Elsevier

The Lancet Neurology

Volume 4, Issue 12, December 2005, Pages 877-888
The Lancet Neurology

Personal View
Cerebral hyperperfusion syndrome

https://doi.org/10.1016/S1474-4422(05)70251-9Get rights and content

Summary

Cerebral hyperperfusion syndrome (CHS) after carotid endarterectomy is characterised by ipsilateral headache, hypertension, seizures, and focal neurological deficits. If not treated properly it can result in severe brain oedema, intracerebral or subarachnoid haemorrhage, and death. Knowledge of CHS among physicians is limited. Most studies report incidences of CHS of 0–3% after carotid endarterectomy. CHS is most common in patients with increases of more than 100% in perfusion compared with baseline after carotid endarterectomy and is rare in patients with increases in perfusion less than 100% compared with baseline. The most important risk factors in CHS are diminished cerebrovascular reserve, postoperative hypertension, and hyperperfusion lasting more than several hours after carotid endarterectomy. Impaired autoregulation as a result of endothelial dysfunction mediated by generation of free oxygen radicals is implicated in the pathogenesis of CHS. Treatment strategies are directed towards regulation of blood pressure and limitation of rises in cerebral perfusion. Complete recovery happens in mild cases, but disability and death can occur in more severe cases. More information about CHS and early institution of adequate treatment are of paramount importance in order to prevent these potentially severe complications.

Introduction

Carotid endarterectomy is treatment of choice for symptomatic stenosis of the carotid artery. Reanalysis of data from three large randomised trials on carotid endarterectomy showed that surgery is of some benefit for patients with symptomatic stenosis, and highly beneficial for those with symptomatic stenosis of 70% or more without near occulsion.1 Recently the Asymptomatic Carotid Surgery Trial showed that in asymptomatic patients younger than age 75 years with carotid stenosis of 70% or more, immediate carotid endarterectomy halved the 5 year stroke risk from 12% to 6%. These benefits only exist when the complication rate is kept below 3%.2 Carotid angioplasty with stenting is a promising alternative to carotid endarterectomy,3 but carotid endarterectomy remains the treatment of choice.

Cerebral hyperfusion syndrome (CHS) can occur after carotid endarterectomy or carotid angioplasty with stenting, and is characterised by throbbing ipsilateral frontotemporal or periorbital headache, and sometimes diffuse headache, eye and face pain, vomiting, confusion, macular oedema, and visual disturbances, focal motor seizures with frequent secondary generalisation, focal neurological deficits, and intracerebral or subarachnoid haemorrhage. Although most patients have mild symptoms and signs, progression to severe and life-threatening symptoms can occur if CHS is not recognised and treated adequately. Because CHS is a diagnosis based on several non-specific signs and symptoms, patients may be misdiagnosed as having one of the better-known causes of perioperative complications like thromboembolism. However, knowledge of CHS among physicians is limited.4 In this paper we review research on CHS.

Section snippets

History

Reactive hyperaemia was first described in 1925 during reperfusion after vascular occlusion of limbs,5 overabundant cerebral blood flow relative to metabolic needs was termed “luxury perfusion syndrome”6 in 1966, and in 1978 the “normal-perfusion-pressure-breakthrough” theory7 was published as an explanation for cerebral oedema and haemorrhage after excision of a cerebral arteriovenous malformation. Sundt and colleagues8 described CHS after carotid endarterectomy. CHS has also been described

Epidemiology

There are asymptomatic increases in ipsilateral cerebral blood flow (20–40% over baseline) in most patients immediately after carotid endarterectomy that last for several hours.8, 19, 20 In some patients, severe long-lasting hyperaemia occurs with increases of cerebral blood flow to levels of 100–200% over baseline,8 which is often maximal 3–4 days after surgery, falls to a steady state by the sixth or seventh postoperative day, but can last 1–2 weeks.20, 21, 22 Hyperperfusion (most commonly

Normal cerebral autoregulation

The effects of carbon dioxide and cerebral autoregulation maintain cerebral blood flow at a blood pressure range of 60–160 mm Hg. The effect of carbon dioxide on the cerebral arteries is most pronounced in smaller arteries (diameter 0·5–1·0 mm), whereas arteries with a diameter of 2·5 mm or more (eg, the carotid artery) show no substantial change.52 Cerebral autoregulation has a myogenic and a neurogenic component. In myogenic autoregulation, increased intravascular pressure results in

Pathophysiology of CHS

Three mechanisms may contribute to the pathophysiology of hyperperfusion and CHS. First, impaired autoregulation could mean that increases in cerebral blood flow after carotid endarterectomy are not counteracted by paralysis of cerebral autoregulatory mechanisms.8, 55 That diminished cerebrovascular reactivity or reserve capacity (percentage rise in blood flow velocity in the middle cerebral artery after acetazolamide) can identify patients at risk for hyperperfusion supports this theory.23

Pathology

Cerebral hyperperfusion sufficient to produce breakthrough of autoregulation results in transudation of fluid into the pericapillary astrocytes and interstitium. Permeability increases via pinocytosis (introduction of fluids into the cytoplasm by enclosing them in membranous vesicles at the cell surface), in an attempt to prevent haemorrhage. The resulting oedema is hydrostatic in nature56 and predominant in the vertebrobasilar circulation territory in both CHS and hypertensive encephalopathy,71

Potential risk factors for CHS

Many conditions may be predisposing factors for CHS.4, 8, 23, 24, 25, 27, 29, 33, 34, 37, 38, 39, 40, 44, 46, 47, 60, 72, 74, 75, 76, 77, 78, 79, 80, 81, 82 Whether all the factors mentioned are risk factors for CHS, or simply factors predisposing for atherosclerosis, and therefore commonly present in patients with CHS is questionable (panel 2). Diminished cerebrovascular reserve, postoperative hypertension, and hyperperfusion lasting more than several hours to days after carotid endarterectomy

Imaging and functional techniques in CHS

There are two approaches used to try to identify patients at risk for CHS: preoperative demonstration of cerebral hypoperfusion, or either peroperative or postoperative demonstration of cerebral hyperperfusion. CT, MRI, and transcranial doppler are most widely used, but less commonly used techniques, such as single-photon emission CT and PET can also be useful in the diagnosis of CHS. Routine use of electroencephalography for the purpose of diagnosing hyperperfusion and CHS is not useful (

Prevention of CHS

Timing of surgery, type and dose of anaesthesia, treatment of hypertension, and adequate instructions for patients after hospital discharge. Pretreatment with the free-radical scavenger edaravone could also be considered.66

Work-up of patients with symptoms after carotid endarterectomy

Apart from identifying patients at risk, the work-up of a symptomatic patient after carotid endarterectomy is a challenge. We propose use of an algorithm for the work-up of patients with symptoms suggestive of CHS after carotid endarterectomy (figure 2). Once symptoms after carotid endarterectomy have occurred, differentiation between surgically treatable causes (for example, occlusion of the operated vessel), emboli, low-flow state (ischaemia or infarction), or high-flow state (CHS) is

Therapy

Because blood flow is pressure dependent in patients with CHS, and symptoms can disappear immediately with reduction of the systemic arterial blood pressure, most researchers recommend strict control of blood pressure in CHS. Drugs that have no direct effects on cerebral blood flow, and those that give some degree of cerebral vasoconstriction could be advantageous on theoretical grounds. Many drugs commonly used for treatment of hypertension, such as direct vasodilators (for example,

Prognosis

Prognosis is dependent on the timing and accuracy of diagnosis and treatment. Conclusions on prognosis are derived from a few patients with CHS, all of whom were diagnosed in different postoperative phases and treated differently. Although most patients—perhaps those diagnosed and treated early—seem to recover completely, some studies indicate that nearly 30% of patients with (severe CHS, or those diagnosed late) CHS remain partly disabled,35 and mortality rates of 50% have been reported.25

Conclusions and suggestions

Patients with substantial cerebral hypoperfusion because of carotid stenosis benefit from intervention in the form of carotid endarterectomy, but they also face high risk of complications.

One of these complications is CHS, on which consensus regarding its definition is lacking. To facilitate future uniform investigations the following definition is proposed: headache, neurological deficit, and seizure or haemorrhage after cerebral revascularisation, typically ipsilateral to the treated artery

Search strategy and selection criteria

References for this review were identified using PubMed, with search terms “hyperperfusion, syndrome”, “carotid endarterectomy”, “CHS”, “cerebral blood flow”, and “hypertension”, and analysis of the reference lists of the articles retrieved. Case reports and case series were not discarded in the analysis, but it is obvious that epidemiological data cannot be derived from these publication types. There were no date limitations, and the last search was done in August 2005. Some studies of

References (129)

  • E Sbarigia et al.

    Post-carotid endarterectomy hyperperfusion syndrome: preliminary observations for identifying at risk patients by transcranial Doppler sonography and the acetazolamide test

    Eur J Vasc Surg

    (1993)
  • C Jansen et al.

    Prediction of intracerebral haemorrhage after carotid endarterectomy by clinical criteria and intraoperative transcranial Doppler monitoring: results of 233 operations

    Eur J Vasc Surg

    (1994)
  • JE Dalman et al.

    Transcranial Doppler monitoring during carotid endarterectomy helps to identify patients at risk of postoperative hyperperfusion

    Eur J Vasc Endovasc Surg

    (1999)
  • VG Dunne et al.

    Transcranial Doppler in carotid endarterectomy

    J Clin Neurosci

    (2001)
  • JD Beard et al.

    Prevention of postoperative wound haematomas and hyperperfusion following carotid endarterectomy

    Eur J Vasc Endovasc Surg

    (2001)
  • MY Nielsen et al.

    The haemodynamic effect of carotid endarterectomy

    Eur J Vasc Endovasc Surg

    (2002)
  • E Ascher et al.

    Cerebral hyperperfusion syndrome after carotid endarterectomy: predictive factors and hemodynamic changes

    J Vasc Surg

    (2003)
  • T Yoshimoto et al.

    Evaluation of carotid distal pressure for prevention of hyperperfusion after carotid endarterectomy

    Surg Neurol

    (2005)
  • WH Wagner et al.

    Hyperperfusion syndrome after carotid endarterectomy

    Ann Vasc Surg

    (2005)
  • CV Soong et al.

    The generation of byproducts of lipid peroxidation following carotid endarterectomy

    Eur J Vasc Endovasc Surg

    (1996)
  • MV Baptista et al.

    Conflicting images

    Lancet

    (1998)
  • GA Mansoor et al.

    Intracerebral hemorrhage after carotid endarterectomy associated with ipsilateral fibrinoid necrosis: a consequence of the hyperperfusion syndrome?

    J Vasc Surg

    (1996)
  • GJ de Borst et al.

    Stroke from carotid endarterectomy: when and how to reduce perioperative stroke rate?

    Eur J Vasc Endovasc Surg

    (2001)
  • M Hirschl et al.

    Blood pressure responses after carotid surgery: relationship to postoperative baroreceptor sensitivity

    Am J Med

    (1993)
  • FB Pomposelli et al.

    Intracranial hemorrhage after carotid endarterectomy

    J Vasc Surg

    (1988)
  • T Schroeder et al.

    Intracerebral haemorrhage after carotid endarterectomy

    Eur J Vasc Surg

    (1987)
  • DA Russell et al.

    Intracerebral haemorrhage following carotid endarterectomy

    Eur J Vasc Endovasc Surg

    (2004)
  • C Jansen et al.

    Prediction of intracerebral haemorrhage after carotid endarterectomy by clinical criteria and intraoperative transcranial Doppler monitoring

    Eur J Vasc Surg

    (1994)
  • L Orosz et al.

    Assessment of cerebrovascular reserve capacity in asymptomatic and symptomatic hemodynamically significant carotid stenoses and occlusions

    Surg Neurol

    (2002)
  • JA Pinkerton

    EEG as a criterion for shunt need in carotid endarterectomy

    Ann Vasc Surg

    (2002)
  • A Halliday et al.

    Prevention of disabling and fatal strokes by successful carotid endarterectomy in patients without recent neurological symptoms: randomised controlled trial

    Lancet

    (2004)
  • JS Yadav et al.

    Protected carotid-artery stenting versus endarterectomy in high-risk patients

    N Engl J Med

    (2004)
  • T Lewis et al.

    Observations upon reactive hyperaemia in man

    Heart

    (1925)
  • RF Spetzler et al.

    Normal perfusion pressure breakthrough theory

    Clin Neurosurg

    (1978)
  • TM Sundt et al.

    Correlation of cerebral blood flow and electroencephalographic changes during carotid endarterectomy: with results of surgery and hemodynamics of cerebral ischemia

    Mayo Clin Proc

    (1981)
  • KR Mandalam et al.

    Hyperperfusion syndrome following balloon angioplasty and bypass surgery of aortic arch vessels: a report of 3 cases

    Cardiovasc Intervent Radiol

    (1992)
  • RC Heros et al.

    Temporary neurological deterioration after extracranial-intracranial bypass

    Neurosurgery

    (1984)
  • DJ McCabe et al.

    Fatal cerebral reperfusion hemorrhage after carotid stenting

    Stroke

    (1999)
  • BG Schoser et al.

    Cerebral hyperperfusion injury after percutaneous transluminal angioplasty of extracranial arteries

    J Neurol

    (1997)
  • AY Liu et al.

    Hyperperfusion syndrome with hemorrhage after angioplasty for middle cerebral artery stenosis

    AJNR Am J Neuroradiol

    (2001)
  • WL Young et al.

    133Xe blood flow monitoring during arteriovenous malformation resection: a case of intraoperative hyperperfusion with subsequent brain swelling

    Neurosurgery

    (1988)
  • H Murakami et al.

    Ipsilateral hyperperfusion after neck clipping of a giant internal carotid artery aneurysm: case report

    J Neurosurg

    (2002)
  • T Schroeder et al.

    Cerebral hyperperfusion following carotid endarterectomy

    J Neurosurg

    (1987)
  • AR Naylor et al.

    Factors influencing the hyperaemic response after carotid endarterectomy

    Br J Surg

    (1993)
  • K Ogasawara et al.

    Prediction and monitoring of cerebral hyperperfusion after carotid endarterectomy by using single-photon emission computerized tomography scanning

    J Neurosurg

    (2003)
  • DG Piepgras et al.

    Intracerebral hemorrhage after carotid endarterectomy

    J Neurosurg

    (1988)
  • C Jansen et al.

    Carotid endarterectomy with transcranial Doppler and electroencephalographic monitoring: a prospective study in 130 operations

    Stroke

    (1993)
  • BR Chambers et al.

    Hyperperfusion post-endarterectomy

    Cerebrovasc Dis

    (1994)
  • JC Breen et al.

    Brain edema after carotid surgery

    Neurology

    (1996)
  • MP Spencer

    Transcranial Doppler monitoring and causes of stroke from carotid endarterectomy

    Stroke

    (1997)
  • Cited by (0)

    View full text