Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hydrogen sulfide-based therapeutics: exploiting a unique but ubiquitous gasotransmitter

Key Points

  • Hydrogen sulfide (H2S) is an important signalling molecule; it influences physiological and pathophysiological processes throughout the body.

  • Accurate measurement of hydrogen sulfide remains a challenge, largely because it is highly reactive. H2S synthesis from the microbiome contributes substantially to 'tissue levels' of H2S.

  • In circumstances of anoxia or hypoxia, H2S can 'rescue' mitochondria. H2S also exerts important anti-inflammatory and cytoprotective effects while driving the resolution of tissue injury.

  • Animal studies of several H2S-releasing drugs show considerable promise for the safe treatment of a wide range of disorders, and several such drugs are now in clinical trials.

  • Coupling of an H2S-releasing moiety to other drugs, such as anti-inflammatory drugs, can improve efficacy and/or substantially reduce toxicity.

  • Based on studies in animal models, H2S-based drugs may be effective in chemoprevention of cancer, and have also shown promise in the treatment of several neurological disorders, such as Alzheimer disease.

Abstract

Hydrogen sulfide (H2S) has become recognized as an important signalling molecule throughout the body, contributing to many physiological and pathological processes. In recent years, improved methods for measuring H2S levels and the availability of a wider range of H2S donors and more selective inhibitors of H2S synthesis have helped to more accurately identify the many biological effects of this highly reactive gaseous mediator. Animal studies of several H2S-releasing drugs have demonstrated considerable promise for the safe treatment of a wide range of disorders. Several such drugs are now in clinical trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cytosolic and mitochondrial production and functions of H2S.
Figure 2: The pathogenic roles of H2S at different stages of diabetes development.
Figure 3: Anti-inflammatory and cytoprotective targets of H2S.

Similar content being viewed by others

References

  1. Wang, R. Two's company, three's a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J. 16, 1792–1798 (2002). This study conceptualizes gasotransmitters as a class of signalling molecules and proposes the importance of H 2 S in this context.

    CAS  PubMed  Google Scholar 

  2. Kimura, H., Shibuya, N. & Kimura, Y. Hydrogen sulfide is a signaling molecule and a cytoprotectant. Antioxid. Redox Signal. 17, 45–57 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Olson, K. R., Donald, J. A., Dombkowski, R. A. & Perry, S. F. Evolutionary and comparative aspects of nitric oxide, carbon monoxide and hydrogen sulfide. Respir. Physiol. Neurobiol. 184, 117–129 (2012).

    CAS  PubMed  Google Scholar 

  4. Yamanishi, M., Kabil, O., Sen, S. & Banerjee, R. Structural insights into pathogenic mutations in heme-dependent cystathionine-β-synthase. J. Inorg. Biochem. 100, 1988–1995 (2006).

    CAS  PubMed  Google Scholar 

  5. Teng, H. et al. Oxygen-sensitive mitochondrial accumulation of cystathionine β synthase mediated by Lon protease. Proc. Natl Acad. Sci. USA 110, 12679–12684 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang, R. Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol. Rev. 92, 791–896 (2012).

    CAS  PubMed  Google Scholar 

  7. Nagahara, N., Okazaki, T. & Nishino, T. Cytosolic mercaptopyruvate sulfurtransferase is evolutionarily related to mitochondrial rhodanese. Striking similarity in active site amino acid sequence and the increase in the mercaptopyruvate sulfurtransferase activity of rhodanese by site-directed mutagenesis. J. Biol. Chem. 270, 16230–16235 (1995).

    CAS  PubMed  Google Scholar 

  8. Yang, G., Cao, K. & Wang, R. Cystathionine γ-lyase overexpression inhibits cell proliferation via a H2S-dependent modulation of ERK1/2 phosphorylation and p21Cip/WAK 1. J. Biol. Chem. 279, 49199–49205 (2004).

    CAS  PubMed  Google Scholar 

  9. Caliendo, G., Cirino, G., Santagada, V. & Wallace, J. L. Synthesis and biological effects of hydrogen sulfide (H2S): development of H2S-releasing drugs as pharmaceuticals. J. Med. Chem. 53, 6275–6286 (2010).

    CAS  PubMed  Google Scholar 

  10. Levitt, M. D., Abdel-Rehim, M. S. & Furne, J. Free and acid-labile hydrogen sulfide concentrations in mouse tissues: anomalously high free hydrogen sulfide in aortic tissue. Antioxid. Redox Signal. 15, 373–378 (2011).

    CAS  PubMed  Google Scholar 

  11. Insko, M. A., Deckwerth, T. L., Hill, P., Toombs, C. F. & Szabo, C. Detection of exhaled hydrogen sulphide gas in rats exposed to intravenous sodium sulphide. Br. J. Pharmacol. 157, 944–951 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Hosoki, R., Matsiki, N. & Kimura, H. The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem. Biophys. Res. Commun. 237, 527–531 (1997). This is an original description of the vasorelaxant effects of H 2 S.

    CAS  PubMed  Google Scholar 

  13. Zhao, W., Zhang, J., Lu, Y. & Wang, R. The vasorelaxant effect of H2S as a novel endogenous gaseous KATP channel opener. EMBO J. 20, 6008–6016 (2001). This study describes the first cloning of CSE in vascular tissues and the identification of K ATP channels as the molecular target of endogenous H 2 S for its vasorelaxant effects.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Yang, G. et al. Hydrogen sulfide protects against cellular senescence via S-sulfhydration of Keap1 and activation of Nrf2. Antioxid. Redox Signal. 18, 1906–1919 (2013).

    CAS  PubMed  Google Scholar 

  15. Zhang, G., Wang, P., Yang, G., Cao, Q. & Wang, R. The inhibitory role of hydrogen sulfide in airway hyperresponsiveness and inflammation in a mouse model of asthma. Am. J. Pathol. 182, 1188–1195 (2013).

    CAS  PubMed  Google Scholar 

  16. Fiorucci, S., Distrutti, E., Cirino, G. & Wallace, J. L. The emerging roles of hydrogen sulfide in the gastrointestinal tract and liver. Gastroenterology 131, 259–271 (2006).

    CAS  PubMed  Google Scholar 

  17. Schicho, R. et al. Hydrogen sulfide is a novel prosecretory neuromodulator in the guinea-pig and human colon. Gastroenterology 131, 1542–1552 (2006).

    CAS  PubMed  Google Scholar 

  18. Wallace, J. L., Vong, L., McKnight, W., Dicay, M. & Martin, G. R. Endogenous and exogenous hydrogen sulfide promotes resolution of colitis in rats. Gastroenterology 137, 569–578 (2009).

    CAS  PubMed  Google Scholar 

  19. Martin, G. R. et al. Hydrogen sulphide synthesis in the rat and mouse gastrointestinal tract. Dig. Liver Dis. 42, 103–109 (2010).

    CAS  PubMed  Google Scholar 

  20. Erickson, P. F., Maxwell, I. H., Su, L. J., Baumann, M. & Glode, L. M. Sequence of cDNA for rat cystathionine γ-lyase and comparison of deduced amino acid sequence with related Escherichia coli enzymes. Biochem. J. 269, 335–340 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Paul, B. D. et al. Cystathionine γ-lyase deficiency mediates neurodegeneration in Huntington's disease. Nature 509, 96–100 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Abe, K. & Kimura, H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J. Neurosci. 16, 1066–1071 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Robert, K. et al. Expression of the cystathionine β synthase (CBS) gene during mouse development and immunolocalization in adult brain. J. Histochem. Cytochem. 51, 363–371 (2003).

    CAS  PubMed  Google Scholar 

  24. Mani, S., Untereiner, A., Wu, L. & Wang, R. Hydrogen sulfide and the pathogenesis of atherosclerosis. Antioxid. Redox Signal. 20, 805–817 (2014).

    CAS  PubMed  Google Scholar 

  25. Chen, Y. & Wang, R. The message in the air: hydrogen sulfide metabolism in chronic respiratory diseases. Resp. Physiol. Neurobiol. 184, 130–138 (2012).

    CAS  Google Scholar 

  26. Szabo, C. et al. Tumor-derived hydrogen sulfide, produced by cystathionine-β synthase, stimulates bioenergetics, cell proliferation, and angiogenesis in colon cancer. Proc. Natl Acad. Sci. USA 110, 12474–12479 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kondo, K. et al. H2S protects against pressure overload-induced heart failure via upregulation of endothelial nitric oxide synthase. Circulation 12, 1116–1127 (2013).

    Google Scholar 

  28. Fu, M., Zhang, W., Yang, G. & Wang, R. Is cystathionine γ-lyase protein expressed in the heart? Biochem. Biophys. Res. Commun. 428, 469–474 (2012).

    CAS  PubMed  Google Scholar 

  29. Nagahara, N., Ito, T., Kitamura, H. & Nishino, T. Tissue and subcellular distribution of mercaptopyruvate sulfurtransferase in the rat: confocal laser fluorescence and immunoelectron microscopic studies combined with biochemical analysis. Histochem. Cell. Biol. 110, 243–250 (1998).

    CAS  PubMed  Google Scholar 

  30. Shibuya, N. et al. 3-mercaptopyruvate sulfurtransferase produces hydrogen sulfide and bound sulfane sulfur in the brain. Antioxid. Redox Signal. 11, 703–714 (2009).

    CAS  PubMed  Google Scholar 

  31. Shibuya, N., Mikami, Y., Kimura, Y., Nagahara, N. & Kimura, H. Vascular endothelium expresses 3-mercaptopyruvate sulfurtransferase and produces hydrogen sulfide. J. Biochem. 146, 623–626 (2009).

    CAS  PubMed  Google Scholar 

  32. Módis, K., Panopoulos, P., Coletta, C., Papapetropoulos, A. & Szabo, C. Hydrogen sulfide-mediated stimulation of mitochondrial electron transport involves inhibition of the mitochondrial phosphodiesterase 2A, elevation of cAMP and activation of protein kinase A. Biochem. Pharmacol. 86, 1311–1309 (2013).

    PubMed  Google Scholar 

  33. Fu, M. et al. Hydrogen sulfide (H2S) metabolism in mitochondria and its regulatory role in energy production. Proc. Natl Acad. Sci. USA 109, 2943–2948 (2012). This study shows that increases in intracellular calcium promote translocation of CSE to the mitochondrion, leading to increased mitochondrial H 2 S production and improved ATP production under hypoxic conditions.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Tang, G., Wu, L., Liang, W. & Wang, R. Direct stimulation of KATP channels by exogenous and endogenous hydrogen sulfide in vascular smooth muscle cells. Mol. Pharmacol. 68, 1757–1764 (2005).

    CAS  PubMed  Google Scholar 

  35. Yang, W., Yang, G., Jia, X., Wu, L. & Wang, R. Activation of KATP channels by H2S in rat insulin-secreting cells and the underlying mechanisms. J. Physiol. 569, 519–531 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Fitzgerald, R. et al. H2S relaxes isolated human airway smooth muscle cells via the sarcolemmal KATP channel. Biochem. Biophys. Res. Commun. 446, 393–398 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Dawe, G. S., Han, S. P., Bian, J. S. & Moore, P. K. Hydrogen sulphide in the hypothalamus causes an ATP-sensitive K+ channel-dependent decrease in blood pressure in freely moving rats. Neuroscience 152, 169–177 (2008).

    CAS  PubMed  Google Scholar 

  38. Kimura, Y., Dargusch, R., Schubert, D. & Kimura, H. Hydrogen sulfide protects HT22 neuronal cells from oxidative stress. Antioxid. Redox Signal. 8, 661–670 (2006). This is a demonstration of the potent cytoprotective effects of H 2 S in the central nervous system.

    CAS  PubMed  Google Scholar 

  39. Distrutti, E. et al. Evidence that hydrogen sulfide exerts antinociceptive effects in the gastrointestinal tract by activating KATP channels. J. Pharm. Exp. Therap. 316, 325–335 (2006).

    CAS  Google Scholar 

  40. Medeiros, J. V. et al. Role of KATP channels and TRPV1 receptors in hydrogen sulfide-enhanced gastric emptying of liquid in awake mice. Eur. J. Pharmacol. 693, 57–63 (2012).

    CAS  PubMed  Google Scholar 

  41. Jiang, B., Tang, G., Cao, K., Wu, L. & Wang, R. Molecular mechanism for H2S-induced activation of KATP channels. Antioxid. Redox Signal. 12, 1167–1178 (2010).

    CAS  PubMed  Google Scholar 

  42. Gade, A. R., Kang, M. & Akbarali, H. I. Hydrogen sulfide as an allosteric modulator of ATP-sensitive potassium channels in colonic inflammation. Mol. Pharmacol. 83, 294–306 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Mustafa, A. K. et al. H2S signals through protein S-sulfhydration. Sci. Signal. 2, ra72 (2009). This paper identifies the original discovery of the chemical interaction of H 2 S with proteins (that is, protein S -sulfhydration).

    PubMed  PubMed Central  Google Scholar 

  44. Tang, G., Zhang, L., Yang, G., Wu, L. & Wang, R. Hydrogen sulfide-induced inhibition of L-type Ca2+ channels and insulin secretion in mouse pancreatic β cells. Diabetologia 56, 533–541 (2013).

    CAS  PubMed  Google Scholar 

  45. Zhang, R. et al. Hydrogen sulfide inhibits L-type calcium currents depending upon the protein sulfhydryl state in rat cardiomyocytes. PLoS ONE 7, e37073 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Elies, J. et al. Hydrogen sulfide inhibits Cav3.2 T-type Ca2+ channels. FASEB J. 28, 5376–5387 (2014).

    CAS  PubMed  Google Scholar 

  47. Avanzato, D. et al. Role of calcium channels in the protective effect of hydrogen sulfide in rat cardiomyoblasts. Cell. Physiol. Biochem. 33, 1205–1214 (2014).

    CAS  PubMed  Google Scholar 

  48. Sekiguchi, F. et al. Endogenous and exogenous hydrogen sulfide facilitates T-type calcium channel currents in Cav3.2-expressing HEK293 cells. Biochem. Biophys. Res. Commun. 445, 225–229 (2014).

    CAS  PubMed  Google Scholar 

  49. Maeda, Y. et al. Hyperalgesia induced by spinal and peripheral hydrogen sulfide: evidence for involvement of Cav3.2 T type calcium channels. Pain 142, 127–132 (2009).

    CAS  PubMed  Google Scholar 

  50. Tang, G. et al. H2S is an endothelium-derived hyperpolarizing factor. Antioxid. Redox Signal. 19, 1634–1646 (2013). This study provides direct electrophysiological evidence for the role of H 2 S as an EDHF.

    CAS  PubMed  Google Scholar 

  51. Mustafa, A. K. et al. Hydrogen sulfide as endothelium-derived hyperpolarizing factor sulfhydrates potassium channels. Circ. Res. 109, 1259–1268 (2011). This study provides chemical and functional evidence for the role of H 2 S as an EDHF.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Telezhkin, V. et al. Hydrogen sulfide inhibits human BKCa channels. Adv. Exp. Med. Biol. 648, 65–72 (2009).

    CAS  PubMed  Google Scholar 

  53. Li, Q. et al. A crucial role for hydrogen sulfide in oxygen sensing via modulating large conductance calcium-activated potassium channels. Antioxid. Redox Signal. 12, 1179–1189 (2010).

    CAS  PubMed  Google Scholar 

  54. Sitdikova, G. F., Weiger, T. M. & Hermann, A. Hydrogen sulfide increases Ca2+-activated K+ (BK) channel activity of rat pituitary tumor cells. Pflugers. Arch. 459, 389–397 (2010).

    CAS  PubMed  Google Scholar 

  55. Jackson-Weaver, O. et al. Hydrogen sulfide dilates rat mesenteric arteries by activating endothelial large-conductance Ca²+-activated K+ channels and smooth muscle Ca²+ sparks. Am. J. Physiol. Heart Circ. Physiol. 304, H1446–H1454 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Han, Y. F. et al. Evidence that endogenous hydrogen sulfide exerts an excitatory effect on gastric motility in mice. Eur. J. Pharmacol. 673, 85–95 (2011).

    CAS  PubMed  Google Scholar 

  57. Cheang, W. S. et al. 4-aminopyridine-sensitive K+ channels contributes to NaHS-induced membrane hyperpolarization and relaxation in the rat coronary artery. Vascul. Pharmacol. 53, 94–98 (2010).

    CAS  PubMed  Google Scholar 

  58. Tang, G., Wu, L. & Wang, R. Interaction of hydrogen sulfide with ion channels. Clin. Exp. Pharmacol. Physiol. 37, 753–763 (2010).

    CAS  PubMed  Google Scholar 

  59. Bucci, M. et al. Hydrogen sulfide is an endogenous inhibitor of phosphodiesterase activity. Arterioscler. Thromb. Vasc. Biol. 30, 1998–2004 (2010). This paper reports the original discovery that H 2 S activates cGMP signalling via the inhibition of PDE, which contributes to the vasorelaxant and anti-inflammatory effects of H 2 S.

    CAS  PubMed  Google Scholar 

  60. Coletta, C. et al. Hydrogen sulfide and nitric oxide are mutually dependent in the regulation of angiogenesis and endothelium-dependent vasorelaxation. Proc. Natl Acad. Sci. USA 109, 9161–9166 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang, R. Shared signaling pathways among gasotransmitters. Proc. Natl Acad. Sci. USA 109, 8801–8802 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Lu, M. et al. Hydrogen sulfide inhibits plasma renin activity. J. Am. Soc. Nephrol. 21, 993–1002 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Moccia, F. et al. Hydrogen sulfide regulates intracellular Ca2+ concentration in endothelial cells from excised rat aorta. Curr. Pharm. Biotechnol. 12, 1416–1426 (2011).

    CAS  PubMed  Google Scholar 

  64. Bauer, C. C., Boyle, J. P., Porter, K. E. & Peers, C. Modulation of Ca2+ signalling in human vascular endothelial cells by hydrogen sulfide. Atherosclerosis 209, 374–380 (2010).

    CAS  PubMed  Google Scholar 

  65. Liang, G. H., Xi, Q., Leffler, C. W. & Jaggar, J. H. Hydrogen sulfide activates Ca²+ sparks to induce cerebral arteriole dilatation. J. Physiol. 590, 2709–2720 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Altaany, Z., Ju, Y., Yang, G. & Wang, R. The coordination of S-sulfhydration, S-nitrosylation, and phosphorylation of endothelial nitric oxide synthase by hydrogen sulfide. Sci. Signal. 7, ra87 (2014).

    PubMed  Google Scholar 

  67. Zhang, D. et al. Detection of protein S-sulfhydration by a tag-switch technique. Angew. Chem. Int. Ed. Engl. 53, 575–581 (2014).

    CAS  PubMed  Google Scholar 

  68. Sen, N. et al. Hydrogen sulfide-linked sulfhydration of NF-κB mediates its antiapoptotic actions. Mol. Cell 45, 13–24 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Kelleher, Z. T., Matsumoto, A., Stamler, J. S. & Marshall, H. E. NOS2 regulation of NF-κB by S-nitrosylation of p65. J. Biol. Chem. 282, 30667–30672 (2007).

    CAS  PubMed  Google Scholar 

  70. Beigi, F. et al. Dynamic denitrosylation via S-nitrosoglutathione reductase regulates cardiovascular function. Proc. Natl Acad. Sci. USA 109, 4314–4319 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Wu, C. et al. Thioredoxin 1-mediated post-translational modifications: reduction, transnitrosylation, denitrosylation, and related proteomics methodologies. Antioxid. Redox Signal. 15, 2565–2604 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Kabil, O. & Banerjee, R. Characterization of patient mutations in human persulfide dioxygenase (ETHE1) involved in H2S catabolism. J. Biol. Chem. 287, 44561–44567 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Yan, S. K. et al. Effects of hydrogen sulfide on homocysteine-induced oxidative stress in vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 351, 485–491 (2006).

    CAS  PubMed  Google Scholar 

  74. Chang, T., Untereiner, A., Liu, J. & Wu, L. Interaction of methylglyoxal and hydrogen sulfide in rat vascular smooth muscle cells. Antioxid. Redox Signal. 12, 1093–1100 (2010).

    CAS  PubMed  Google Scholar 

  75. Jeney, V. et al. Suppression of hemin-mediated oxidation of low-density lipoprotein and subsequent endothelial reactions by hydrogen sulfide (H2S). Free Radic. Biol. Med. 46, 616–623 (2009).

    CAS  PubMed  Google Scholar 

  76. Liu, Y. Y. & Bian, J. S. Hydrogen sulfide protects amyloid β-induced cell toxicity in microglia. J. Alzheimers Dis. 22, 1189–1200 (2010).

    CAS  PubMed  Google Scholar 

  77. Vacek, T. P., Gillespie, W., Tyagi, N., Vacek, J. C. & Tyagi, S. C. Hydrogen sulfide protects against vascular remodeling from endothelial damage. Amino Acids 39, 1161–1169 (2010).

    CAS  PubMed  Google Scholar 

  78. Xu, Z. S. et al. Hydrogen sulfide protects MC3T3 E1 osteoblastic cells against H2O2-induced oxidative damage-implications for the treatment of osteoporosis. Free Radic. Biol. Med. 50, 314–323 (2011).

    Google Scholar 

  79. Módis, K. Asimakopoulou, A., Coletta, C., Papapetropoulos, A. & Szabo, C. Oxidative stress suppresses the cellular bioenergetic effect of the 3-mercaptopyruvate sulfurtransferase/hydrogen sulfide pathway. Biochem. Biophys. Res. Commun. 433, 401–407 (2013).

    PubMed  Google Scholar 

  80. Szczesny, B. et al. AP39, a novel mitochondria-targeted sulfide donor, stimulates cellular bioenergetics, exerts cytoprotective effects and protects against the loss of mitochondrial DNA integrity in oxidatively stressed endothelial cells in vitro. Nitr. Oxide 41, 120–130 (2014).

    CAS  Google Scholar 

  81. Trionnaire, S. et al. The synthesis and functional evaluation of a mitochondria-targeted hydrogen sulfide donor, (10-oxo-10-(4-(3-thioxo-3H-1,2-dithiol-5-yl)phenoxy)decyl)triphenylphosphonium bromide (AP39). Med. Chem. Commun. 5, 728–736 (2014).

    Google Scholar 

  82. Yang, G. et al. H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine γ-lyase. Science 322, 587–590 (2008). This study provides direct evidence for the physiological importance of endogenous H 2 S (mice deficient in CSE displayed significant elevations of blood pressure).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Papapetropolous, A. et al. Hydrogen sulfide is an endogenous stimulator of angiogenesis. Proc. Natl Acad. Sci. USA 106, 21972–21977 (2009).

    Google Scholar 

  84. Madden, J. A., Ahlf, S. B., Dantuma, M. W., Olson, K. R. & Roerig, D. L. Precursors and inhibitors of hydrogen sulfide synthesis affect acute hypoxic pulmonary vasoconstriction in the intact lung. J. Appl. Physiol. 112, 411–418 (2012).

    CAS  PubMed  Google Scholar 

  85. Skovgaard, N. & Olson, K. R. Hydrogen sulfide mediates hypoxic vasoconstriction through a production of mitochondrial ROS in trout gills. Am. J. Physiol. Regul. Integr. Comp. Physiol. 303, R487–R494 (2012).

    CAS  PubMed  Google Scholar 

  86. Goubern, M. et al. Sulfide, the first inorganic substrate for human cells. FASEB J. 21, 1699–1706 (2007). This paper highlights the ability of cells to utilize H 2 S to drive mitochondrial production of ATP, which appears to be an important rescue mechanism during hypoxia or anoxia.

    CAS  PubMed  Google Scholar 

  87. Módis, K. Coletta, C., Erdélyi, K. Papapetropoulos, A. & Szabo, C. Intramitochondrial hydrogen sulfide production by 3-mercaptopyruvate sulfurtransferase maintains mitochondrial electron flow and supports cellular bioenergetics. FASEB J. 27, 601–611 (2013).

    PubMed  Google Scholar 

  88. Olson, K. R. Hydrogen sulfide as an oxygen sensor. Clin. Chem. Lab. Med. 51, 623–632 (2013).

    CAS  PubMed  Google Scholar 

  89. Chunyu, Z. et al. The regulatory effect of hydrogen sulfide on hypoxic pulmonary hypertension in rats. Biochem. Biophys. Res. Commun. 302, 810–816 (2003).

    PubMed  Google Scholar 

  90. Ariyaratnam, P., Loubani, M. & Morice, A. H. Hydrogen sulphide vasodilates human pulmonary arteries: a possible role in pulmonary hypertension? Microvasc. Res. 90, 135–137 (2013).

    CAS  PubMed  Google Scholar 

  91. Wallace, J. L. et al. Anti-inflammatory and cytoprotective actions of hydrogen sulfide: translation to therapeutics. Antiox. Redox Signal. 22, 398–410 (2015).

    CAS  Google Scholar 

  92. Zhao, W. & Wang, R. H2S-induced vasorelaxation and underlying cellular and molecular mechanisms. Am. J. Physiol. Heart Circ. Physiol. 283, H474–H480 (2002). This paper reveals some of the mechanisms underlying H 2 S-induced vasodilation, including the contributions of Ca2+ and the vascular endothelium.

    CAS  PubMed  Google Scholar 

  93. Zhao, W., Ndisang, J. F. & Wang, R. Modulation of endogenous production of H2S in rat tissues. Can. J. Physiol. Pharmacol. 81, 848–853 (2003).

    CAS  PubMed  Google Scholar 

  94. Du, J., Yan, H. & Tang, C. [Endogenous H2S is involved in the development of spontaneous hypertension]. Beijing Da Xue Xue Bao 35, 102 (2003).

    PubMed  Google Scholar 

  95. Ahmad, F. U. et al. Exogenous hydrogen sulfide attenuates oxidative stress in spontaneously hypertensive rats. Int. J. Pharm. Sci. Res. 4, 2916–2926 (2013).

    Google Scholar 

  96. Yanfei, W., Lin, S., Junbao, D. & Chaoshu, T. Impact of L-arginine on hydrogen sulfide/cystathionine-γ-lyase pathway in rats with high blood flow-induced pulmonary hypertension. Biochem. Biophys. Res. Commun. 345, 851–857 (2006).

    PubMed  Google Scholar 

  97. Wei, H. L., Zhang, C. Y., Jin, H. F., Tang, C. S. & Du, J. B. Hydrogen sulfide regulates lung tissue-oxidized glutathione and total antioxidant capacity in hypoxic pulmonary hypertensive rats. Acta Pharmacol. Sin. 29, 670–679 (2008).

    CAS  PubMed  Google Scholar 

  98. Wang, K. et al. Dysregulation of hydrogen sulfide producing enzyme cystathionine γ-lyase contributes to maternal hypertension and placental abnormalities in preeclampsia. Circulation 127, 2514–2522 (2013).

    CAS  PubMed  Google Scholar 

  99. Holwerda, K. M. et al. Hydrogen sulfide attenuates sFlt1 induced hypertension and renal damage by upregulating vascular endothelial growth factor. J. Am. Soc. Nephrol. 25, 717–725 (2014).

    CAS  PubMed  Google Scholar 

  100. Altaany, Z.1., Yang, G. & Wang, R. Crosstalk between hydrogen sulfide and nitric oxide in endothelial cells. J. Cell. Mol. Med. 17, 879–888 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Wang, Y. et al. Role of hydrogen sulfide in the development of atherosclerotic lesions in apolipoprotein E knockout mice. Arterioscler. Thromb. Vasc. Biol. 29, 173–179 (2009).

    CAS  PubMed  Google Scholar 

  102. Mani, S. et al. Decreased endogenous production of hydrogen sulfide accelerates atherosclerosis. Circulation 127, 2523–2534 (2013).

    CAS  PubMed  Google Scholar 

  103. Liu, Z. et al. The hydrogen sulfide donor, GYY4137, exhibits anti-atherosclerotic activity in high fat fed apolipoprotein E−/− mice. Br. J. Pharmacol. 169, 1795–1809 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhang, H. et al. Hydrogen sulfide inhibits the development of atherosclerosis with suppressing CX3CR1 and CX3CL1 expression. PLoS ONE 7, e41147 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Namekata, K. et al. Abnormal lipid metabolism in cystathionine β-synthase-deficient mice, an animal model for hyperhomocysteinemia. J. Biol. Chem. 279, 52961–52969 (2004).

    CAS  PubMed  Google Scholar 

  106. Robert, K. et al. Cystathionine β synthase deficiency promotes oxidative stress, fibrosis, and steatosis in mice liver. Gastroenterology 128, 1405–1415 (2005).

    CAS  PubMed  Google Scholar 

  107. Mani, S., Yang, G. & Wang, R. A critical life-supporting role for cystathionine γ-lyase in the absence of dietary cysteine supply. Free Radic. Biol. Med. 50, 1280–1287 (2011).

    CAS  PubMed  Google Scholar 

  108. Jain, S. K., Micinski, D., Lieblong, B. J. & Stapleton, T. Relationship between hydrogen sulfide levels and HDL-cholesterol, adiponectin, and potassium levels in the blood of healthy subjects. Atherosclerosis 225, 242–245 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Fiorucci, S. et al. The third gas: H2S regulates perfusion pressure in both the isolated and perfused normal rat liver and in cirrhosis. Hepatology 42, 539–548 (2005).

    CAS  PubMed  Google Scholar 

  110. Tan, G. et al. Hydrogen sulfide attenuates carbon tetrachloride-induced hepatotoxicity, liver cirrhosis and portal hypertension in rats. PLoS ONE 6, e25943 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Morsy, M. A., Ibrahim, S. A., Abdelwahab, S. A., Zedan, M. Z. & Elbitar, H. I. Curative effects of hydrogen sulfide against acetaminophen-induced hepatotoxicity in mice. Life Sci. 87, 692–698 (2010).

    CAS  PubMed  Google Scholar 

  112. Li, L. et al. Hydrogen sulfide is a novel mediator of lipopolysaccharide-induced inflammation in the mouse. FASEB J. 19, 1196–1198 (2005).

    CAS  PubMed  Google Scholar 

  113. Norris, E. J. et al. Hydrogen sulfide modulates sinusoidal constriction and contributes to hepatic microcirculatory dysfunction during endotoxemia. Am. J. Physiol. Gastrointest. Liver Physiol. 304, G1070–G1078 (2013).

    CAS  PubMed  Google Scholar 

  114. Wu, L. et al. Pancreatic islet overproduction of H2S and suppressed insulin release in Zucker diabetic rats. Lab. Invest. 89, 59–67 (2009).

    CAS  PubMed  Google Scholar 

  115. Lipson, K. L., Fonseca, S. G. & Urano, F. Endoplasmic reticulum stress-induced apoptosis and auto-immunity in diabetes. Curr. Mol. Med. 6, 71–77 (2006).

    CAS  PubMed  Google Scholar 

  116. Yang, G., Yang, W., Wu, L. & Wang, R. H2S, endoplasmic reticulum stress, and apoptosis of insulin-secreting β cells. J. Biol. Chem. 282, 16567–16576 (2007).

    CAS  PubMed  Google Scholar 

  117. Jia, X. et al. The role of H2S in insulin resistance. 57th Annual Meeting of the Canadian Cardovascular Congress [online], (2004).

    Google Scholar 

  118. Veldman, B. A., Vervoort, G., Blom, H. & Smits, P. Reduced plasma total homocysteine concentrations in type 1 diabetes mellitus is determined by increased renal clearance. Diabet. Med. 22, 301–305 (2005).

    CAS  PubMed  Google Scholar 

  119. Yusuf, M. et al. Streptozotocin-induced diabetes in the rat is associated with enhanced tissue hydrogen sulfide biosynthesis. Biochem. Biophys. Res. Commun. 333, 1146–1152 (2005).

    CAS  PubMed  Google Scholar 

  120. Yang, G., Tang, G., Zhang, L., Wu, L. & Wang, R. The pathogenic role of cystathionine γ-lyase/hydrogen sulfide in streptozotocin-induced diabetes in mice. Am. J. Pathol. 179, 869–879 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Whiteman, M. et al. Adiposity is a major determinant of plasma levels of the novel vasodilator hydrogen sulfide. Diabetologia 53, 1722–1726 (2010).

    CAS  PubMed  Google Scholar 

  122. Szabo, C. Roles of hydrogen sulfide in the pathogenesis of diabetes mellitus and its complications. Antioxid. Redox Signal. 17, 68–80 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Suzuki, K. et al. Hydrogen sulfide replacement therapy protects the vascular endothelium in hyperglycemia by preserving mitochondrial function. Proc. Natl Acad. Sci. USA 108, 13829–13834 (2011). This paper shows that endogenous or exogenous H 2 S can prevent hyperglycaemia-associated damage to the vascular endothelium, indicating the therapeutic potential of H 2 S in the prevention of diabetes-associated vasculopathy.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Liu, F. et al. Hydrogen sulfide improves wound healing via restoration of endothelial progenitor cell functions and activation of angiopoietin 1 in type 2 diabetes. Diabetes 63, 1763–1778 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhong, X. et al. Exogenous hydrogen sulfide attenuates diabetic myocardial injury through cardiac mitochondrial protection. Mol. Cell. Biochem. 371, 187–198 (2012).

    CAS  PubMed  Google Scholar 

  126. Eto, K., Asada, T., Arima, K., Makifuchi, T. & Kimura, H. Brain hydrogen sulfide is severely decreased in Alzheimer's disease. Biochem. Biophys. Res. Commun. 293, 1485–1488 (2002).

    CAS  PubMed  Google Scholar 

  127. Tang, X. Q. et al. Effect of hydrogen sulfide on β-amyloid-induced damage in PC12 cells. Clin. Exp. Pharmacol. Physiol. 35, 180–186 (2008).

    CAS  PubMed  Google Scholar 

  128. Fan, H. et al. Hydrogen sulfide protects against amyloid β-peptide induced neuronal injury via attenuating inflammatory responses in a rat model. J. Biomed. Res. 27, 296–304 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Xuan, A. et al. Hydrogen sulfide attenuates spatial memory impairment and hippocampal neuroinflammation in β-amyloid rat model of Alzheimer's disease. J. Neuroinflamm. 9, 202 (2012).

    CAS  Google Scholar 

  130. Zhang, L. M., Jiang, C. X. & Liu, D. W. Hydrogen sulfide attenuates neuronal injury induced by vascular dementia via inhibiting apoptosis in rats. Neurochem. Res. 34, 1984–1992 (2009).

    CAS  PubMed  Google Scholar 

  131. Hu, L. F. et al. Neuroprotective effects of hydrogen sulfide on Parkinson's disease rat models. Aging Cell 9, 135–146 (2010).

    CAS  PubMed  Google Scholar 

  132. Kida, K. et al. Inhaled hydrogen sulfide prevents neurodegeneration and movement disorder in a mouse model of Parkinson's disease. Antioxid. Redox Signal. 15, 343–352 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Campolo, M. et al. A hydrogen sulfide-releasing cyclooxygenase inhibitor markedly accelerates recovery from experimental spinal cord injury. FASEB J. 27, 4489–4499 (2013).

    CAS  PubMed  Google Scholar 

  134. Distrutti, E. et al. 5-amino 2 hydroxybenzoic acid 4-(5 thioxo 5H-[1,2]dithiol 3yl)-phenyl ester (ATB-429), a hydrogen sulfide-releasing derivative of mesalamine, exerts antinociceptive effects in a model of postinflammatory hypersensitivity. J. Pharmacol. Exp. Ther. 319, 447–458 (2006).

    CAS  PubMed  Google Scholar 

  135. Matsunami, M. et al. Luminal hydrogen sulfide plays a pronociceptive role in mouse colon. Gut 58, 751–771 (2009).

    CAS  PubMed  Google Scholar 

  136. Ekundi-Valentim, E. et al. Differing effects of exogenous and endogenous hydrogen sulphide in carrageenan-induced knee joint synovitis in the rat. Br. J. Pharmacol. 159, 1463–1474 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Donatti, A. F. et al. Role of hydrogen sulfide in the formalin-induced orofacial pain in rats. Eur. J. Pharmacol. 738, 49–56 (2014).

    CAS  PubMed  Google Scholar 

  138. Paquette, J. M. et al. Safety, tolerability and pharmacokinetics of trimebutine 3-thiobarbamoylbenzenesulfonate (GIC-1001) in a randomized Phase I integrated design study: single and multiple ascending doses and effect of food in healthy volunteers. Clin. Ther. 36, 1650–1664 (2014).

    CAS  PubMed  Google Scholar 

  139. Fiorucci, S. et al. Inhibition of hydrogen sulfide generation contributes to gastric injury caused by anti-inflammatory nonsteroidal drugs. Gastroenterology 129, 1210–1224 (2005).

    CAS  PubMed  Google Scholar 

  140. Wallace, J. L. Physiological and pathophysiological roles of hydrogen sulfide in the gastrointestinal tract. Antioxid. Redox Signal. 12, 1125–1133 (2010).

    CAS  PubMed  Google Scholar 

  141. Mard, S. A. et al. Gastroprotective effect of NaHS against mucosal lesions induced by ischemia-reperfusion injury in rat. Dig. Dis. Sci. 57, 1496–1503 (2012).

    CAS  PubMed  Google Scholar 

  142. Zanardo, R. C. et al. Hydrogen sulfide is an endogenous modulator of leukocyte-mediated inflammation. FASEB J. 20, 2118–2120 (2006). This is the first demonstration of the potent anti-inflammatory effects of endogenous and exogenous H 2 S, including inhibition of leukocyte adherence to the vascular endothelium.

    CAS  PubMed  Google Scholar 

  143. Wallace, J. L., Keenan, C. M. & Granger, D. N. Gastric ulceration induced by nonsteroidal anti-inflammatory drugs is a neutrophil-dependent process. Am. J. Physiol. 259, G462–G467 (1990).

    CAS  PubMed  Google Scholar 

  144. Blackler, R. W., Gemici, B., Manko, A. & Wallace, J. L. NSAID-gastroenteropathy: new aspects of pathogenesis and prevention. Curr. Opin. Pharmacol. 19, 11–16 (2014).

    CAS  PubMed  Google Scholar 

  145. Takeuchi, K. et al. Gas mediators involved in modulating duodenal HCO3 secretion. Curr. Med. Chem. 19, 43–54 (2012).

    CAS  PubMed  Google Scholar 

  146. Wallace, J. L., Caliendo, G., Santagada, V., Cirino, G. & Fiorucci, S. Gastrointestinal safety and anti-inflammatory effects of hydrogen sulfide-releasing diclofenac derivative in the rat. Gastroenterology 132, 261–271 (2007).

    CAS  PubMed  Google Scholar 

  147. Li, L. et al. Anti-inflammatory and gastrointestinal effects of a novel diclofenac derivative. Free Radic. Biol. Med. 42, 706–719 (2007).

    PubMed  Google Scholar 

  148. Wallace, J. L., Caliendo, G., Santagada, V. & Cirino, G. Markedly reduced toxicity of a hydrogen sulphide-releasing derivative of naproxen (ATB-346). Br. J. Pharmacol. 159, 1236–1246 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Blackler, R. et al. Gastrointestinal sparing effects of novel NSAIDs in rats with compromised mucosal defence. PLoS ONE 7, e35196 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Wallace, J. L. Hydrogen sulfide-releasing anti-inflammatory drugs. Trends Pharmacol. Sci. 28, 501–505 (2007).

    CAS  PubMed  Google Scholar 

  151. Wallace, J. L., Ferraz, J. G. P. & Muscara, M. N. Hydrogen sulfide: an endogenous mediator of resolution of inflammation and injury. Antioxid. Redox Signal. 17, 58–67 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Wallace. J. L., Dicay, M., McKnight, W., Martin, G. R. Hydrogen sulfide enhances ulcer healing in rats. FASEB J. 21, 4070–4076 (2007). This was the first study to highlight a critical role of H 2 S synthesis at sites of injury in driving repair in vivo , suggesting that H 2 S has important therapeutic potential.

    CAS  PubMed  Google Scholar 

  153. Zayachkivska, O. et al. Cytoprotective effects of hydrogen sulfide in novel rat models of non-erosive esophagitis. PLoS ONE 9, e110688 (2014).

    PubMed  PubMed Central  Google Scholar 

  154. Wallace, J. L. Polypharmacy of osteoarthritis: the perfect intestinal storm. Dig. Dis. Sci. 58, 3088–3093 (2013).

    CAS  PubMed  Google Scholar 

  155. Blackler, R. W. et al. Hydrogen sulfide protects against NSAID-enteropathy through modulation of bile and the microbiota. Br. J. Pharmacol. http://dx.doi.org/10.1111/bph.12961 (2014).

  156. Flannigan, K. L., Ferraz, J. G. P., Wang, R. & Wallace, J. L. Enhanced synthesis and diminished degradation of hydrogen sulfide in experimental colitis: a site-specific, pro-resolution mechanism. PLoS ONE 8, e71962 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Fiorucci, S. et al. Enhanced activity of a hydrogen sulphide-releasing derivative of mesalamine (ATB-429) in a mouse model of colitis. Br. J. Pharmacol. 150, 996–1002 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Flannigan, K. L. et al. Impaired hydrogen sulfide synthesis and IL-10 signaling underlie hyperhomocysteinemia-associated exacerbation of colitis. Proc. Natl Acad. Sci. USA 111, 13559–13564 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Wang, J. & Hegele, R. A. Genomic basis of cystathioninuria (MIM 219500) revealed by multiple mutations in cystathionine γ-lyase (CTH). Hum. Genet. 112, 404–408 (2003).

    CAS  PubMed  Google Scholar 

  160. Zhu, W., Lin, A. & Banerjee, R. Kinetic properties of polymorphic variants and pathogenic mutants in human cystathionine γ-lyase. Biochemistry 47, 6226–6232 (2008).

    CAS  PubMed  Google Scholar 

  161. Banerjee, R. & Zou, C. G. Redox regulation and reaction mechanism of human cystathionine-β-synthase: a PLP-dependent hemesensor protein. Arch. Biochem. Biophys. 433, 144–156 (2005).

    CAS  PubMed  Google Scholar 

  162. Ichinohe, A. et al. Cystathionine β-synthase is enriched in the brains of Down's patients. Biochem. Biophys. Res. Commun. 338, 1547–1550 (2005).

    CAS  PubMed  Google Scholar 

  163. Billaut-Laden, I. et al. Evidence for a functional genetic polymorphism of the human mercaptopyruvate sulfurtransferase (MPST), a cyanide detoxification enzyme. Toxicol. Lett. 165, 101–111 (2006).

    CAS  PubMed  Google Scholar 

  164. Blackstone, E., Morrison, M. & Roth, M. B. H2S induces a suspended animation-like state in mice. Science 308, 515 (2005).

    Google Scholar 

  165. Szabo, C. Hydrogen sulfide and its therapeutic potential. Nature Rev. Drug Discov. 6, 917–935 (2007).

    CAS  Google Scholar 

  166. Wallace, J. L. Mechanisms, prevention & clinical implications of nonsteroidal anti-inflammatory drug-enteropathy. World J. Gastroenterol. 19, 1861–1876 (2013).

    PubMed  PubMed Central  Google Scholar 

  167. Kearney, P. M. et al. Do selective cyclo-oxygenase 2 inhibitors and traditional non-steroidal anti-inflammatory drugs increase the risk of atherothrombosis? Meta-analysis of randomized trials. BMJ 332, 1302–1308 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Chattopadhyay, M., Kodela, R., Olson, K. R. & Kashfi, K. NOSH–aspirin (NBS-1120), a novel nitric oxide- and hydrogen sulfide-releasing hybrid is a potent inhibitor of colon cancer cell growth in vitro and in a xenograft mouse model. Biochem. Biophys. Res. Commun. 419, 523–528 (2012).

    CAS  PubMed  Google Scholar 

  169. Kashfi, K. Anti-cancer activity of new designer hydrogen sulfide-donating hybrids. Antioxid. Redox Signal. 20, 831–846 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Karabulut, G. S. et al. The incidence of irritable bowel syndrome in children using Rome III criteria and the effect of trimebutine treatment. J. Neurogastroenterol. Motil. 19, 90–93 (2013).

    PubMed  PubMed Central  Google Scholar 

  171. Elrod, J. W. et al. Hydrogen sulfide attenuates myocardial ischemia-reperfusion injury by preservation of mitochondrial function. Proc. Natl Acad. Sci. USA 104, 15560–15565 (2007). In this study, the potent cardioprotective effects of H 2 S were demonstrated in experimental myocardial infarction, and shown to be largely attributable to the preservation of myocardial mitochondrial function and reduced production of reactive oxygen species.

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Li, L. et al. Characterization of a novel, water soluble hydrogen sulfide-releasing molecule (GYY4137): new insights into the biology of hydrogen sulfide. Circulation 117, 2351–2360 (2008).

    CAS  PubMed  Google Scholar 

  173. Li, L. et al. GYY4137, a novel hydrogen sulfide-releasing molecule, protects against endotoxic shock in the rat. Free Radic. Biol. Med. 47, 103–113 (2009).

    CAS  PubMed  Google Scholar 

  174. Li, L. et al. The complex effects of the slow-releasing hydrogen sulfide donor GYY4137 in a model of acute joint inflammation and in human cartilage cells. J. Cell. Mol. Med. 17, 365–376 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Bucci, M. et al. Hydrogen sulfide accounts for the peripheral vascular effects of zofenopril independently of ACE inhibition. Cardiovasc. Res. 102, 128–147 (2014).

    Google Scholar 

  176. McCook, O. et al. H2S during circulatory shock: some unresolved questions. Nitr. Oxide http://dx.doi.org/10.1016/j.niox.2014.03.163 (2014).

  177. Olson, K. A practical look at the chemistry and biology of hydrogen sulfide. Antiox. Redox Signal. 17, 32–44 (2012).

    CAS  Google Scholar 

  178. Shen, X., Peter, E. A., Bir, S., Wang, R. & Kevil, C. G. Analytical measurement of discrete hydrogen sulfide pools in biological specimens. Free Radic. Biol. Med. 52, 2276–2283 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Peter, E. A. et al. Plasma-free H2S levels are elevated in patients with cardiovascular disease. J. Am. Heart Assoc. 2, e000387 (2013).

    PubMed  PubMed Central  Google Scholar 

  180. Bos, E. M. et al. Cystathionine γ lyase protects against renal ischemia/reperfusion by modulating oxidative stress. J. Am. Soc. Nephrol. 24, 759–770 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Shirozu, K. et al. Cystathionine γ lyase deficiency protects mice from galactosamine/lipopolysaccharide-induced acute liver failure. Antioxid. Redox Signal. 20, 204–216 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Shen, X. et al. Microbial regulation of host hydrogen sulfide bioavailability and metabolism. Free Radic. Biol. Med. 60, 195–200 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Flannigan, K. L., McCoy, K. D. & Wallace, J. L. Eukaryotic and prokaryotic contributions to colonic hydrogen sulfide synthesis. Am. J. Physiol. Gastrointest. Liver Physiol. 301, G188–G193 (2011).

    CAS  PubMed  Google Scholar 

  184. Mimoun, S. et al. Detoxification of H2S by differentiated colonic epithelial cells: implication of the sulfide oxidizing unit and of the cell respiratory capacity. Antioxid. Redox Signal. 17, 1–10 (2012).

    CAS  PubMed  Google Scholar 

  185. Motta, J. P. et al. Hydrogen sulfide protects from colitis and restores intestinal microbiota biofilm and mucus production. Inflamm. Bowel Dis. http://dx.doi.org/10.1097/MIB.0000000000000345 (2015).

  186. Rey, F. E. et al. Metabolic niche of a prominent sulfate-reducing human gut bacterium. Proc. Natl Acad. Sci. USA 110, 13582–13587 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Berg, J. S. et al. Polysulfides as intermediates in the oxidation of sulfide to sulfate by Beggiatoa spp. Appl. Environ. Microbiol. 80, 629–636 (2014).

    PubMed  PubMed Central  Google Scholar 

  188. Furne, J., Saeed, A. & Levitt, M. D. Whole tissue hydrogen sulfide concentrations are orders of magnitude lower than present accepted values. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295, R1479–R1485 (2008).

    CAS  PubMed  Google Scholar 

  189. Magee, E. A., Richardson, C. J., Hughes, R. & Cummings, J. H. Contribution of dietary protein to sulfide production in the large intestine: an in vitro and a controlled feeding study in humans. Am. J. Clin. Nutr. 72, 1488–1494 (2000).

    CAS  PubMed  Google Scholar 

  190. Roediger, W. E., Duncan, A., Kapaniris, O. & Millard, S. Sulphide impairment of substrate oxidation in rat colonocytes: a biochemical basis for ulcerative colitis? Clin. Sci. 85, 623–627 (1993).

    CAS  Google Scholar 

  191. Attene-Ramos, M. S., Wagner, E. D., Plewa, M. J. & Gaskins, H. R. Evidence that hydrogen sulfide is a genotoxic agent. Mol. Cancer Res. 4, 9–14 (2006).

    CAS  PubMed  Google Scholar 

  192. Cao, Q. et al. Butyrate-stimulated H2S production in colon cancer cells. Antioxid. Redox Signal. 12, 1101–1109 (2010).

    CAS  PubMed  Google Scholar 

  193. Chan, M. V. & Wallace, J. L. Hydrogen sulfide-based therapeutics and gastrointestinal diseases: translating physiology to treatments. Am. J. Physiol. Gastrointest. Liver Physiol. 305, G467–G473 (2013).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

J.L.W. and R.W. are supported by grants from the Canadian Institutes of Health Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John L. Wallace.

Ethics declarations

Competing interests

J.L.W. is a founder and director of Antibe Therapeutics Inc. R.W. declares no competing interests.

Related links

PowerPoint slides

Glossary

Cystathionine γ-lyase

(CSE). An enzyme that converts L-cysteine into hydrogen sulfide, pyruvate and ammonia. It requires the cofactor pyridoxal phosphate (vitamin B6) for this activity.

Cystathionine β-synthase

(CBS). An enzyme that catalyses the conversion of homocysteine to cystathionine (the first step in the trans-sulfuration pathway) and the condensation of homocysteine and cysteine to form cystathionine and hydrogen sulfide.

Cysteine aminotransferase

(CAT). An enzyme that catalyses the conversion of L-cysteine and α-ketoglutarate to 3-mercaptopyruvate and glutamate. Another enzyme, 3-mercaptosulfurtransferase, can then catabolize the generation of hydrogen sulfide from 3-mercaptopyruvate.

4-aminopyridine

(4-AP). One of three isomeric amines of pyridine, which is widely used as a research tool to characterize the subtypes of potassium channels.

Calcium sparks

Intracellular Ca2+ release events that play an important role in excitation–contraction coupling.

Tag-switch method

A technique used to measure protein S-sulfhydration, whereby S-sulfhydrated residues are labelled to form thioether conjugates.

Two-kidney-one-clip model

A model of hypertension induced by chronically constricting one renal artery while the other renal artery remains fully perfused.

Hyperhomocysteinaemia

A condition characterized by abnormally high levels of homocysteine in the blood. The major causes of this condition are deficiencies of vitamins B6, B9 and B12, and mutations in the gene encoding the enzyme 5-methyltetrahydrofolate.

Streptozotocin

A chemical commonly used to induce diabetes in laboratory animals, as it is toxic to the insulin-producing β-cells in the pancreas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wallace, J., Wang, R. Hydrogen sulfide-based therapeutics: exploiting a unique but ubiquitous gasotransmitter. Nat Rev Drug Discov 14, 329–345 (2015). https://doi.org/10.1038/nrd4433

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrd4433

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research