Skip to main content
Log in

Maitotoxin Induces Calpain But Not Caspase-3 Activation and Necrotic Cell Death in Primary Septo-Hippocampal Cultures

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Maitotoxin is a potent toxin that activates voltage and receptor-mediated Ca2+ channels, resulting in Ca2+ overload and rapid cell death. We report that maitotoxin-induced cell death is associated with activation of calpain but not caspase-3 proteases in septo-hippocampal cell cultures. Calpain and caspase-3 activation were examined by accumulation of protease-specific breakdown products to α-spectrin. Cell death manifested exclusively necrotic-like characteristics including round, shrunken nuclei, even distribution of chromatin, absence of DNA fragmentation and failure of protein synthesis inhibition to reduce cell death. Necrotic cell death was observed in neurons and astroglia. Calpain inhibitor II inhibited calpain-specific processing of α-spectrin and significantly reduced cell death. The pan-caspase inhibitor, Z-D-DCB, nominally attenuated cell death. Results suggest that: (1) calpain, but not caspase-3, is activated as a result of maitotoxin-induced Ca2+ influx; (2) necrotic cell death caused by maitotoxin exposure is partially mediated by calpain activation; (3) maitotoxin is a useful tool to investigate pathological mechanisms of necrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Melloni, E., and Pontremoli, S. 1989. The calpains. TINS 12:438–444.

    Google Scholar 

  2. Mellgren, R.L., Mericle, M.T., and Lane, R.D. 1986. Proteolysis of the calcium-dependent protease inhibitor by myocardial calcium-dependent protease. Arch. Biochem. Biophys. 246(1):233–9.

    Google Scholar 

  3. Saido, T.C., Sorimachi, H., and Suzuki, K. 1994. Calpain: new perspectives in molecular diversity and physiological-pathological involvement. FASEB J. 8:814–822.

    Google Scholar 

  4. Suzuki, K., Sorimachi, H., Yoshizawa, T., Kinbara, K., and Ishiura, S. 1995. Calpain: novel family members, activation and physiological function. Biol. Chem. 376:523–529.

    Google Scholar 

  5. Sorimachi, H., Harada, K., Saido, T.C., Ono, T., Kawashima, S-I., and Yoshida, K-I. 1997. Downregulation of calpastatin in rat heart after brief ischemia and reperfusion. J. Biochem. 122:743–748.

    Google Scholar 

  6. Hamakubo, T., Kannagi, R., Murachi, T., Matus, A. 1986. Distribution of calpains I and II in rat brain. J. Neurosci. 6(11):3103–11.

    Google Scholar 

  7. Perlmutter, L.S., Gall, C., Baudry, M., and Lynch, G. 1990. Distribution of calcium-activated protease calpain in the rat brain. J. Comp. Neurol. 296:269–276.

    Google Scholar 

  8. Li, Z., Hogan, E.L., and Banik, N.L. 1996. Role of calpain in spinal cord injury: increased calpain immunoreactivity in rat spinal cord after impact trauma. Neurochemical Res. 21(4):441–8.

    Google Scholar 

  9. Wang, K.K.W., Villalobo, A., and Roufogalis, B.D. 1989. Calmodulin-binding proteins as calpain substrates. Biochem. J. 262:693–706.

    Google Scholar 

  10. Kampfl, A., Posmantur, R.M., Zhao, X., Schmutzhard, E., Clifton, G.L., and Hayes, R.L. 1997. Mechanisms of calpain proteolysis following traumatic brain injury: implications for pathology and therapy; implications for pathology and therapy: a review and update. J. Neurotrauma 14:121–134.

    Google Scholar 

  11. Yuen, P., Gilbertsen, R.B., and Wang, K.K.W. 1996. Non-erythroid α-spectrin breakdown by calpain and interleukin 1β-converting-enzyme-like protease(s) in apoptotic cells: contributory roles of both protease families in neuronal apoptosis. Biochem. J. 319:683–690.

    Google Scholar 

  12. Bartus, R.T. 1997. The calpain hypothesis of neurodegeneration: Evidence for a common cytotoxic pathway. Neuroscientist 3:314–327.

    Google Scholar 

  13. Nath, R., McGinnis, K.J., Nadimpalli, R., Stafford, D., and Wang, K.K.W. 1996. Effects of ICE-like proteases and calpain inhibitors on neuronal apoptosis. Neuroreport 8:249–255.

    Google Scholar 

  14. Nath, R., Raser, K.J., Stafford, D., Hajimohammadreza, I., Posner, A., Allen, H., Talanian, R.V., Nitatori, T., Sato, N., Waguri, S., Karasawa, Y., Araki, H., Shibanai, K., Kominami, E., and Uchiyama, Y. 1995. Delayed neuronal death in the CA1 pyramidal cell layer of the gerbil hippocampus following transient ischemia is apoptosis. J. Neurosci. 15:1001–1011.

    Google Scholar 

  15. Martin, S.J., O'Brien, G.A., Nishioka, W.K., McGahon, A.J., Mahboubi, A., Saido, T.C., and Green, D.R. 1995. Proteolysis of fodrin (non-erythroid spectrin) during apoptosis. J. Biol. Chem. 270:6425–6428.

    Google Scholar 

  16. Squier, M.K.T., Miller, A.C.K., Malkinson, A.M., and Cohen, J.J. 1994. Calpain activation in apoptosis. J. Cell. Physiol. 159:229–237.

    Google Scholar 

  17. Pike, B.R., Zhao, X., Newcomb, J.K., Wang, K.K.W., Posmantur, R.M., and Hayes, R.L. 1998. Temporal relationships between De Novo protein synthesis, calpain and caspase-3 (CPP32) protease activation, and DNA fragmentation during apoptosis in septo-hippocampal cultures. J. Neurosci. Res., In press.

  18. Behrens, M.M., Marinez, J.L., Moratilla, C., and Renart, J. 1995. Apoptosis induced by protein kinase-C inhibition in a neuroblastoma cell line. Cell Growth Diff. 6:1375–1380.

    Google Scholar 

  19. Jordan, J., Galindo, M.F., and Miller, R.J. 1997. Role of interleukin-1 β converting enzyme-like proteases in the β-amyloid-induced death of rat hippocampal neurons in culture. J. Neurochem. 68:1612–1621.

    Google Scholar 

  20. Eldadah, B.A., Yakovlev, A.G., and Faden, A.I. 1997. The role of CED-3-related cysteine proteases in apoptosis of cerebellar granule. J. Neurosci. 17(16):6105–6113.

    Google Scholar 

  21. Fraser, A., and Evan, G. 1996. A license to kill. Cell 85(6):781–4.

    Google Scholar 

  22. Miura, M., Zhu, H., Rotello, R., Hartwieg, E.A., and Yuan, J. 1993. Induction of apoptosis in fibroblasts by IL-1 beta-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced-3. Cell 75(4):653–60.

    Google Scholar 

  23. Zhivotovsky, B., Burgess, D.H., Vanags, D.M., and Orrenius, S. 1997. Involvement of cellular proteolytic machinery in apoptosis. Biochem. Biophys. Res. Comm. 230:481–488.

    Google Scholar 

  24. Cohen, G.M. 1997. Caspases: the executioners of apoptosis. Biochem. J. 326:1–16.

    Google Scholar 

  25. Wang, K.K.W., Posmantur, R.M., M., Nath, R., McGinnis, K., Whitton, M., Talanian, R.V., Glartz, S.B., and Morrow, J.S. 1998. Simultaneous degradation of α II and β-II spectrin by caspase 3 (CPP32) in apoptotic cells. J. Biol. Chem., In press.

  26. Nath, R., Raser, K.J., Stafford, D., Hajimohammadreza, I., Posner, A., Allen, H., Talanian, R.V., Yuen, P., Gilbertsen, R.B., and Wang, K.K. 1996. Non-erythroid alpha-spectrin breakdown by calpain and interleukin 1 beta-converting-enzyme-like protease(s) in apoptotic cells: contributory roles of both protease families in neuronal apoptosis. Biochemical J. 319 (Pt 3):683–90.

    Google Scholar 

  27. Nath, R., Robert, A., Mcginnis, K.M., and Wang, K.K.W. 1998. Evidence for activation of caspase-3-like protease in excitotoxins and hipoxia/hypoglycemia-injured cerebrocortical neurons. J. Neurochem., In press.

  28. Falcieri, E., Marrtelli, A.M., Bareggi, R., Cataldi, A., and Cocco, L. 1993. The protein kinase inhibitor staurosporine induces morphological changes typical of apoptosis in MOLT-4 cells without concomitant DNA fragmentation. Biochem. Biophys. Res. Comm. 193:19–25.

    Google Scholar 

  29. Armstrong, R.C., Aja, T., Xiang, J., Gaur, S., Krebs, J.F., Hoang, K., Bai, X., Korsmeyer, S.J. Karanewsky, D.S., Fritz, L.C., and Tomaselli, K.J. 1996. Fas-induced activation of the cell deathrelated protease CPP32 Is inhibited by Bcl-2 and by ICE family protease inhibitors. J. Biol. Chem. 27(28):16850–5.

    Google Scholar 

  30. Wang, K.K.W., Nath, R., and Raser, K.J. 1996. Hajimohammadreza I. Maitotoxin induces calpain activation in SH-SY5Y neuroblastoma cells and cerebrocortical cultures. Arch. Biochem. Biophys. 331(2):208–14.

    Google Scholar 

  31. Gusovsky, F., and Daly, J.W. 1990. Maitotoxin: a unique pharmacological tool for research on calcium-dependent mechanisms. Biochem. Pharmacol. 39(11):1633–9.

    Google Scholar 

  32. Soergel, D.G., Yasumoto, T., Daly, J.W., and Gusovsky, F. 1992. Maitotoxin effects are blocked by SK&F 96365, an inhibitor of receptor-mediated calcium entry. Mol. Pharmacol. 41:487–493.

    Google Scholar 

  33. Meucci, O., Grimaldi, M., Scorziello, A., Govoni, S., Bergamaschi, S., Yasumoto, T., and Schettini, G. 1992. Maitotoxin-induced intracellular calcium rise in PC12 cells: involvement of dihydropyridine-sensitive and omega-conotoxin-sensitive calcium channels and phosphoinositide breakdown. J. Neurochem. 59:679–688.

    Google Scholar 

  34. Musgrave, I.F., Seifert, R., and Schultz, G. 1994. Maitotoxin activates cation channels distinct from the receptor-activated nonselective cation channels of HL-60 cells. Biochem. J. 301:437–441.

    Google Scholar 

  35. Regan, R.F., Panter, S.S., Witz, A., Tilly, J.L., and Giffard, R.G. 1995. Ultrastructure of excitotoxic neuronal death in murine cortical culture. Brain Res. 705(1–2):188–98.

    Google Scholar 

  36. Roberts-Lewis, J.M., Savage, M.J., Marcy, V.R., Pinsker, L.R., and Siman, R. 1994. Immunolocalization of calpain I-mediated spectrin degradation to vulnerable neurons in the ischemic gerbil brain. J. Neurosci. 14(6):3934–44.

    Google Scholar 

  37. Wang, K.K.W. 1998. An overview of calpain. Bio-reguladores, In press.

  38. Kampfl, A., Zhao, X., Whitson, J.S., Posmantur, R., Dixon, C.E., Yang, K., Clifton, G.L., and Hayes, R.L. 1996. Calpain inhibitors protect against depolarization induced neurofilament protein loss of septo-hippocampal neurons in culture. Eur. J. Neurosci. 8:344–352.

    Google Scholar 

  39. Koh, J., Wie, M.B., Gwag, B.J., Sensi, S.L., Canzoniero, M.T., Demaro, J., Csernansky, C., and Choi, D.W. 1995. Staurosporine-induced neuronal apoptosis. Exp. Neurol. 135:153–159.

    Google Scholar 

  40. Martin, D.P., Schmidt, R.E., DiStefano, P.S., Lowry, O.H., Carter, J.G., and Johnson, E.M. 1988. Inhibitors of protein synthesis and RNA synthesis prevent neuronal death caused by nerve growth factor deprivation. J. Cell. Biol. 106:829–844.

    Google Scholar 

  41. Jones, K.H., and Senft, A.J. 1985. An improved method to determine cell viability by simultaneous staining with fluorescein diacetate-propidium iodide. J. Histochem. Cytochem 33:77–79.

    Google Scholar 

  42. Gong, J., Traganos, F., and Darzynkiewicz, Z. 1994. A selective procedure for DNA extraction from apoptotic cells applicable for gel electrophoresis and flow cytometry. Analyt. Biochem. 218(2):314–319.

    Google Scholar 

  43. Terao, K., Ito, E., Sakamaki, Y., Igarashi, K., Yokoyama, A., and Yasumoto, T. 1998. Histopathological studies of experimental marine toxin poisoning. II. The acute effects of maitotoxin on the stomach, heart and lymphoid tissues in mice and rats. Toxicon 26(4):395–402, 1988.

    Google Scholar 

  44. Oberhammer, F., Fritsch, G., Schmied, M., Pavelka, M., Printz, D., Purchio, T., Lassmann, H., and Schulte-Hermann, R. 1993. Condensation of the chromatin at the membrane of an apoptotic nucleus is not associated with activation of an endonuclease. J. Cell. Science 104:317–326.

    Google Scholar 

  45. Gusovsky, F., Yasumoto, T., and Daly, J.W. 1987. Maitotoxin stimulates phosphoinositide breakdown in neuroblastoma hybrid NCB-20 cells. Cell. Mol. Neurobiol. 7(3):317–22.

    Google Scholar 

  46. Berta, P., Sladeczek, F., Derancourt, J., Durand, M., Travo, P., and Haiech, J. 1986. Maitotoxin stimulates the formation of inositol phosphates in rat aortic myocytes. FEBS Lett. 197(1–2):349–52.

    Google Scholar 

  47. Choi, O.H., Padgett, W.L., Nishizawa, Y., Gusovsky, F., Yasumoto, T., and Daly, J.W. 1990. Maitotoxin: effects on calcium channels, phosphoinositide breakdown, and arachidonate release in pheochromocytoma PC12 cells. Mol. Pharmacol. 37(2):222–30.

    Google Scholar 

  48. Mattson, M.P. 1998. Modification of ion homestasis by lipid peroxidation-roles in neuronal degeneration and adaptive plasticity. TINS 21(2):53–57.

    Google Scholar 

  49. Widdowson, P.S., Gyte, A., Upton, R., Foster, J., Coutts, C.T., and Wyatt, I. 1997. Calpain activation and not oxidative damage mediates L-2-chloropropionic acid-induced cerebellar granule cell necrosis. Tox. Appl. Pharmacol. 142(2):248–55.

    Google Scholar 

  50. Newcomb, J.K., Kampfl, A., Posmantur, R.M., Zhao, X., Pike, B.R., Liu, S.J., Clifton, G.L., and Hayes, R.L. 1997. Immunohistochemical study of calpain-mediated breakdown products to alpha-spectrin following controlled cortical impact injury in the rat. J. Neurotrauma 14(6):369–83.

    Google Scholar 

  51. Vanags, D.M., Porn-Ares, M.I., Coppola, S., Burgess, D.H., and Orrenius, S. 1996. Protease involvement in fodrin cleavage and phosphatidylserine exposure in apoptosis. J. Biol. Chem. 271:31075–31081.

    Google Scholar 

  52. Kluck, R.M., Bossy-Wetzel, E., Green, D.R., and Newmeyer, D.D. 1997. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275:1132–1136.

    Google Scholar 

  53. Kutty, R.K., Singh, Y., Santostasi, and G., Krishna, G. 1989. Maitotoxin-induced liver cell death involving loss of cell ATP following influx of calcium. Tox. Appl. Pharmacol. 101(1):1–10.

    Google Scholar 

  54. Santostasi, G., Kutty, R.K., Bartorelli, A.L., Yasumoto, T., and Krishna, G. 1990. Maitotoxin-induced myocardial cell injury: calcium accumulation followed by ATP depletion precedes cell death. Tox. Appl. Pharmacol. 102(1):164–73.

    Google Scholar 

  55. Jenkins, L.W., Moszynski, K., Lyeth B.G., Lewelt, W., DeWitt, D.S., Allen, A., Dixon, C.E., Povlishock, J.T., Majewski, T.J., Clifton, G.L., Young, H.F., Becker, D.P., and Hayes, R.L. 1989. Increased vulnerability of the mildly traumatized brain to cerebral ischemia: the use of controlled secondary ischemia as a research tool to identify common or different mechanisms contributing to mechanical and ischemic brain injury. Brain Injury 477:211–224.

    Google Scholar 

  56. Lyeth, B.G., Jenkins, L.W., Hamm, R.J., Dixon, C.E., Phillips, L.L., Clifton, G.L., Young, H.F., and Hayes, R.L. 1990. Prolonged memory impairment in the absence of hippocampal cell death following traumatic brain injury in the rat. Brain Res. 526(2):249–58.

    Google Scholar 

  57. Haseldonckx, M., Van Reempts, J., Van de Ven, M., Wouters, L., and Borgers, M. 1997. Protection with lubeluzole against delayed ischemic brain damage in rats. A quantitative histopathologic study. Stroke 28(2):428–32.

    Google Scholar 

  58. Higuchi, T., Graham, S.H., Fernandez, E.J., Rooney, W.D., Gaspary, H.L., Weiner, M.W., and Maudsley, A.A. 1997. Effects of severe global ischemia on N-acetylaspartate and other metabolites in the rat brain. Magnetic Resonance Med. 37(6):851–7.

    Google Scholar 

  59. Kawaguchi, K., Huerbin, M., and Simon, R.P. 1997. Lesioning of deep prepiriform cortex protects against ischemic neuronal necrosis by attenuating extracellular glutamate concentrations. J. Neurochem. 69(1):412–7.

    Google Scholar 

  60. Cortez, S.C., McIntosh, T.K., and Noble, L.J. 1989. Experimental fluid percussion brain injury: vascular disruption and neuronal and glial alterations. Brain Res. 482(2):271–82.

    Google Scholar 

  61. Qian, L., Nagaoka, T., Ohno, K., Tominaga, B., Nariai, T., Hirakawa, K., Kuroiwa, T., Takakuda, K., and Miyairi, H. 1996. Magnetic resonance imaging and pathologic studies on lateral fluid percussion injury as a model of focal brain injury in rats. Bulletin of Tokyo Medical & Dental University 43(3):53–66.

    Google Scholar 

  62. Colicos, M.A., and Dash, P.K. 1996. Apoptotic morphology of dentate gyrus granule cells following experimental cortical impact injury in rats: possible role in spatial memory deficits. Brain Res. 739:120–131.

    Google Scholar 

  63. Fan, L., Young, P.R., Barone, F.C., Feuerstein, G.Z., Smith, D.H., and McIntosh, T.K. 1996. Experimental brain injury induces differential expression of tumor necrosis factor-alpha mRNA in the CNS. Mol. Brain Res. 36(2):287–91.

    Google Scholar 

  64. Honkaniemi, J., Massa, S.M., Breckinridge, M., and Sharp, F.R. 1996. Global ischemia induces apoptosis-associated genes in hippocampus. Mol. Brain Res. 42:79–88.

    Google Scholar 

  65. MacManus, J.P., Buchan, A.M., Hill, I.E., Rasquinha, I., and Preston, E. 1993. Global ischemia can cause DNA fragmentation indicative of apoptosis in rat brain. Neurosci. Lett. 164:89–92.

    Google Scholar 

  66. Nitatori, T., Sato, N., Waguri, S., Karasawa, Y., Araki, H., Shibanai, K., Kominami, E., and Uchiyama, Y. 1995. Delayed neuronal death in the CA1 pyramidal cell layer of the gerbil hippocampus following transient ischemia is apoptosis. J. Neurosci. 15(2):1001–11.

    Google Scholar 

  67. Conti, A.C., Raghupathi, R., Becher, O., Rink, A.D., Trojanowski, J.O., and McIntosh, T.K. 1996. Delayed apoptotic cell death following lateral fluid percussion brain injury in the rat: a long-term study. J. Neurotrauma 13(10):595 [abstract].

    Google Scholar 

  68. Rink, A., Fung, K., Trojanowski, J.Q., Lee, V.M., Neugebauer, E., and McIntosh, T.K. 1995. Evidence of apoptotic cell death after experimental traumatic brain injury in the rat. Am. J. Pathol. 147:1575–1583.

    Google Scholar 

  69. Yakovlev, A.G., Knoblach, S.M., Fan, L., Fox, G.B., Goodnight, R., and Faden, A.I. 1997. Activation of CPP32-like caspases contributes to neuronal apoptosis and neurological dysfunction after traumatic brain injury. J. Neurosci. 17(19):7415–7424.

    Google Scholar 

  70. Rosser, B.G., Powers, S.P., and Gores, G.J. 1993. Calpain activity increases in hepatocytes following addition of ATP. Demonstration by a novel fluorescent approach. J. Biol. Chem. 268(31):23593–600.

    Google Scholar 

  71. Takahashi, M., Ohizumi, Y., and Yasumoto, T. 1982. Maitotoxin, a Ca2+ channel activator candiate. J. Biol. Chem. 257(13):7287–89.

    Google Scholar 

  72. Gottron, F.J., Ying, H.S., and Choi, D.W. 1997. Caspase inhibition selectively reduces the apoptotic component of oxygen-glucose deprivation-induced cortical neuronal cell death. Mol. Cell. Neurosci. 9(3):159–69.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, X., Pike, B., Newcomb, J. et al. Maitotoxin Induces Calpain But Not Caspase-3 Activation and Necrotic Cell Death in Primary Septo-Hippocampal Cultures. Neurochem Res 24, 371–382 (1999). https://doi.org/10.1023/A:1020933616351

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020933616351

Navigation