMed  Google Scholar 

  111. Hooper, S. J., Wilson, M. J. & Crean, S. J. Exploring the link between microorganisms and oral cancer: a systematic review of the literature. Head Neck 31, 1228–1239 (2009).

    PubMed  Google Scholar 

  112. Grivennikov, S. I., Greten, F. R. & Karin, M. Immunity, inflammation, and cancer. Cell 140, 883–899 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Schreiber, R. D., Old, L. J. & Smyth, M. J. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 331, 1565–1570 (2011).

    CAS  PubMed  Google Scholar 

  114. Arthur, J. C. et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338, 120–123 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Dove, W. F. et al. Intestinal neoplasia in the ApcMin mouse: independence from the microbial and natural killer (beige locus) status. Cancer Res. 57, 812–814 (1997).

    CAS  PubMed  Google Scholar 

  116. Fukata, M. et al. Toll-like receptor-4 promotes the development of colitis-associated colorectal tumors. Gastroenterology 133, 1869–1881 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Kobayashi, K. S. et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 307, 731–734 (2005).

    CAS  PubMed  Google Scholar 

  118. Neal, M. D. et al. Toll-like receptor 4 is expressed on intestinal stem cells and regulates their proliferation and apoptosis via the p53 up-regulated modulator of apoptosis. J. Biol. Chem. 287, 37296–37308 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Wu, S. et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nature Med. 15, 1016–1022 (2009).

    CAS  PubMed  Google Scholar 

  120. Sears, C. L. Enterotoxigenic Bacteroides fragilis: a rogue among symbiotes. Clin. Microbiol. Rev. 22, 349–369 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Goodwin, A. C. et al. Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis. Proc. Natl Acad. Sci. USA 108, 15354–15359 (2011).

    CAS  PubMed  Google Scholar 

  122. Kostic, A. D. et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 22, 292–298 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Warren, R. L. et al. Co-occurrence of anaerobic bacteria in colorectal carcinomas. Microbiome 1, 16 (2013). This study identifies a potential polymicrobial signature of Gram-negative anaerobic bacteria that is associated with CRC tissue.

    PubMed  PubMed Central  Google Scholar 

  124. Rubinstein, M. R. et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/ß-catenin signaling via its FadA adhesin. Cell Host Microbe 14, 195–206 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Cuevas-Ramos, G. et al. Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proc. Natl Acad. Sci. USA 107, 11537–11542 (2010).

    CAS  PubMed  Google Scholar 

  126. Nougayrède, J. -P. et al. Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science 313, 848–851 (2006).

    PubMed  Google Scholar 

  127. Inaba, Y. et al. Expression of the antimicrobial peptide α-defensin/cryptdins in intestinal crypts decreases at the initial phase of intestinal inflammation in a model of inflammatory bowel disease, IL-10-deficient mice. Inflamm. Bowel Dis. 16, 1488–1495 (2010).

    PubMed  Google Scholar 

  128. Schwerbrock, N. M. J. et al. Interleukin 10-deficient mice exhibit defective colonic Muc2 synthesis before and after induction of colitis by commensal bacteria. Inflamm. Bowel Dis. 10, 811–823 (2004).

    PubMed  Google Scholar 

  129. Secher, T., Samba-Louaka, A., Oswald, E. & Nougayrède, J. -P. Escherichia coli producing colibactin triggers premature and transmissible senescence in mammalian cells. PLoS ONE 8, e77157 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Mukhopadhya, I., Hansen, R., El-Omar, E. M. & Hold, G. L. IBD — what role do Proteobacteria play? Nature Rev. Gastroenterol. Hepatol. 9, 219–230 (2012).

    CAS  Google Scholar 

  131. Grivennikov, S. I. et al. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature 491, 254–258 (2012). This study demonstrates that defective intestinal barrier function at tumour sites facilitates bacterial translocation, which leads to the activation of myeloid cell-derived cytokine networks (involving IL-17 and IL-23) and the promotion of tumour growth.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Vogelstein, B. et al. Cancer genome landscapes. Science 340, 1546–1558 (2013).

    Google Scholar 

  133. McLean, M. H. et al. The inflammatory microenvironment in colorectal neoplasia. PLoS ONE 6, e15366 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Lewis, S. J. & Heaton, K. W. Increasing butyrate concentration in the distal colon by accelerating intestinal transit. Gut 41, 245–251 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Stephen, A. M., Wiggins, H. S. & Cummings, J. H. Effect of changing transit time on colonic microbial metabolism in man. Gut 28, 601–609 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Wichmann, A. et al. Microbial modulation of energy availability in the colon regulates intestinal transit. Cell Host Microbe 14, 582–590 (2013).

    CAS  PubMed  Google Scholar 

  137. McOrist, A. L. et al. Fecal butyrate levels vary widely among individuals but are usually increased by a diet high in resistant starch. J. Nutr. 141, 883–889 (2011).

    CAS  PubMed  Google Scholar 

  138. Shen, X. J. et al. Molecular characterization of mucosal adherent bacteria and associations with colorectal adenomas. Gut Microbes 1, 138–147 (2010).

    PubMed  PubMed Central  Google Scholar 

  139. Sanapareddy, N. et al. Increased rectal microbial richness is associated with the presence of colorectal adenomas in humans. ISME J. 6, 1858–1868 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Wang, T. et al. Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J. 6, 320–329 (2012). This study finds that the faecal microbiota of patients with CRC and healthy controls differs.

    CAS  PubMed  Google Scholar 

  141. Zackular, J. P. et al. The gut microbiome modulates colon tumorigenesis. mBio 4, e00692–13 (2013). This study provides evidence that the composition of the gut microbiota influences the development of carcinogen-induced tumours in the intestines of mice.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

P.L. and H.F. acknowledge support from the Scottish Government Food Land and People programme. The authors thank A. Walker and R. Barker for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry J. Flint.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Glossary

Resistant starch

The fraction of dietary starch that is not digested in the small intestine by host enzymes and reaches the colon.

Non-digestible carbohydrates

Dietary carbohydrates that are not digested by mammalian enzymes in the small intestine and reach the colon, where they may be used as substrates for the resident microbiota.

Mucin

A high molecular weight glycoprotein that is produced by the gut epithelium and forms the mucus layer that lines the gut wall; it can be used as an energy source by some gut bacteria.

Non-starch polysaccharides

Non-digestible carbohydrates other than resistant starch, including cellulose, arabinoxylans, xyloglucans, pectins and gums.

Acetogenic

A term used to describe bacteria that produce acetate from carbon dioxide and hydrogen (or formate) via the Wood–Ljungdahl pathway.

Methanogenesis

The process by which methane is formed from carbon dioxide and hydrogen (or formate) by methanogenic archaea.

Wood–Ljungdahl pathway

The collection of sequential biochemical reactions that lead to the formation of acetate from carbon dioxide and hydrogen. Several bacteria use this pathway for the generation of energy, and it is also used by certain bacteria and archaea for the assimilation of carbon dioxide into biomass.

Acrylate pathway

The collection of sequential biochemical reactions that lead to the conversion of lactate to propionate by certain Firmicutes bacteria.

Propanediol pathway

The collection of sequential biochemical reactions that lead to the conversion of deoxy-sugars (such as rhamnose and fucose) to propionate by certain gut bacteria.

Histone deacetylases

(HDACs). Enzymes that remove acetyl groups from histones, which are structural proteins that package DNA into structural units. Deacetylation leads to more condensed chromatin, which alters gene expression.

Colonic regulatory T cells

(cTReg cells). A subset of T lymphocytes that are found in the colon and are crucial for the maintenance of immune tolerance.

AP-1 signalling pathway

A pathway that regulates gene expression via the transcription factor activator protein 1 (AP-1).

Polyphenols

Organic compounds that contain phenol moieties; they are produced by plants and are involved in many biological processes, including defence against herbivores.

Glucosinolates

Sulphur-containing natural compounds that are present in Brassica vegetables. They are converted to secondary compounds (including isothiocyanates) that are thought to have health-promoting effects.

Phytochemicals

Natural compounds that are produced by plants and belong to a range of biochemical classes.

Xenobiotic

A chemical compound that is not normally found in an organism, such as a drug or environmental pollutant.

Glycosides

Chemical compounds that are bound to a sugar residue via a glycosidic linkage.

Glucuronides

Chemical compounds that are bound to a glucuronic acid residue via a glycosidic linkage.

Aglycones

The compounds that are produced following the removal of the sugar or sugar acid (such as glucuronic acid) residue from a glycoside or glucuronide.

Nitrosation

The process by which compounds are converted to nitroso group (-N=O)- containing derivatives.

Secondary bile acids

Metabolites that are produced by enteric bacteria from primary bile acids.

Primary bile acids

Steroid acids that are synthesized in the liver and secreted into the gut to promote fat digestion.

Pattern recognition receptors

(PRRs). Innate immune proteins that are essential for recognizing and responding to microorganisms. The most common PRRs include Toll-like receptors, NOD-like receptors, RIGI-like receptors and DNA receptors (that is, cytosolic sensors for DNA).

Microorganism-associated molecular patterns

(MAMPS). Conserved microbial components, such as lipopolysaccharide, peptidoglycan, flagellin and nucleic acids, that are detected by the host innate immune system via pattern recognition receptors.

Colitis

Inflammation of the colon or large intestine.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Louis, P., Hold, G. & Flint, H. The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol 12, 661–672 (2014). https://doi.org/10.1038/nrmicro3344

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrmicro3344

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing