Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Shedding light on the cell biology of extracellular vesicles

Key Points

  • The secretion of extracellular vesicles was initially described as a means of selective elimination of proteins, lipids and RNA from cells. Now, extracellular vesicles are also considered a new mode of intercellular communication.

  • In any given setting, the population of extracellular vesicles comprises diverse subpopulations that can differ in size, morphology, composition or biogenic mechanisms. Complementary methods of analysis are required to distinguish between these subpopulations.

  • Several machineries, prominently including components of the endocytic sorting machineries, act concomitantly for the generation of extracellular vesicles. As a result, extracellular vesicles can vary widely in terms of their composition and may carry specific sets of proteins, lipids or RNA species that then determine their fate and functions.

  • Generation of extracellular vesicles requires the fine-tuning of various intracellular trafficking processes, which define the composition of nascent vesicles and affect their generation and, in the case of exosomes, their secretion from an intracellular compartment.

  • Interactions of extracellular vesicles with recipient cells can have various effects on the target cell, from stimulating signalling pathways to providing trophic support, depending on the mode of interaction and on the intracellular fate of the vesicles in case of their uptake.

  • Studies of the cell biology of extracellular vesicles is not only essential for addressing cell biological questions but also critical to open new avenues for their clinical use as biomarkers, as cargo vehicles for the targeted delivery of compounds or as specific modulators of cell behaviours.

Abstract

Extracellular vesicles are a heterogeneous group of cell-derived membranous structures comprising exosomes and microvesicles, which originate from the endosomal system or which are shed from the plasma membrane, respectively. They are present in biological fluids and are involved in multiple physiological and pathological processes. Extracellular vesicles are now considered as an additional mechanism for intercellular communication, allowing cells to exchange proteins, lipids and genetic material. Knowledge of the cellular processes that govern extracellular vesicle biology is essential to shed light on the physiological and pathological functions of these vesicles as well as on clinical applications involving their use and/or analysis. However, in this expanding field, much remains unknown regarding the origin, biogenesis, secretion, targeting and fate of these vesicles.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Main features of extracellular vesicles.
Figure 2: Biogenesis of extracellular vesicles.
Figure 3: Origin of exosome diversity in relation to sorting machineries.
Figure 4: Interdependency of intracellular trafficking routes in the generation of extracellular vesicles.
Figure 5: Fate of extracellular vesicles in recipient cells.

Similar content being viewed by others

References

  1. Schorey, J. S., Cheng, Y., Singh, P. P. & Smith, V. L. Exosomes and other extracellular vesicles in host-pathogen interactions. EMBO Rep. 16, 24–43 (2015).

    CAS  PubMed  Google Scholar 

  2. Deatherage, B. L. & Cookson, B. T. Membrane vesicle release in bacteria, eukaryotes, and archaea: a conserved yet underappreciated aspect of microbial life. Infect. Immun. 80, 1948–1957 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Robinson, D. G., Ding, Y. & Jiang, L. Unconventional protein secretion in plants: a critical assessment. Protoplasma 253, 31–43 (2016).

    CAS  PubMed  Google Scholar 

  4. Johnstone, R. M., Adam, M., Hammond, J. R., Orr, L. & Turbide, C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J. Biol. Chem. 262, 9412–9420 (1987). This is the first report of exosomes as intraluminal vesicles of multivesicular endosomes that are secreted upon fusion of these endosomes with the plasma membrane, coining the term 'exosomes'.

    CAS  PubMed  Google Scholar 

  5. Colombo, M., Raposo, G. & Thery, C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol. 30, 255–289 (2014).

    CAS  PubMed  Google Scholar 

  6. Lo Cicero, A., Stahl, P. D. & Raposo, G. Extracellular vesicles shuffling intercellular messages: for good or for bad. Curr. Opin. Cell Biol. 35, 69–77 (2015).

    CAS  PubMed  Google Scholar 

  7. Yanez-Mo, M. et al. Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles 4, 27066 (2015).

    PubMed  Google Scholar 

  8. Harding, C., Heuser, J. & Stahl, P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J. Cell Biol. 97, 329–339 (1983).

    CAS  PubMed  Google Scholar 

  9. Thery, C., Amigorena, S., Raposo, G. & Clayton, A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr. Protoc. Cell Biol. http://dx.doi.org/10.1002/0471143030.cb0322s30 (2006). This is the first exhaustive and detailed protocol providing isolation and characterization procedures of exosomes present in cell culture supernatants and biological fluids.

  10. Raposo, G. & Stoorvogel, W. Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell Biol. 200, 373–383 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Wasmuth, E. V., Januszyk, K. & Lima, C. D. Structure of an Rrp6-RNA exosome complex bound to poly(A) RNA. Nature 511, 435–439 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Trams, E. G., Lauter, C. J., Salem, N. Jr & Heine, U. Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochim. Biophys. Acta 645, 63–70 (1981).

    CAS  PubMed  Google Scholar 

  13. Harding, C., Heuser, J. & Stahl, P. Endocytosis and intracellular processing of transferrin and colloidal-gold transferrin in rat reticulocytes: demonstration of a pathway for receptor shedding. Eur. J. Cell Biol. 35, 256–263 (1984).

    CAS  PubMed  Google Scholar 

  14. Pan, B. T., Teng, K., Wu, C., Adam, M. & Johnstone, R. M. Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J. Cell Biol. 101, 942–948 (1985).

    CAS  PubMed  Google Scholar 

  15. Raposo, G. et al. B lymphocytes secrete antigen-presenting vesicles. J. Exp. Med. 183, 1161–1172 (1996). Exploiting electron microscopy, biochemistry and functional assays, this manuscript shows for the first time that antigen-presenting cells secrete exosomes able to stimulate T cell proliferation.

    CAS  PubMed  Google Scholar 

  16. Zitvogel, L. et al. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat. Med. 4, 594–600 (1998). This study using tumour-bearing mice reports that exosomes secreted by dendritic cells induce antitumoural immune responses in vivo.

    CAS  PubMed  Google Scholar 

  17. Wolf, P. The nature and significance of platelet products in human plasma. Br. J. Haematol. 13, 269–288 (1967).

    CAS  PubMed  Google Scholar 

  18. Stein, J. M. & Luzio, J. P. Ectocytosis caused by sublytic autologous complement attack on human neutrophils. The sorting of endogenous plasma-membrane proteins and lipids into shed vesicles. Biochem. J. 274, 381–386 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Sims, P. J., Faioni, E. M., Wiedmer, T. & Shattil, S. J. Complement proteins C5b-9 cause release of membrane vesicles from the platelet surface that are enriched in the membrane receptor for coagulation factor Va and express prothrombinase activity. J. Biol. Chem. 263, 18205–18212 (1988).

    CAS  PubMed  Google Scholar 

  20. Satta, N. et al. Monocyte vesiculation is a possible mechanism for dissemination of membrane-associated procoagulant activities and adhesion molecules after stimulation by lipopolysaccharide. J. Immunol. 153, 3245–3255 (1994).

    CAS  PubMed  Google Scholar 

  21. Al-Nedawi, K. et al. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat. Cell Biol. 10, 619–624 (2008).

    CAS  PubMed  Google Scholar 

  22. Tricario, C., Clancy, J. & De Souza-Schorey, C. Biology and biogenesis of shed microvesicles. Small GTPases 1–13 (2016).

  23. Willms, E. et al. Cells release subpopulations of exosomes with distinct molecular and biological properties. Sci. Rep. 6, 22519 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ma, L. et al. Discovery of the migrasome, an organelle mediating release of cytoplasmic contents during cell migration. Cell Res. 25, 24–38 (2015).

    CAS  PubMed  Google Scholar 

  25. Nabhan, J. F., Hu, R., Oh, R. S., Cohen, S. N. & Lu, Q. Formation and release of arrestin domain-containing protein 1-mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein. Proc. Natl Acad. Sci. USA 109, 4146–4151 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Gould, S. J. & Raposo, G. As we wait: coping with an imperfect nomenclature for extracellular vesicles. J. Extracell. Vesicles 2, 20398 (2013).

    Google Scholar 

  27. Kowal, J. et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc. Natl Acad. Sci. USA 113, E968–E977 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Booth, A. M. et al. Exosomes and HIV Gag bud from endosome-like domains of the T cell plasma membrane. J. Cell Biol. 172, 923–935 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Gerber, P. P. et al. Rab27a controls HIV-1 assembly by regulating plasma membrane levels of phosphatidylinositol 4,5-bisphosphate. J. Cell Biol. 209, 435–452 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kalra, H., Drummen, G. P. & Mathivanan, S. Focus on extracellular vesicles: introducing the next small big thing. Int. J. Mol. Sci. 17, 170 (2016).

    PubMed  PubMed Central  Google Scholar 

  31. Minciacchi, V. R., Freeman, M. R. & Di Vizio, D. Extracellular vesicles in cancer: exosomes, microvesicles and the emerging role of large oncosomes. Semin. Cell Dev. Biol. 40, 41–51 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Ostrowski, M. et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat. Cell Biol. 12, 19–30 (2010). This study uses a medium-throughput RNA-interference screen for RAB GTPases to reveal the involvement of RAB27 in exosome secretion, providing further evidence that exosomes derive from secretory multivesicular endosomes.

    CAS  PubMed  Google Scholar 

  33. Berson, J. F., Harper, D., Tenza, D., Raposo, G. & Marks, M. S. Pmel17 initiates premelanosome morphogenesis within multivesicular bodies. Mol. Biol. Cell 12, 3451–3464 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Klumperman, J. & Raposo, G. The complex ultrastructure of the endolysosomal system. Cold Spring Harbor Perspect. Biol. 6, a016857 (2014).

    Google Scholar 

  35. Vidal, M., Mangeat, P. & Hoekstra, D. Aggregation reroutes molecules from a recycling to a shedding pathway during reticulocyte maturation. J. Cell Sci. 110, 1867–1877 (1997).

    CAS  PubMed  Google Scholar 

  36. Zimmermann, P. et al. Syndecan recycling [corrected] is controlled by syntenin-PIP2 interaction and Arf6. Dev. Cell 9, 377–388 (2005).

    CAS  PubMed  Google Scholar 

  37. Baietti, M. F. et al. Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat. Cell Biol. 14, 677–685 (2012). This study reveals the involvement of a particular machinery required for exosome biogenesis and signalling through the interaction of ESCRTs, ALIX and syndecans.

    CAS  PubMed  Google Scholar 

  38. D'Souza-Schorey, C. & Chavrier, P. ARF proteins: roles in membrane traffic and beyond. Nat. Rev. Mol. Cell Biol. 7, 347–358 (2006).

    CAS  PubMed  Google Scholar 

  39. Muralidharan-Chari, V. et al. ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Curr. Biol. 19, 1875–1885 (2009). This is the first report showing a mechanism for microvesicle release through the involvement of ARF6 and cytoskeletal rearrangements. It also shows that microvesicles but not exosomes carry metalloproteases able to digest the extracellular matrix.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang, T. et al. Hypoxia-inducible factors and RAB22A mediate formation of microvesicles that stimulate breast cancer invasion and metastasis. Proc. Natl Acad. Sci. USA 111, E3234–E3242 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Hurley, J. H. ESCRT complexes and the biogenesis of multivesicular bodies. Curr. Opin. Cell Biol. 20, 4–11 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Tamai, K. et al. Exosome secretion of dendritic cells is regulated by Hrs, an ESCRT-0 protein. Biochem. Biophys. Res. Commun. 399, 384–390 (2010).

    CAS  PubMed  Google Scholar 

  43. Colombo, M. et al. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J. Cell Sci. 126, 5553–5565 (2013). This study uses a high-throughput RNA-interference screen targeting ESCRT subunits and accessory proteins to reveal a role for selected ESCRT components in modulation of exosome secretion and composition.

    CAS  PubMed  Google Scholar 

  44. Stuffers, S., Sem Wegner, C., Stenmark, H. & Brech, A. Multivesicular endosome biogenesis in the absence of ESCRTs. Traffic 10, 925–937 (2009).

    CAS  PubMed  Google Scholar 

  45. Trajkovic, K. et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319, 1244–1247 (2008).

    CAS  PubMed  Google Scholar 

  46. Goni, F. M. & Alonso, A. Effects of ceramide and other simple sphingolipids on membrane lateral structure. Biochim. Biophys. Acta 1788, 169–177 (2009).

    CAS  PubMed  Google Scholar 

  47. Kajimoto, T., Okada, T., Miya, S., Zhang, L. & Nakamura, S. Ongoing activation of sphingosine 1-phosphate receptors mediates maturation of exosomal multivesicular endosomes. Nat. Commun. 4, 2712 (2013).

    PubMed  Google Scholar 

  48. Theos, A. C. et al. A lumenal domain-dependent pathway for sorting to intralumenal vesicles of multivesicular endosomes involved in organelle morphogenesis. Dev. Cell 10, 343–354 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. van Niel, G. et al. The tetraspanin CD63 regulates ESCRT-independent and -dependent endosomal sorting during melanogenesis. Dev. Cell 21, 708–721 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. van Niel, G. et al. Apolipoprotein E regulates amyloid formation within endosomes of pigment cells. Cell Rep. 13, 43–51 (2015).

    CAS  PubMed  Google Scholar 

  51. Gauthier, S. A. et al. Enhanced exosome secretion in Down syndrome brain - a protective mechanism to alleviate neuronal endosomal abnormalities. Acta Neuropathol. Commun. 5, 65 (2017).

    PubMed  PubMed Central  Google Scholar 

  52. Buschow, S. I. et al. MHC II in dendritic cells is targeted to lysosomes or T cell-induced exosomes via distinct multivesicular body pathways. Traffic 10, 1528–1542 (2009). This study reports that upon interaction with T cells, dendritic cells target MHC II molecules towards exosome secretion by using a multivesicular body pathway distinct from those employed by dendritic cells to target MHC II molecules towards lysosomal degradation.

    CAS  PubMed  Google Scholar 

  53. Chairoungdua, A., Smith, D. L., Pochard, P., Hull, M. & Caplan, M. J. Exosome release of beta-catenin: a novel mechanism that antagonizes Wnt signaling. J. Cell Biol. 190, 1079–1091 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Charrin, S., Jouannet, S., Boucheix, C. & Rubinstein, E. Tetraspanins at a glance. J. Cell Sci. 127, 3641–3648 (2014).

    CAS  PubMed  Google Scholar 

  55. Zimmerman, B. et al. Crystal structure of a full-length human tetraspanin reveals a cholesterol-binding pocket. Cell 167, 1041–1051.e11 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Odintsova, E. et al. Metastasis suppressor tetraspanin CD82/KAI1 regulates ubiquitylation of epidermal growth factor receptor. J. Biol. Chem. 288, 26323–26334 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Thery, C. et al. Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J. Immunol. 166, 7309–7318 (2001).

    CAS  PubMed  Google Scholar 

  58. Geminard, C., De Gassart, A., Blanc, L. & Vidal, M. Degradation of AP2 during reticulocyte maturation enhances binding of hsc70 and Alix to a common site on TfR for sorting into exosomes. Traffic 5, 181–193 (2004).

    CAS  PubMed  Google Scholar 

  59. de Gassart, A., Geminard, C., Fevrier, B., Raposo, G. & Vidal, M. Lipid raft-associated protein sorting in exosomes. Blood 102, 4336–4344 (2003).

    CAS  PubMed  Google Scholar 

  60. Buschow, S. I., Liefhebber, J. M., Wubbolts, R. & Stoorvogel, W. Exosomes contain ubiquitinated proteins. Blood Cells Mol. Dis. 35, 398–403 (2005).

    CAS  PubMed  Google Scholar 

  61. Luhtala, N., Aslanian, A., Yates, J. R. 3rd & Hunter, T. Secreted glioblastoma nanovesicles contain intracellular signaling proteins and active Ras incorporated in a farnesylation-dependent manner. J. Biol. Chem. 292, 611–628 (2017).

    CAS  PubMed  Google Scholar 

  62. Valadi, H. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9, 654–659 (2007). This article demonstrates that exosomes contain mRNAs and miRNAs and mediate their transfer between cells.

    CAS  PubMed  Google Scholar 

  63. Nolte-'t Hoen, E. N. et al. Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions. Nucleic Acids Res. 40, 9272–9285 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Thakur, B. K. et al. Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res. 24, 766–769 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Kahlert, C. et al. Identification of double-stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer. J. Biol. Chem. 289, 3869–3875 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Villarroya-Beltri, C. et al. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat. Commun. 4, 2980 (2013). This study shows that a ribonuclear sumoylated protein binds an RNA motif to promote the targeting of miRNA to exosomes.

    PubMed  Google Scholar 

  67. Mateescu, B. et al. Obstacles and opportunities in the functional analysis of extracellular vesicle RNA - an ISEV position paper. J. Extracell. Vesicles 6, 1286095 (2017).

    PubMed  PubMed Central  Google Scholar 

  68. Irion, U. & St Johnston, D. bicoid RNA localization requires specific binding of an endosomal sorting complex. Nature 445, 554–558 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Perez-Hernandez, D. et al. The intracellular interactome of tetraspanin-enriched microdomains reveals their function as sorting machineries toward exosomes. J. Biol. Chem. 288, 11649–11661 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Gibbings, D. J., Ciaudo, C., Erhardt, M. & Voinnet, O. Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nature Cell Biol. 11, 1143–1149 (2009).

    CAS  PubMed  Google Scholar 

  71. McKenzie, A. J. et al. KRAS–MEK signaling controls Ago2 sorting into exosomes. Cell Rep. 15, 978–987 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Teng, Y. et al. MVP-mediated exosomal sorting of miR-193a promotes colon cancer progression. Nat. Commun. 8, 14448 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Shurtleff, M. J., Temoche-Diaz, M. M., Karfilis, K. V., Ri, S. & Schekman, R. Y-Box protein 1 is required to sort microRNAs into exosomes in cells and in a cell-free reaction. eLife 5, e19276 (2016).

    PubMed  PubMed Central  Google Scholar 

  74. Carayon, K. et al. Proteolipidic composition of exosomes changes during reticulocyte maturation. J. Biol. Chem. 286, 34426–34439 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Segura, E., Amigorena, S. & Thery, C. Mature dendritic cells secrete exosomes with strong ability to induce antigen-specific effector immune responses. Blood Cells Mol. Dis. 35, 89–93 (2005).

    CAS  PubMed  Google Scholar 

  76. Mobius, W. et al. Immunoelectron microscopic localization of cholesterol using biotinylated and non-cytolytic perfringolysin O. J. Histochem. Cytochem. 50, 43–55 (2002).

    CAS  PubMed  Google Scholar 

  77. van Niel, G. et al. Dendritic cells regulate exposure of MHC class II at their plasma membrane by oligoubiquitination. Immunity 25, 885–894 (2006).

    CAS  PubMed  Google Scholar 

  78. Edgar, J. R., Eden, E. R. & Futter, C. E. Hrs- and CD63-dependent competing mechanisms make different sized endosomal intraluminal vesicles. Traffic 15, 197–211 (2014).

    PubMed  PubMed Central  Google Scholar 

  79. Hristov, M., Erl, W., Linder, S. & Weber, P. C. Apoptotic bodies from endothelial cells enhance the number and initiate the differentiation of human endothelial progenitor cells in vitro. Blood 104, 2761–2766 (2004).

    CAS  PubMed  Google Scholar 

  80. Piccin, A., Murphy, W. G. & Smith, O. P. Circulating microparticles: pathophysiology and clinical implications. Blood Rev. 21, 157–171 (2007).

    CAS  PubMed  Google Scholar 

  81. Jimenez, J. J. et al. Endothelial cells release phenotypically and quantitatively distinct microparticles in activation and apoptosis. Thromb. Res. 109, 175–180 (2003).

    CAS  PubMed  Google Scholar 

  82. Connor, D. E., Exner, T., Ma, D. D. & Joseph, J. E. The majority of circulating platelet-derived microparticles fail to bind annexin V, lack phospholipid-dependent procoagulant activity and demonstrate greater expression of glycoprotein Ib. Thromb. Haemost. 103, 1044–1052 (2010).

    CAS  PubMed  Google Scholar 

  83. Del Conde, I., Shrimpton, C. N., Thiagarajan, P. & Lopez, J. A. Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation. Blood 106, 1604–1611 (2005).

    CAS  PubMed  Google Scholar 

  84. Li, B., Antonyak, M. A., Zhang, J. & Cerione, R. A. RhoA triggers a specific signaling pathway that generates transforming microvesicles in cancer cells. Oncogene 31, 4740–4749 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. McConnell, R. E. et al. The enterocyte microvillus is a vesicle-generating organelle. J. Cell Biol. 185, 1285–1298 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Warburg, O. On respiratory impairment in cancer cells. Science 124, 269–270 (1956).

    CAS  PubMed  Google Scholar 

  87. Wilson, K. F., Erickson, J. W., Antonyak, M. A. & Cerione, R. A. Rho GTPases and their roles in cancer metabolism. Trends Mol. Med. 19, 74–82 (2013).

    CAS  PubMed  Google Scholar 

  88. Shen, B., Fang, Y., Wu, N. & Gould, S. J. Biogenesis of the posterior pole is mediated by the exosome/microvesicle protein-sorting pathway. J. Biol. Chem. 286, 44162–44176 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Yang, J. M. & Gould, S. J. The cis-acting signals that target proteins to exosomes and microvesicles. Biochem. Soc. Trans. 41, 277–282 (2013).

    CAS  PubMed  Google Scholar 

  90. Bolukbasi, M. F. et al. miR-1289 and “zipcode”-like sequence enrich mRNAs in microvesicles. Mol. Ther. Nucleic Acids 1, e10 (2012).

    PubMed  PubMed Central  Google Scholar 

  91. Mittelbrunn, M., Vicente-Manzanares, M. & Sanchez-Madrid, F. Organizing polarized delivery of exosomes at synapses. Traffic 16, 327–337 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Eitan, E., Suire, C., Zhang, S. & Mattson, M. P. Impact of lysosome status on extracellular vesicle content and release. Ageing Res. Rev. 32, 65–74 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Alvarez-Erviti, L. et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 29, 341–345 (2011).

    CAS  PubMed  Google Scholar 

  94. Villarroya-Beltri, C. et al. ISGylation controls exosome secretion by promoting lysosomal degradation of MVB proteins. Nat. Commun. 7, 13588 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Edgar, J. R., Manna, P. T., Nishimura, S., Banting, G. & Robinson, M. S. Tetherin is an exosomal tether. eLife 5, e17180 (2016). This study shows that exosomes can be released as clusters that remain attached to each other and anchored to the cell surface by tetherin. It suggests that the tetherin-mediated attachment may have a key role in exosome fate.

    PubMed  PubMed Central  Google Scholar 

  96. Liegeois, S., Benedetto, A., Garnier, J. M., Schwab, Y. & Labouesse, M. The V0-ATPase mediates apical secretion of exosomes containing Hedgehog-related proteins in Caenorhabditis elegans. J. Cell Biol. 173, 949–961 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Guix, F. X. et al. Tetraspanin 6: a pivotal protein of the multiple vesicular body determining exosome release and lysosomal degradation of amyloid precursor protein fragments. Mol. Neurodegener. 12, 25 (2017).

    PubMed  PubMed Central  Google Scholar 

  98. van Niel, G., Porto-Carreiro, I., Simoes, S. & Raposo, G. Exosomes: a common pathway for a specialized function. J. Biochem. 140, 13–21 (2006).

    CAS  PubMed  Google Scholar 

  99. Papandreou, M. E. & Tavernarakis, N. Autophagy and the endo/exosomal pathways in health and disease. Biotechnol. J. 12, 1600175 (2017).

    Google Scholar 

  100. Dias, M. V. et al. PRNP/prion protein regulates the secretion of exosomes modulating CAV1/caveolin-1-suppressed autophagy. Autophagy 12, 2113–2128 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Hessvik, N. P. et al. PIKfyve inhibition increases exosome release and induces secretory autophagy. Cell. Mol. Life Sci. 73, 4717–4737 (2016).

    CAS  PubMed  Google Scholar 

  102. Bonifacino, J. S. & Glick, B. S. The mechanisms of vesicle budding and fusion. Cell 116, 153–166 (2004).

    CAS  PubMed  Google Scholar 

  103. Cai, H., Reinisch, K. & Ferro-Novick, S. Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev.≈Cell 12, 671–682 (2007).

    CAS  Google Scholar 

  104. Mittelbrunn, M. et al. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat. Commun. 2, 282 (2011).

    PubMed  Google Scholar 

  105. Rocha, N. et al. Cholesterol sensor ORP1L contacts the ER protein VAP to control Rab7-RILP-p150 Glued and late endosome positioning. J. Cell Biol. 185, 1209–1225 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Song, P., Trajkovic, K., Tsunemi, T. & Krainc, D. Parkin modulates endosomal organization and function of the endo-lysosomal pathway. J. Neurosci. 36, 2425–2437 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Mobius, W. et al. Recycling compartments and the internal vesicles of multivesicular bodies harbor most of the cholesterol found in the endocytic pathway. Traffic 4, 222–231 (2003).

    CAS  PubMed  Google Scholar 

  108. Sinha, S. et al. Cortactin promotes exosome secretion by controlling branched actin dynamics. J. Cell Biol. 214, 197–213 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Marks, M. S., Heijnen, H. F. & Raposo, G. Lysosome-related organelles: unusual compartments become mainstream. Curr. Opin. Cell Biol. 25, 495–505 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Hsu, C. et al. Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A-C. J. Cell Biol. 189, 223–232 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Savina, A., Furlan, M., Vidal, M. & Colombo, M. I. Exosome release is regulated by a calcium-dependent mechanism in K562 cells. J. Biol. Chem. 278, 20083–20090 (2003).

    CAS  PubMed  Google Scholar 

  112. Jahn, R. & Scheller, R. H. SNAREs—engines for membrane fusion. Nat. Rev. Mol. Cell Biol. 7, 631–643 (2006).

    CAS  PubMed  Google Scholar 

  113. Rao, J. & Fitzpatrick, R. E. Use of the Q-switched 755-nm alexandrite laser to treat recalcitrant pigment after depigmentation therapy for vitiligo. Dermatol. Surg. 30, 1043–1045 (2004).

    PubMed  Google Scholar 

  114. Fader, C. M., Sánchez, D. G., Mestre, M. B. & Colombo, M. I. TI-VAMP/VAMP7 and VAMP3/cellubrevin: two v-SNARE proteins involved in specific steps of the autophagy/multivesicular body pathways. Biochim. Biophys. Acta 1793, 1901–1916 (2009).

    CAS  PubMed  Google Scholar 

  115. Proux-Gillardeaux, V., Raposo, G., Irinopoulou, T. & Galli, T. Expression of the Longin domain of TI-VAMP impairs lysosomal secretion and epithelial cell migration. Biol. Cell 99, 261–271 (2007).

    CAS  PubMed  Google Scholar 

  116. Faure, J. et al. Exosomes are released by cultured cortical neurones. Mol. Cell Neurosci. 31, 642–648 (2006).

    CAS  PubMed  Google Scholar 

  117. Raposo, G. et al. Accumulation of major histocompatibility complex class II molecules in mast cell secretory granules and their release upon degranulation. Mol. Biol. Cell 8, 2631–2645 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Savina, A., Fader, C. M., Damiani, M. T. & Colombo, M. I. Rab11 promotes docking and fusion of multivesicular bodies in a calcium-dependent manner. Traffic 6, 131–143 (2005).

    CAS  PubMed  Google Scholar 

  119. Puri, N. & Roche, P. A. Mast cells possess distinct secretory granule subsets whose exocytosis is regulated by different SNARE isoforms. Proc. Natl Acad. Sci. USA 105, 2580–2585 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Wei, Y. et al. Pyruvate kinase type M2 promotes tumour cell exosome release via phosphorylating synaptosome-associated protein 23. Nat. Commun. 8, 14041 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Gross, J. C., Chaudhary, V., Bartscherer, K. & Boutros, M. Active Wnt proteins are secreted on exosomes. Nat. Cell Biol. 14, 1036–1045 (2012).

    CAS  PubMed  Google Scholar 

  122. Hyenne, V. et al. RAL-1 controls multivesicular body biogenesis and exosome secretion. J. Cell Biol. 211, 27–37 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Koles, K. & Budnik, V. Exosomes go with the Wnt. Cell Logist 2, 169–173 (2012).

    PubMed  PubMed Central  Google Scholar 

  124. Matsumoto, A. et al. Accelerated growth of B16BL6 tumor in mice through efficient uptake of their own exosomes by B16BL6 cells. Cancer Sci. 108, 1803–1810 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. D'Souza-Schorey, C. & Clancy, J. W. Tumor-derived microvesicles: shedding light on novel microenvironment modulators and prospective cancer biomarkers. Genes Dev. 26, 1287–1299 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Sedgwick, A. E., Clancy, J. W., Olivia Balmert, M. & D'Souza-Schorey, C. Extracellular microvesicles and invadopodia mediate non-overlapping modes of tumor cell invasion. Sci. Rep. 5, 14748 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Schlienger, S., Campbell, S. & Claing, A. ARF1 regulates the Rho/MLC pathway to control EGF-dependent breast cancer cell invasion. Mol. Biol. Cell 25, 17–29 (2014).

    PubMed  PubMed Central  Google Scholar 

  128. Wehman, A. M., Poggioli, C., Schweinsberg, P., Grant, B. D. & Nance, J. The P4-ATPase TAT-5 inhibits the budding of extracellular vesicles in C. elegans embryos. Curr. Biol. 21, 1951–1959 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Taverna, S. et al. Shedding of membrane vesicles mediates fibroblast growth factor-2 release from cells. J. Biol. Chem. 278, 51911–51919 (2003).

    CAS  PubMed  Google Scholar 

  130. Cocucci, E., Racchetti, G. & Meldolesi, J. Shedding microvesicles: artefacts no more. Trends Cell Biol. 19, 43–51 (2009).

    CAS  PubMed  Google Scholar 

  131. Bianco, F. et al. Astrocyte-derived ATP induces vesicle shedding and IL-1 beta release from microglia. J. Immunol. 174, 7268–7277 (2005).

    CAS  PubMed  Google Scholar 

  132. Thomas, L. M. & Salter, R. D. Activation of macrophages by P2X7-induced microvesicles from myeloid cells is mediated by phospholipids and is partially dependent on TLR4. J. Immunol. 185, 3740–3749 (2010).

    CAS  PubMed  Google Scholar 

  133. Bianco, F. et al. Acid sphingomyelinase activity triggers microparticle release from glial cells. EMBO J. 28, 1043–1054 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Mulcahy, L. A., Pink, R. C. & Carter, D. R. Routes and mechanisms of extracellular vesicle uptake. J. Extracell. Vesicles 3, 24641 (2014).

    Google Scholar 

  135. Denzer, K. et al. Follicular dendritic cells carry MHC class II-expressing microvesicles at their surface. J. Immunol. 165, 1259–1265 (2000).

    CAS  PubMed  Google Scholar 

  136. Mallegol, J. et al. T84-intestinal epithelial exosomes bear MHC class II/peptide complexes potentiating antigen presentation by dendritic cells. Gastroenterology 132, 1866–1876 (2007).

    CAS  PubMed  Google Scholar 

  137. Nolte-'t Hoen, E. N., Buschow, S. I., Anderton, S. M., Stoorvogel, W. & Wauben, M. H. Activated T cells recruit exosomes secreted by dendritic cells via LFA-1. Blood 113, 1977–1981 (2009).

    CAS  PubMed  Google Scholar 

  138. Chivet, M. et al. Exosomes secreted by cortical neurons upon glutamatergic synapse activation specifically interact with neurons. J. Extracell. Vesicles 3, 24722 (2014).

    PubMed  Google Scholar 

  139. Hoshino, A. et al. Tumour exosome integrins determine organotropic metastasis. Nature 527, 329–335 (2015). This study shows for the first time that exosomal integrins have a key role in directing exosomes from cancer cells to particular organs and that this transfer induces metastasis.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Morelli, A. E. et al. Endocytosis, intracellular sorting and processing of exosomes by dendritic cells. Blood 104, 3257–3266 (2004).

    CAS  PubMed  Google Scholar 

  141. Sung, B. H., Ketova, T., Hoshino, D., Zijlstra, A. & Weaver, A. M. Directional cell movement through tissues is controlled by exosome secretion. Nat. Commun. 6, 7164 (2015).

    CAS  PubMed  Google Scholar 

  142. Purushothaman, A. et al. Fibronectin on the surface of myeloma cell-derived exosomes mediates exosome-cell interactions. J. Biol. Chem. 291, 1652–1663 (2016).

    CAS  PubMed  Google Scholar 

  143. Leiss, M., Beckmann, K., Giros, A., Costell, M. & Fassler, R. The role of integrin binding sites in fibronectin matrix assembly in vivo. Curr. Opin. Cell Biol. 20, 502–507 (2008).

    CAS  PubMed  Google Scholar 

  144. Rana, S., Yue, S., Stadel, D. & Zoller, M. Toward tailored exosomes: the exosomal tetraspanin web contributes to target cell selection. Int. J. Biochem. Cell Biol. 44, 1574–1584 (2012).

    CAS  PubMed  Google Scholar 

  145. Nazarenko, I. et al. Cell surface tetraspanin Tspan8 contributes to molecular pathways of exosome-induced endothelial cell activation. Cancer Res. 70, 1668–1678 (2010).

    CAS  PubMed  Google Scholar 

  146. Rana, S., Claas, C., Kretz, C. C., Nazarenko, I. & Zoeller, M. Activation-induced internalization differs for the tetraspanins CD9 and Tspan8: Impact on tumor cell motility. Int. J. Biochem. Cell Biol. 43, 106–119 (2011).

    CAS  PubMed  Google Scholar 

  147. Melo, S. A. et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 523, 177–182 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Bruno, S. et al. Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J. Am. Soc. Nephrol. 20, 1053–1067 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Barres, C. et al. Galectin-5 is bound onto the surface of rat reticulocyte exosomes and modulates vesicle uptake by macrophages. Blood 115, 696–705 (2010).

    CAS  PubMed  Google Scholar 

  150. Frey, B. & Gaipl, U. S. The immune functions of phosphatidylserine in membranes of dying cells and microvesicles. Semin. Immunopathol. 33, 497–516 (2011).

    CAS  PubMed  Google Scholar 

  151. Feng, D. et al. Cellular internalization of exosomes occurs through phagocytosis. Traffic 11, 675–687 (2010).

    CAS  PubMed  Google Scholar 

  152. Nakase, I., Kobayashi, N. B., Takatani-Nakase, T. & Yoshida, T. Active macropinocytosis induction by stimulation of epidermal growth factor receptor and oncogenic Ras expression potentiates cellular uptake efficacy of exosomes. Sci. Rep. 5, 10300 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Tian, T. et al. Exosome uptake through clathrin-mediated endocytosis and macropinocytosis and mediating miR-21 delivery. J. Biol. Chem. 289, 22258–22267 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Laulagnier, K. et al. Amyloid precursor protein products concentrate in a subset of exosomes specifically endocytosed by neurons. Cell. Mol. Life Sci. http://dx.doi.org/10.1007/s00018-017-2664-0 (2017).

  155. Vargas, A. et al. Syncytin proteins incorporated in placenta exosomes are important for cell uptake and show variation in abundance in serum exosomes from patients with preeclampsia. FASEB J. 28, 3703–3719 (2014).

    CAS  PubMed  Google Scholar 

  156. Kamerkar, S. et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature 546, 498–503 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Prada, I. et al. A new approach to follow a single extracellular vesicle-cell interaction using optical tweezers. Biotechniques 60, 35–41 (2016).

    CAS  PubMed  Google Scholar 

  158. Heusermann, W. et al. Exosomes surf on filopodia to enter cells at endocytic hot spots, traffic within endosomes, and are targeted to the ER. J. Cell Biol. 213, 173–184 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Escrevente, C., Keller, S., Altevogt, P. & Costa, J. Interaction and uptake of exosomes by ovarian cancer cells. BMC Cancer 11, 108 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Chen, W. et al. Nanoscale characterization of carrier dynamic and surface passivation in InGaN/GaN multiple quantum wells on GaN nanorods. ACS Appl. Mater. Interfaces 8, 31887–31893 (2016).

    CAS  PubMed  Google Scholar 

  161. Tian, T., Wang, Y., Wang, H., Zhu, Z. & Xiao, Z. Visualizing of the cellular uptake and intracellular trafficking of exosomes by live-cell microscopy. J. Cell. Biochem. 111, 488–496 (2010).

    CAS  PubMed  Google Scholar 

  162. Bissig, C. & Gruenberg, J. ALIX and the multivesicular endosome: ALIX in Wonderland. Trends Cell Biol. 24, 19–25 (2014).

    CAS  PubMed  Google Scholar 

  163. Antonyak, M. A. et al. Cancer cell-derived microvesicles induce transformation by transferring tissue transglutaminase and fibronectin to recipient cells. Proc. Natl Acad. Sci. USA 108, 4852–4857 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Desrochers, L. M., Bordeleau, F., Reinhart-King, C. A., Cerione, R. A. & Antonyak, M. A. Microvesicles provide a mechanism for intercellular communication by embryonic stem cells during embryo implantation. Nat. Commun. 7, 11958 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Zhang, L. & Wrana, J. L. The emerging role of exosomes in Wnt secretion and transport. Curr. Opin. Genet. Dev. 27, 14–19 (2014).

    PubMed  Google Scholar 

  166. Skog, J. et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat. Cell Biol. 10, 1470–1476 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Record, M., Carayon, K., Poirot, M. & Silvente-Poirot, S. Exosomes as new vesicular lipid transporters involved in cell-cell communication and various pathophysiologies. Biochim. Biophys. Acta 1841, 108–120 (2014).

    CAS  PubMed  Google Scholar 

  168. Coleman, B. M. & Hill, A. F. Extracellular vesicles—their role in the packaging and spread of misfolded proteins associated with neurodegenerative diseases. Semin. Cell Dev. Biol. 40, 89–96 (2015).

    CAS  PubMed  Google Scholar 

  169. van Dongen, H. M., Masoumi, N., Witwer, K. W. & Pegtel, D. M. Extracellular vesicles exploit viral entry routes for cargo delivery. Microbiol. Mol. Biol. Rev. 80, 369–386 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Zhao, H. et al. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. eLife 5, e10250 (2016).

    PubMed  PubMed Central  Google Scholar 

  171. Peinado, H. et al. Pre-metastatic niches: organ-specific homes for metastases. Nat. Rev. Cancer 17, 302–317 (2017).

    CAS  PubMed  Google Scholar 

  172. Fais, S. et al. Evidence-based clinical use of nanoscale extracellular vesicles in nanomedicine. ACS Nano 10, 3886–3899 (2016).

    CAS  PubMed  Google Scholar 

  173. Dinkins, M. B., Dasgupta, S., Wang, G., Zhu, G. & Bieberich, E. Exosome reduction in vivo is associated with lower amyloid plaque load in the 5XFAD mouse model of Alzheimer's disease. Neurobiol. Aging 35, 1792–1800 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Torrano, V. et al. Vesicle-MaNiA: extracellular vesicles in liquid biopsy and cancer. Curr. Opin. Pharmacol. 29, 47–53 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. El Andaloussi, S., Lakhal, S., Mager, I. & Wood, M. J. Exosomes for targeted siRNA delivery across biological barriers. Adv. Drug Deliv. Rev. 65, 391–397 (2013).

    CAS  PubMed  Google Scholar 

  176. Pitt, J. M. et al. Dendritic cell-derived exosomes as immunotherapies in the fight against cancer. J. Immunol. 193, 1006–1011 (2014).

    CAS  PubMed  Google Scholar 

  177. Besse, B. et al. Dendritic cell-derived exosomes as maintenance immunotherapy after first line chemotherapy in NSCLC. Oncoimmunology 5, e1071008 (2016).

    PubMed  Google Scholar 

  178. Lener, T. et al. Applying extracellular vesicles based therapeutics in clinical trials - an ISEV position paper. J. Extracell. Vesicles 4, 30087 (2015).

    PubMed  Google Scholar 

  179. Lo Cicero, A. et al. Exosomes released by keratinocytes modulate melanocyte pigmentation. Nat. Commun. 6, 7506 (2015).

    CAS  PubMed  Google Scholar 

  180. Beauvillain, C., Juste, M. O., Dion, S., Pierre, J. & Dimier-Poisson, I. Exosomes are an effective vaccine against congenital toxoplasmosis in mice. Vaccine 27, 1750–1757 (2009).

    CAS  PubMed  Google Scholar 

  181. Ranghino, A. et al. The effects of glomerular and tubular renal progenitors and derived extracellular vesicles on recovery from acute kidney injury. Stem Cell Res. Ther. 8, 24 (2017).

    PubMed  PubMed Central  Google Scholar 

  182. Arslan, F. et al. Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res. 10, 301–312 (2013).

    CAS  PubMed  Google Scholar 

  183. Ophelders, D. R. et al. Mesenchymal stromal cell-derived extracellular vesicles protect the fetal brain after hypoxia-ischemia. Stem Cells Transl Med. 5, 754–763 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Mizrak, A. et al. Genetically engineered microvesicles carrying suicide mRNA/protein inhibit schwannoma tumor growth. Mol. Ther. 21, 101–108 (2013).

    CAS  PubMed  Google Scholar 

  185. Pan, S., Yang, X., Jia, Y., Li, R. & Zhao, R. Microvesicle-shuttled miR-130b reduces fat deposition n recipient primary cultured porcine adipocytes by inhibiting PPAR-g expression. J. Cell. Physiol. 229, 631–639 (2014).

    CAS  PubMed  Google Scholar 

  186. Coumans, F. A. W. et al. Methodological guidelines to study extracellular vesicles. Circ. Res. 120, 1632–1648 (2017).

    CAS  PubMed  Google Scholar 

  187. Van Deun, J. et al. EV-TRACK: transparent reporting and centralizing knowledge in extracellular vesicle research. Nat. Methods 14, 228–232 (2017).

    CAS  PubMed  Google Scholar 

  188. Takov, K., Yellon, D. M. & Davidson, S. M. Confounding factors in vesicle uptake studies using fluorescent lipophilic membrane dyes. J. Extracell. Vesicles 6, 1388731 (2017).

    PubMed  PubMed Central  Google Scholar 

  189. Hyenne, V., Lefebvre, O. & Goetz, J. G. Going live with tumor exosomes and microvesicles. Cell Adh. Migr. 11, 173–186 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Lai, C. P., Tannous, B. A. & Breakefield, X. O. Noninvasive in vivo monitoring of extracellular vesicles. Methods Mol. Biol. 1098, 249–258 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Zomer, A. et al. In vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior. Cell 161, 1046–1057 (2015). This study uses in vivo imaging to reveal the existence of a functional transfer of mRNA mediated by extracellular vesicles in the context of cancer and metastasis.

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Bobrie, A., Colombo, M., Krumeich, S., Raposo, G. & Thery, C. Diverse subpopulations of vesicles secreted by different intracellular mechanisms are present in exosome preparations obtained by differential ultracentrifugation. J. Extracell. Vesicles 1, 18397 (2012).

    CAS  Google Scholar 

  193. Roucourt, B., Meeussen, S., Bao, J., Zimmermann, P. & David, G. Heparanase activates the syndecan-syntenin-ALIX exosome pathway. Cell Res. 25, 412–428 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. van Niel, G. et al. Intestinal epithelial cells secrete exosome-like vesicles. Gastroenterology 121, 337–349 (2001).

    CAS  PubMed  Google Scholar 

  195. Tauro, B. J. et al. Two distinct populations of exosomes are released from LIM1863 colon carcinoma cell-derived organoids. Mol. Cell. Proteomics 12, 587–598 (2013).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to P. Stahl for fruitful insights and reading the manuscript and to members of their team for stimulating discussions. The authors thank the Fondation pour la Recherche Médicale (FRM), Institut Curie and the Centre National de la Recherche Scientifique (CNRS) for support.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all aspects of the article (researching data for article, substantial contribution to discussion of content, writing, review/editing of manuscript before submission).

Corresponding author

Correspondence to Graça Raposo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

FURTHER INFORMATION

EV-TRACK

PowerPoint slides

Glossary

Reticulocytes

Precursors of red blood cells (erythrocytes).

Sorting machineries

Protein complexes mediating cargo sorting in endosomes.

Major histocompatibility complex

(MHC). A group of genes that code for cell surface glycoproteins that help the immune system to determine self and non-self.

Syntenin

An intracellular adaptor protein linking syndecan-mediated signalling to the cytoskeleton.

Syndecan

A single-transmembrane-domain heparan sulfate proteoglycan that binds a large variety of ligands, such as growth factors and fibronectin.

Ceramide

A lipid molecule composed of sphingosine and a fatty acid linked through an amide bond; in fact, many chemically diverse ceramides have been described, showing that ceramide is not a single molecular species but rather a family of related molecules.

Sphingomyelin

A type of sphingolipid found in animal cell membranes.

Tetraspanin family

A family of proteins with four transmembrane domains that allow association with other members of the family and with other proteins to generate dynamic membrane domains.

Glycosylphosphatidylinositol (GPI)-anchored proteins

Proteins with a post-translational modification comprising a phosphoethanolamine linker, a glycan core and a phospholipid tail. This modification anchors the protein to the outer leaflet of the cell membrane.

Lipid rafts

Specialized membrane microdomains enriched in cholesterol and glycosphingolipid that serve as organizing centres for the assembly of signalling molecules.

KRAS–MEK signalling pathway

The interaction between the proto-oncogene KRAS, which encodes a small GTPase, and its downstream effector, the canonical RAF proto-oncogene serine/threonine-protein kinase (RAF)–MEK–ERK signalling pathway. Both pathways have roles in cell division, cell differentiation and apoptosis.

Major vault protein

The main component of ribonucleoparticles termed vaults, which also contain two additional proteins, the vault poly(ADP-ribose) polymerase (vPARP) and telomerase-associated protein 1 (TEP1), and several short, untranslated vault RNAs (vRNAs). It has been implicated in the regulation of several cellular processes, including transport mechanisms, signal transmission and immune responses.

Y-Box-binding protein 1

A transcription factor shown to have a role in oncogenic cell transformation, multidrug resistance and the dissemination of tumours.

Aminophospholipid translocases

Enzymes that transport phosphatidylserine and phosphatidylethanolamine from one side of a bilayer to the other.

Scramblases

Proteins responsible for the translocation of phospholipids between the inner and outer leaflets of a cell membrane.

Calpain

A calcium-dependent protein expressed ubiquitously in mammals and many other organisms.

RHO family of small GTPases

A family of small signalling G proteins implicated in the regulation of many aspects of actin dynamics.

Brush border

The microvillus-covered surface of epithelial cells found in enterocytes in the intestine.

Warburg effect

An aerobic process whereby cancer cells produce energy by a high rate of glycolysis followed by lactic acid fermentation in the cytosol rather than by oxidation of pyruvate in the mitochondria.

Zipcode RNA sequence motifs

cis-Acting regulatory sequences (25 nucleotides) in the 3′-untranslated region (3′ UTR) of mRNA transcripts that mediate binding of a ribonuclear protein complex to the mRNA, thereby temporarily blocking mRNA translation, and that mediate movement of mRNA via the cytoskeleton to a cellular location where mRNA is released from protein binding and translation initiates.

Immunological synapses

Specialized cell–cell junctions between a thymus-derived lymphocyte (T cell) and an antigen-presenting cell.

Hedgehog

An essential signalling molecule, termed a morphogen, required for numerous processes during animal development.

ISGylation

A ubiquitin-like modification that controls exosome release by decreasing the number of multivesicular endosomes.

Caveolin

The principal component of caveolae, which are involved in receptor (clathrin)-independent endocytosis, mechanotransduction and lipid homeostasis.

SNARE proteins

Proteins named from SNAP (soluble NSF attachment protein) receptor; their primary role is to mediate the fusion of intracellular vesicles with their target membrane-bound compartments.

Synaptotagmin family

A family of membrane-trafficking proteins that has been implicated in calcium-dependent neurotransmitter release.

Protein kinase C

A serine/threonine kinase that plays important roles in several signal transduction cascades by controlling the function of other proteins through their phosphorylation.

P2X7 receptors

Trimeric ATP-gated cation channels found predominantly, but not exclusively, on immune cells; these receptors have been implicated in various inflammatory, immune, neurological and musculoskeletal disorders.

Follicular dendritic cells

Cells of the immune system found in primary and secondary lymph follicles of the B cell areas of the lymphoid tissue.

Lectins

Carbohydrate-binding proteins that are highly specific for sugar moieties.

Proteoglycans

Heavily glycosylated proteins consisting of a 'core protein' with one or more covalently attached glycosaminoglycan (GAG) chains.

Intercellular adhesion molecules

(ICAMs). Members of the immunoglobulin superfamily that are involved in inflammation, immune responses and intracellular signalling events.

Macropinocytosis

A form of regulated endocytosis that involves the nonspecific uptake of extracellular material (such as small soluble molecules, nutrients or antigens) by invagination of the plasma membrane, which is then pinched, resulting in small vesicles in the cytoplasm.

Trophoblast

Cells that form the outer layer of a blastocyst, provide nutrients to the embryo and give rise to a large part of the placenta.

Microglia

Brain glial cells that act as the first and main endogenous immune defence in the central nervous system.

Astrocytes

Star-shaped glial cells in the brain involved in nutrient supply, maintenance of extracellular ion balance and tissue repair following brain injuries.

Filopodia

Highly dynamic actin-rich cell surface protrusions used by cells to sense their external environment.

Suicide mRNAs/proteins

Non-mammalian enzymes or their encoding mRNAs that are able to convert an inactive drug into highly toxic metabolites, which subsequently inhibit the synthesis of nucleic acids and cause cells to initiate apoptosis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Niel, G., D'Angelo, G. & Raposo, G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 19, 213–228 (2018). https://doi.org/10.1038/nrm.2017.125

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrm.2017.125

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing