Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Perlecan is essential for cartilage and cephalic development

Abstract

Perlecan, a large, multi-domain, heparan sulfate proteoglycan originally identified in basement membrane, interacts with extracellular matrix proteins, growth factors and receptors, and influences cellular signalling1,2,3,4,5. Perlecan is present in a variety of basement membranes and in other extracellular matrix structures5,6. We have disrupted the gene encoding perlecan (Hspg2) in mice. Approximately 40% of Hspg2–/– mice died at embryonic day (E) 10.5 with defective cephalic development. The remaining Hspg2–/– mice died just after birth with skeletal dysplasia characterized by micromelia with broad and bowed long bones, narrow thorax and craniofacial abnormalities. Only 6% of Hspg2–/– mice developed both exencephaly and chondrodysplasia. Hspg2–/– cartilage showed severe disorganization of the columnar structures of chondrocytes and defective endochondral ossification. Hspg2–/– cartilage matrix contained reduced and disorganized collagen fibrils and glycosaminoglycans, suggesting that perlecan has an important role in matrix structure. In Hspg2–/– cartilage, proliferation of chondrocytes was reduced and the prehypertrophic zone was diminished. The abnormal phenotypes of the Hspg2–/– skeleton are similar to those of thanatophoric dysplasia (TD) type I, which is caused by activating mutations in FGFR3 (refs 7, 8, 9), and to those of Fgfr3 gain-of-function mice10,11. Our findings suggest that these molecules affect similar signalling pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Targeted disruption of Hspg2 and generation of chimaeras.
Figure 2: Gross appearance of wild-type (a,c,e) and Hspg2–/– mice (b,d,f, g).
Figure 3: Skeletal preparations of wild-type (a,c,e, g,i,k) and Hspg2–/– ( b,d,f,h,j,l) newborn mice stained with Alcian blue and Alizarin red.
Figure 4: Abnormal chondrocyte proliferation and differentiation in Hspg2–/– mice.
Figure 5: Abnormal cartilage matrix formation of Hspg2–/– mice.
Figure 6: Expressions of perlecan, Fgfr3 and Fgf1.

Similar content being viewed by others

References

  1. Noonan, D.M. et al. The complete sequence of perlecan, a basement membrane heparan sulfate proteoglycan, reveals extensive similarity with laminin A chain, low density lipoprotein-receptor, and the neural cell adhesion molecule. J. Biol. Chem. 266, 22939–22947 (1991).

    CAS  Google Scholar 

  2. Iozzo, R.V., Cohen, I.R., Grassel, S. & Murdoch, A.D. The biology of perlecan: the multifaceted heparan sulphate proteoglycan of basement membranes and pericellular matrices. Biochem. J. 302, 625–639 (1994).

    Article  CAS  Google Scholar 

  3. Aviezer, D. et al. Perlecan, basal lamina proteoglycan, promotes basic fibroblast growth factor-receptor binding, mitogenesis, and angiogenesis. Cell 79, 1005–1013 ( 1994).

    Article  CAS  Google Scholar 

  4. SundarRaj, N., Fite, D., Ledbetter, S., Chakravarti, S. & Hassell, J.R. Perlecan is a component of cartilage matrix and promotes chondrocyte attachment. J. Cell. Sci. 108, 2663–2672 (1995).

    CAS  PubMed Central  Google Scholar 

  5. Handler, M., Yurchenco, P.D. & Iozzo, R.V. Developmental expression of perlecan during murine embryogenesis. Dev. Dyn. 210, 130– 145 (1997).

    Article  CAS  Google Scholar 

  6. Morriss-Kay, G. & Tucket, F. Early events in mammalian craniofacial morphogenesis. J. Craniofac. Genet. Dev. Biol. 11, 181–191 ( 1991).

    CAS  Google Scholar 

  7. Tavormina, P.L. et al. Thanatophoric dysplasia (types I and II) caused by distinct mutations in fibroblast growth factor receptor 3. Nature Genet. 9, 321–328 ( 1995).

    Article  CAS  Google Scholar 

  8. Horton, W.A. Fibroblast growth factor receptor 3 and the human chondrodysplasias. Curr. Opin. Pediatr. 9, 437–442 (1997).

    Article  CAS  Google Scholar 

  9. Weber, M., Johannisson, T., Thomsen, M., Rehder, H. & Niethard, F.U. Thanatophoric dysplasia type I: new radiologic, morphologic, and histologic aspects toward the exact definition of the disorder. J. Pediatr. Orthop. B 7, 1–9 (1998).

    Article  CAS  Google Scholar 

  10. Naski, M.C., Colvin, J.S., Coffin, J.D. & Ornitz, D.M. Repression of hedgehog signaling and BMP4 expression in growth plate cartilage by fibroblast growth factor receptor 3. Development 125, 4977–4988 (1998).

    CAS  PubMed Central  Google Scholar 

  11. Li, C. et al. A Lys644Glu substitution in fibroblast growth factor receptor 3 (FGFR3) causes dwarfism in mice by activation of STATs and ink4 cell cycle inhibitors. Hum. Mol. Genet. 8, 35– 44 (1999).

    Article  CAS  Google Scholar 

  12. Wilcox, W.R. et al. Molecular, radiologic, and histopathologic correlations in thanatophoric dysplasia. Am. J. Med. Genet. 78, 274–281 (1998).

    Article  CAS  Google Scholar 

  13. Naski, M.C., Wang, Q., Xu, J. & Ornitz, D.M. Graded activation of fibroblast growth factor receptor 3 by mutations causing achondroplasia and thanatophoric dysplasia. Nature Genet. 13, 233–237 (1996).

    Article  CAS  Google Scholar 

  14. Chuang, P.T. & McMahon, A.P. Vertebrate Hedgehog signalling modulated by induction of a Hedgehog-binding protein. Nature 397, 617–621 (1999).

    Article  CAS  Google Scholar 

  15. Aszodi, A., Pfeifer, A., Wendel, M., Hiripi, L. & Fassler, R. Mouse models for extracellular matrix diseases. J. Mol. Med. 76, 238–252 (1998).

    Article  CAS  Google Scholar 

  16. Watanabe, H. & Yamada, Y. Mice lacking link protein develop dwarfism and craniofacial abnormalities. Nature Genet. 21, 225–229 (1999).

    Article  CAS  Google Scholar 

  17. Deng, C., Wynshaw-Boris, A., Zhou, F., Kuo, A. & Leder, P. Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell 84, 911–921 (1996).

    Article  CAS  Google Scholar 

  18. Ornoy, A., Adomian, G.E., Eteson, D.J., Burgeson, R.E. & Rimoin, D.L. The role of mesenchyme-like tissue in the pathogenesis of thanatophoric dysplasia. Am. J. Med. Genet. 21, 613–630 ( 1985).

    Article  CAS  Google Scholar 

  19. Horton, W.A., Hood, O.J., Machado, M.A., Ahmed, S. & Griffey, E.S. Abnormal ossification in thanatophoric dysplasia. Bone 9, 53–61 (1988).

    Article  CAS  Google Scholar 

  20. Vortkamp, A. et al. Regulation of rate of cartilage differentiation by Indian hedgehog and PTH-related protein. Science 273, 613–622 (1996).

    Article  CAS  Google Scholar 

  21. Colvin, J.S., Bohne, B.A., Harding, G.W., McEwen, D.G. & Ornitz, D.M. Skeletal overgrowth and deafness in mice lacking fibroblast growth factor receptor 3. Nature Genet. 12, 390–397 ( 1996).

    Article  CAS  Google Scholar 

  22. Su, W.C. et al. Activation of Stat1 by mutant fibroblast growth-factor receptor in thanatophoric dysplasia type II dwarfism. Nature 386, 288–292 (1997).

    Article  CAS  Google Scholar 

  23. Sahni, M. et al. FGF signaling inhibits chondrocyte proliferation and regulates bone development through the STAT-1 pathway. Genes. Dev. 13, 1361–1366 (1999).

    Article  CAS  Google Scholar 

  24. Ornitz, D.M. et al. FGF binding and FGF receptor activation by synthetic heparan-derived di- and trisaccharides. Science 268, 432 –436 (1995).

    Article  CAS  Google Scholar 

  25. Delezoide, A.L. et al. Abnormal FGFR3 expression in cartilage of thanatophoric dysplasia fetuses. Hum. Mol. Genet. 6, 1899 –1906 (1997).

    Article  CAS  Google Scholar 

  26. Aviezer, D., Iozzo, R.V., Noonan, D.M. & Yayon, A. Suppression of autocrine and paracrine functions of basic fibroblast growth factor by stable expression of perlecan antisense cDNA. Mol. Cell. Biol. 17, 1938–1946 ( 1997).

    Article  CAS  Google Scholar 

  27. Tybulewicz, V.L., Crawford, C.E., Jackson, P.K., Bronson, R.T. & Mulligan, R.C. Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene. Cell 65, 1153–1163 ( 1991).

    Article  CAS  Google Scholar 

  28. Peters, P.W. Double staining of fetal skeletons for cartilage and bone. in Methods in Prenatal Toxicology(eds Neubert, D. et al.) 153–154 (Thieme, Stuttgart, 1977).

    Google Scholar 

  29. Arahata, K. et al. Immunostaining of skeletal and cardiac muscle surface membrane with antibody against Duchenne muscular dystrophy peptide. Nature 333, 861–863 ( 1988).

    Article  CAS  Google Scholar 

  30. Harris, M.J. & Juriloff, D.M. Genetic landmarks for defects in mouse neural tube closure. Teratology 56, 177–187 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Longenecker for blastocyst injection; W. Swaim, N. Marinos, V. Morgan, L. Bowers and R. Yaskovich for histology and electron microscopy; M. Mankani for Faxitron radiographs; J. Sasse for Fgf1 antibody; C. Deng for Fgfr3 cDNA; A. McMahon for Ihh cDNA; G. Lunstrum and N. Morris for collagen X antibody; A. Kulkarni, S. Kimura, T. Oshima, M. Hirasawa and K. Kimata for technical comments; and H. Kleinman for critically reading the manuscript. Some of this work was supported by a grant from Seikagaku Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiko Yamada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arikawa-Hirasawa, E., Watanabe, H., Takami, H. et al. Perlecan is essential for cartilage and cephalic development. Nat Genet 23, 354–358 (1999). https://doi.org/10.1038/15537

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/15537

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing