Skip to main content

Advertisement

Log in

Mechanisms of Hydrocephalus After Neonatal and Adult Intraventricular Hemorrhage

  • Review Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Intraventricular hemorrhage (IVH) is a cause of significant morbidity and mortality and is an independent predictor of a worse outcome in intracerebral hemorrhage (ICH) and germinal matrix hemorrhage (GMH). IVH may result in both injuries to the brain as well as hydrocephalus. This paper reviews evidence on the mechanisms and potential treatments for IVH-induced hydrocephalus. One frequently cited theory to explain hydrocephalus after IVH involves obliteration of the arachnoid villi by microthrombi with subsequent inflammation and fibrosis causing CSF outflow obstruction. Although there is some evidence to support this theory, there may be other mechanisms involved, which contribute to the development of hydrocephalus. It is also unclear whether the causes of acute and chronic hydrocephalus after hemorrhage occur via different mechanisms: mechanical obstruction by blood in the former and inflammation and fibrosis in the latter. Management of IVH and strategies for prevention of brain injury and hydrocephalus are areas requiring further study. A better understanding of the pathogenesis of hydrocephalus after IVH may lead to improved strategies to prevent and treat post-hemorrhagic hydrocephalus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bassan H. Intracranial hemorrhage in the preterm infant: understanding it, preventing it. Clin Perinatol. 2009;36:737–62.

    Article  PubMed  Google Scholar 

  2. Murphy BP, Inder TE, Rooks V, Taylor GA, Anderson NJ, Mogridge N, Horwood LJ, Volpe JJ. Posthaemorrhagic ventricular dilatation in the premature infant: natural history and predictors of outcome. Arch Dis Child Fetal Neonatal Ed. 2002;87:F37–41.

    Article  PubMed  CAS  Google Scholar 

  3. Bhattathiri PS, Gregson B, Prasad KSM, Mendelow AD. STICH Investigators. Intraventricular hemorrhage and hydrocephalus after spontaneous intracerebral hemorrhage: results from the STICH trial. Acta Neurochir Suppl. 2006;96:65–8.

    Article  PubMed  CAS  Google Scholar 

  4. Hwang BY, Bruce SS, Appelboom G, Piazza MA, Carpenter AM, Gigante PR, Kellner CP, Ducruet AF, Kellner MA, Deb-Sen R, Vaughan KA, Meyers PM, Connolly ES. Evaluation of intraventricular hemorrhage assessment methods for predicting outcome following intracerebral hemorrhage. J Neurosurg. 2012;116:185–92.

    Article  PubMed  Google Scholar 

  5. Woo D, Broderick JP. Spontaneous intracerebral hemorrhage: epidemiology and clinical presentation. Neurosurg Clin N Am. 2002;13:265.

    Article  PubMed  Google Scholar 

  6. Zahuranec DB, Gonzales NR, Brown DL, Lisabeth LD, Longwell PJ, Eden SV, Smith MA, Garcia NM, Hoff JT, Morgenstern LB. Presentation of intracerebral haemorrhage in a community. J Neurol Neurosurg Psychiatr. 2006;77:340–4.

    Article  PubMed  CAS  Google Scholar 

  7. Hallevi H, Albright KC, Aronowski J, Barreto AD, Martin-Schild S, Khaja AM, Gonzales NR, Illoh K, Noser EA, Grotta JC. Intraventricular hemorrhage: anatomic relationships and clinical implications. Neurology. 2008;70:848–52.

    Article  PubMed  CAS  Google Scholar 

  8. Diringer MN, Edwards DF, Zazulia AR. Hydrocephalus: a previously unrecognized predictor of poor outcome from supratentorial intracerebral hemorrhage. Stroke. 1998;29:1352–7.

    Article  PubMed  CAS  Google Scholar 

  9. Tuhrim S, Horowitz DR, Sacher M, Godbold JH. Volume of ventricular blood is an important determinant of outcome in supratentorial intracerebral hemorrhage. Crit Care Med. 1999;27:617.

    Article  PubMed  CAS  Google Scholar 

  10. Staykov D, Bardutzky J, Huttner HB, Schwab S. Intraventricular fibrinolysis for intracerebral hemorrhage with severe ventricular involvement. Neurocrit Care. 2011;15:194–209.

    Article  PubMed  Google Scholar 

  11. Gould SJ, Howard S. Glial differentiation in the germinal layer of fetal and preterm infant brain: an immunocytochemical study. Pediatr Pathol. 1988;8:25–36.

    Article  PubMed  CAS  Google Scholar 

  12. Ballabh P, Braun A, Nedergaard M. The blood–brain barrier: an overview. Neurobiol Dis. 2004;16:1–13.

    Article  PubMed  CAS  Google Scholar 

  13. Braun A, Xu H, Hu F, Kocherlakota P, Siegel D, Chander P, Ungvari Z, Csiszar A, Nedergaard M, Ballabh P. Paucity of pericytes in germinal matrix vasculature of premature infants. J Neurosci. 2007;27:12012–24.

    Article  PubMed  CAS  Google Scholar 

  14. Ballabh P. Intraventricular hemorrhage in premature infants: mechanism of disease. Pediatr Res. 2010;67:1–8.

    Article  PubMed  Google Scholar 

  15. Whitelaw A. Intraventricular haemorrhage and posthaemorrhagic hydrocephalus: pathogenesis, prevention and future interventions. Semin Neonatol. 2001;6:135–46.

    Article  PubMed  CAS  Google Scholar 

  16. Steiner T, Diringer MN, Schneider D, Mayer SA, Begtrup K, Broderick J, Skolnick BE, Davis SM. Dynamics of intraventricular hemorrhage in patients with spontaneous intracerebral hemorrhage: risk factors, clinical impact, and effect of hemostatic therapy with recombinant activated factor VII. Neurosurgery. 2006;59:767–73. discussion 773–4.

    Article  PubMed  Google Scholar 

  17. Papile LA, Burstein J, Burstein R, Koffler H. Incidence and evolution of subependymal and intraventricular hemorrhage: a study of infants with birth weights less than 1,500 gm. J Pediatr. 1978;92:529–34.

    Article  PubMed  CAS  Google Scholar 

  18. Whitelaw A, Aquilina K. Management of posthaemorrhagic ventricular dilatation. Arch. Dis. Child. Fetal Neonatal Ed. 2011

  19. Hallevi H, Dar NS, Barreto AD, Morales MM, Martin-Schild S, Abraham AT, Walker KC, Gonzales NR, Illoh K, Grotta JC, Savitz SI. The IVH score: a novel tool for estimating intraventricular hemorrhage volume: clinical and research implications. Crit Care Med. 2009;37:969–74. e1.

    Article  PubMed  Google Scholar 

  20. Graeb DA, Robertson WD, Lapointe JS, Nugent RA, Harrison PB. Computed tomographic diagnosis of intraventricular hemorrhage. Etiology and prognosis. Radiology. 1982;143:91–6.

    PubMed  CAS  Google Scholar 

  21. LeRoux PD, Haglund MM, Newell DW, Grady MS, Winn HR. Intraventricular hemorrhage in blunt head trauma: an analysis of 43 cases. Neurosurgery. 1992;31:678–84. discussion 684–5.

    Article  PubMed  CAS  Google Scholar 

  22. Xue M, Balasubramaniam J, Buist RJ, Peeling J, Del Bigio MR. Periventricular/intraventricular hemorrhage in neonatal mouse cerebrum. J Neuropathol Exp Neurol. 2003;62:1154–65.

    PubMed  Google Scholar 

  23. Del Bigio MR. Cell proliferation in human ganglionic eminence and suppression after prematurity-associated haemorrhage. Brain. 2011;134:1344–61.

    Article  PubMed  Google Scholar 

  24. Hallevi H, Walker KC, Kasam M, Bornstein N, Grotta JC, Savitz SI. Inflammatory response to intraventricular hemorrhage: time course, magnitude and effect of t-PA. J. Neurol. Sci. 2011

  25. Del Bigio MR. Pathophysiologic consequences of hydrocephalus. Neurosurg Clin N Am. 2001;12:639–49. vii.

    PubMed  Google Scholar 

  26. Whitelaw A. Posthaemorrhagic ventricular dilatation. Arch Dis Child Fetal Neonatal Ed. 2002;86:72F–4F.

    Article  Google Scholar 

  27. Balasubramaniam J, Del Bigio MR. Animal models of germinal matrix hemorrhage. J Child Neurol. 2006;21:365–71.

    PubMed  Google Scholar 

  28. Cherian SS, Love S, Silver IA, Porter HJ, Whitelaw AGL, Thoresen M. Posthemorrhagic ventricular dilation in the neonate: development and characterization of a rat model. J Neuropathol Exp Neurol. 2003;62:292–303.

    PubMed  Google Scholar 

  29. Balasubramaniam J, Xue M, Buist RJ, Ivanco TL, Natuik S, Del Bigio MR. Persistent motor deficit following infusion of autologous blood into the periventricular region of neonatal rats. Exp Neurol. 2006;197:122–32.

    Article  PubMed  Google Scholar 

  30. Lekic T, Manaenko A, Rolland W, Tang J, Zhang JH. A novel preclinical model of germinal matrix hemorrhage using neonatal rats. Acta Neurochir Suppl. 2011;111:55–60.

    Article  PubMed  Google Scholar 

  31. Alles YCJ, Greggio S, Alles RM, Azevedo PN, Xavier LL, DaCosta JC. A novel preclinical rodent model of collagenase-induced germinal matrix/intraventricular hemorrhage. Brain Res. 2010;1356:130–8.

    Article  PubMed  CAS  Google Scholar 

  32. Lorenzo AV, Welch K, Conner S. Spontaneous germinal matrix and intraventricular hemorrhage in prematurely born rabbits. J Neurosurg. 1982;56:404–10.

    Article  PubMed  CAS  Google Scholar 

  33. Chua CO, Chahboune H, Braun A, Dummula K, Chua CE, Yu J, Ungvari Z, Sherbany AA, Hyder F, Ballabh P. Consequences of intraventricular hemorrhage in a rabbit pup model. Stroke. 2009;40:3369–77.

    Article  PubMed  Google Scholar 

  34. Georgiadis P, Xu H, Chua C, Hu F, Collins L, Huynh C, Lagamma EF, Ballabh P. Characterization of acute brain injuries and neurobehavioral profiles in a rabbit model of germinal matrix hemorrhage. Stroke. 2008;39:3378–88.

    Article  PubMed  CAS  Google Scholar 

  35. Aquilina K, Hobbs C, Cherian S, Tucker A, Porter H, Whitelaw A, Thoresen M. A neonatal piglet model of intraventricular hemorrhage and posthemorrhagic ventricular dilation. J Neurosurg. 2007;107:126–36.

    PubMed  Google Scholar 

  36. Oi S, Di Rocco C. Proposal of “evolution theory in cerebrospinal fluid dynamics” and minor pathway hydrocephalus in developing immature brain. Childs Nerv Syst. 2006;22:662–9.

    Article  PubMed  Google Scholar 

  37. Dandy WE, Blackfan KD. An experimental and clinical study of internal hydrocephalus. JAMA. 1913;61:2216–7.

    Article  Google Scholar 

  38. Krishnamurthy S, Li J, Schultz L, McAllister JP. Intraventricular infusion of hyperosmolar dextran induces hydrocephalus: a novel animal model of hydrocephalus. Cerebrospinal Fluid Res. 2009;6:16.

    Article  PubMed  CAS  Google Scholar 

  39. Zhang J, Williams MA, Rigamonti D. Genetics of human hydrocephalus. J Neurol. 2006;253:1255–66.

    Article  PubMed  CAS  Google Scholar 

  40. Galbreath E, Kim SJ, Park K, Brenner M, Messing A. Overexpression of TGF-beta 1 in the central nervous system of transgenic mice results in hydrocephalus. J Neuropathol Exp Neurol. 1995;54:339–49.

    Article  PubMed  CAS  Google Scholar 

  41. McAllister JP II. Experimental hydrocephalus. In: Winn HR, editor. Youmans neurological surgery, 6th edition. Elsevier; 2011.

  42. Chen Z, Gao C, Hua Y, Keep RF, Muraszko K, Xi G. Role of iron in brain injury after intraventricular hemorrhage. Stroke. 2011;42:465–70.

    Article  PubMed  CAS  Google Scholar 

  43. Lodhia KR, Shakui P, Keep RF. Hydrocephalus in a rat model of intraventricular hemorrhage. Acta Neurochir Suppl. 2006;96:207–11.

    Article  PubMed  CAS  Google Scholar 

  44. Pang D, Sclabassi RJ, Horton JA. Lysis of intraventricular blood clot with urokinase in a canine model: part 3. Effects of intraventricular urokinase on clot lysis and posthemorrhagic hydrocephalus. Neurosurgery. 1986;19:553–72.

    Article  PubMed  CAS  Google Scholar 

  45. Mayfrank L, Kissler J, Raoofi R, Delsing P, Weis J, Küker W, Gilsbach JM. Ventricular dilatation in experimental intraventricular hemorrhage in pigs. Characterization of cerebrospinal fluid dynamics and the effects of fibrinolytic treatment. Stroke. 1997;28:141–8.

    Article  PubMed  CAS  Google Scholar 

  46. Adeoye O, Clark JF, Khatri P, Wagner KR, Zuccarello M, Pyne-Geithman GJ. Do current animal models of intracerebral hemorrhage mirror the human pathology? Transl Stroke Res. 2011;2:17–25.

    Article  Google Scholar 

  47. Xue M, Del Bigio MR. Injections of blood, thrombin, and plasminogen more severely damage neonatal mouse brain than mature mouse brain. Brain Pathol. 2005;15:273–80.

    Article  PubMed  CAS  Google Scholar 

  48. Larroche JC. Post-haemorrhagic hydrocephalus in infancy. Anatomical study. Biol Neonate. 1972;20:287–99.

    Article  PubMed  CAS  Google Scholar 

  49. Hill A, Shackelford GD, Volpe JJ. A potential mechanism of pathogenesis for early posthemorrhagic hydrocephalus in the premature newborn. Pediatrics. 1984;73:19–21.

    PubMed  CAS  Google Scholar 

  50. Weed LH. Meninges and cerebrospinal fluid. J Anat. 1938;72:181–215.

    Article  PubMed  CAS  Google Scholar 

  51. Mann JD, Butler AB, Rosenthal JE, Maffeo CJ, Johnson RN, Bass NH. Regulation of intracranial pressure in rat, dog, and man. Ann Neurol. 1978;3:156–65.

    Article  PubMed  CAS  Google Scholar 

  52. Dandy WE. Experimental hydrocephalus. Ann Surg. 1919;70:129–42.

    Article  PubMed  CAS  Google Scholar 

  53. Massicotte EM, Del Bigio MR. Human arachnoid villi response to subarachnoid hemorrhage: possible relationship to chronic hydrocephalus. J Neurosurg. 1999;91:80–4.

    Article  PubMed  CAS  Google Scholar 

  54. Greitz D. Radiological assessment of hydrocephalus: new theories and implications for therapy. Neurosurg Rev. 2004;27:145–65. discussion 166–7.

    PubMed  Google Scholar 

  55. Torvik A, Bhatia R, Murthy VS. Transitory block of the arachnoid granulations following subarachnoid haemorrhage. A postmortem study. Acta Neurochir (Wien). 1978;41:137–46.

    Article  CAS  Google Scholar 

  56. Upton ML, Weller RO. The morphology of cerebrospinal fluid drainage pathways in human arachnoid granulations. J Neurosurg. 1985;63:867–75.

    Article  PubMed  CAS  Google Scholar 

  57. Naff N, Williams MA, Keyl PM, Tuhrim S, Bullock MR, Mayer SA, Coplin W, Narayan R, Haines S, Cruz-Flores S, Zuccarello M, Brock D, Awad I, Ziai WC, Marmarou A, Rhoney D, McBee N, Lane K, Hanley DF. Low-dose recombinant tissue-type plasminogen activator enhances clot resolution in brain hemorrhage: the intraventricular hemorrhage thrombolysis trial. Stroke. 2011;42:3009–16.

    Article  PubMed  CAS  Google Scholar 

  58. Whitelaw A, Mowinckel MC, Abildgaard U. Low levels of plasminogen in cerebrospinal fluid after intraventricular haemorrhage: a limiting factor for clot lysis? Acta Paediatr. 1995;84:933–6.

    Article  PubMed  CAS  Google Scholar 

  59. Hansen A, Whitelaw A, Lapp C, Brugnara C. Cerebrospinal fluid plasminogen activator inhibitor-1: a prognostic factor in posthaemorrhagic hydrocephalus. Acta Paediatr. 1997;86:995–8.

    Article  PubMed  CAS  Google Scholar 

  60. Gomez DG, Ehrmann JE. Gordon Potts D, Pavese AM, Gilanian A. The arachnoid granulations of the newborn human: an ultrastructural study. Int J Dev Neurosci. 1983;1:139–47.

    Article  Google Scholar 

  61. Papaiconomou C, Bozanovic-Sosic R, Zakharov A, Johnston M. Does neonatal cerebrospinal fluid absorption occur via arachnoid projections or extracranial lymphatics? Am J Physiol Regul Integr Comp Physiol. 2002;283:R869–76.

    PubMed  CAS  Google Scholar 

  62. Rammling M, Madan M, Paul L, Behnam B, Pattisapu JV. Evidence for reduced lymphatic CSF absorption in the H-Tx rat hydrocephalus model. Cerebrospinal Fluid Res. 2008;5:15.

    Article  PubMed  CAS  Google Scholar 

  63. Edsbagge M, Tisell M, Jacobsson L, Wikkelso C. Spinal CSF absorption in healthy individuals. Am J Physiol Regul Integr Comp Physiol. 2004;287:R1450–5.

    Article  PubMed  CAS  Google Scholar 

  64. Bozanovic-Sosic R, Mollanji R, Johnston MG. Spinal and cranial contributions to total cerebrospinal fluid transport. Am J Physiol Regul Integr Comp Physiol. 2001;281:R909–16.

    PubMed  CAS  Google Scholar 

  65. Boulton M, Armstrong D, Flessner M, Hay J, Szalai JP, Johnston M. Raised intracranial pressure increases CSF drainage through arachnoid villi and extracranial lymphatics. Am J Physiol. 1998;275:R889–96.

    PubMed  CAS  Google Scholar 

  66. Boulton M, Flessner M, Armstrong D, Mohamed R, Hay J, Johnston M. Contribution of extracranial lymphatics and arachnoid villi to the clearance of a CSF tracer in the rat. Am J Physiol. 1999;276:R818–23.

    PubMed  CAS  Google Scholar 

  67. Kelkenberg U, von Rautenfeld DB, Brinker T, Hans VH. Chicken arachnoid granulations: a new model for cerebrospinal fluid absorption in man. Neuroreport. 2001;12:553–7.

    Article  PubMed  CAS  Google Scholar 

  68. Glimcher SA, Holman DW, Lubow M, Grzybowski DM. Ex vivo model of cerebrospinal fluid outflow across human arachnoid granulations. Invest Ophthalmol Vis Sci. 2008;49:4721–8.

    Article  PubMed  Google Scholar 

  69. Greitz D. The hydrodynamic hypothesis versus the bulk flow hypothesis. Neurosurg Rev. 2004;27:299–300.

    PubMed  Google Scholar 

  70. Greitz D. Paradigm shift in hydrocephalus research in legacy of Dandy's pioneering work: rationale for third ventriculostomy in communicating hydrocephalus. Childs Nerv Syst. 2007;23:487–9.

    Article  PubMed  Google Scholar 

  71. Egnor M, Zheng L, Rosiello A, Gutman F, Davis R. A model of pulsations in communicating hydrocephalus. Pediatr Neurosurg. 2002;36:281–303.

    Article  PubMed  Google Scholar 

  72. Fukumizu M, Takashima S, Becker LE. Neonatal posthemorrhagic hydrocephalus: neuropathologic and immunohistochemical studies. Pediatr Neurol. 1995;13:230–4.

    Article  PubMed  CAS  Google Scholar 

  73. Sarnat HB. Ependymal reactions to injury. A review. J Neuropathol Exp Neurol. 1995;54:1–15.

    Article  PubMed  CAS  Google Scholar 

  74. Del Bigio MR. Ependymal cells: biology and pathology. Acta Neuropathol. 2010;119:55–73.

    Article  PubMed  Google Scholar 

  75. Ihrie RA, Alvarez-Buylla A. Lake-front property: a unique germinal niche by the lateral ventricles of the adult brain. Neuron. 2011;70:674–86.

    Article  PubMed  CAS  Google Scholar 

  76. Sawamoto K. New neurons follow the flow of cerebrospinal fluid in the adult brain. Science. 2006;311:629–32.

    Article  PubMed  CAS  Google Scholar 

  77. Mirzadeh Z, Han Y-G, Soriano-Navarro M, García-Verdugo JM, Alvarez-Buylla A. Cilia organize ependymal planar polarity. J Neurosci. 2010;30:2600–10.

    Article  PubMed  CAS  Google Scholar 

  78. Banizs B, Pike MM, Millican CL, Ferguson WB, Komlosi P, Sheetz J, Bell PD, Schwiebert EM, Yoder BK. Dysfunctional cilia lead to altered ependyma and choroid plexus function, and result in the formation of hydrocephalus. Development. 2005;132:5329–39.

    Article  PubMed  CAS  Google Scholar 

  79. Han Y-G, Alvarez-Buylla A. Role of primary cilia in brain development and cancer. Curr Opin Neurobiol. 2010;20:58–67.

    Article  PubMed  CAS  Google Scholar 

  80. Nguyen T, Chin WC, O'Brien JA, Verdugo P, Berger AJ. Intracellular pathways regulating ciliary beating of rat brain ependymal cells. J Physiol (Lond). 2001;531:131–40.

    Article  CAS  Google Scholar 

  81. Spassky N. Adult ependymal cells are postmitotic and are derived from radial glial cells during embryogenesis. J Neurosci. 2005;25:10–8.

    Article  PubMed  CAS  Google Scholar 

  82. Greenstone MA, Jones RW, Dewar A, Neville BG, Cole PJ. Hydrocephalus and primary ciliary dyskinesia. Arch Dis Child. 1984;59:481–2.

    Article  PubMed  CAS  Google Scholar 

  83. De Santi MM, Magni A, Valletta EA, Gardi C, Lungarella G. Hydrocephalus, bronchiectasis, and ciliary aplasia. Arch Dis Child. 1990;65:543–4.

    Article  PubMed  Google Scholar 

  84. Ibanez-Tallon I. Dysfunction of axonemal dynein heavy chain Mdnah5 inhibits ependymal flow and reveals a novel mechanism for hydrocephalus formation. Hum Mol Genet. 2004;13:2133–41.

    Article  PubMed  CAS  Google Scholar 

  85. Krueger RC, Wu H, Zandian M, Danielpour M, Kabos P, Yu JS, Sun YE. Neural progenitors populate the cerebrospinal fluid of preterm patients with hydrocephalus. J Pediatr. 2006;148:337–40.

    Article  PubMed  Google Scholar 

  86. Ohtoshi A. Hydrocephalus caused by conditional ablation of the Pten or beta-catenin gene. Cerebrospinal Fluid Res. 2008;5:16.

    Article  PubMed  CAS  Google Scholar 

  87. Dummula K, Vinukonda G, Chu P, Xing Y, Hu F, Mailk S, Csiszar A, Chua C, Mouton P, Kayton RJ, Brumberg JC, Bansal R, Ballabh P. Bone morphogenetic protein inhibition promotes neurological recovery after intraventricular hemorrhage. J Neurosci. 2011;31:12068–82.

    Article  PubMed  CAS  Google Scholar 

  88. Sarnat HB. Role of human fetal ependyma. Pediatr Neurol. 1992;8:163–78.

    Article  PubMed  CAS  Google Scholar 

  89. Simard PF, Tosun C, Melnichenko L, Ivanova S, Gerzanich V, Simard JM. Inflammation of the choroid plexus and ependymal layer of the ventricle following intraventricular hemorrhage. Transl Stroke Res. 2011;2:227–31.

    Article  PubMed  Google Scholar 

  90. Simard JM, Geng Z, Woo SK, Ivanova S, Tosun C, Melnichenko L, Gerzanich V. Glibenclamide reduces inflammation, vasogenic edema, and caspase-3 activation after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2009;29:317–30.

    Article  PubMed  CAS  Google Scholar 

  91. Whitelaw A, Rosengren L, Blennow M. Brain specific proteins in posthaemorrhagic ventricular dilatation. Arch Dis Child Fetal Neonatal Ed. 2001;84:F90–1.

    Article  PubMed  CAS  Google Scholar 

  92. Venero JL, Vizuete ML, Machado A, Cano J. Aquaporins in the central nervous system. Prog Neurobiol. 2001;63:321–36.

    Article  PubMed  CAS  Google Scholar 

  93. Brian OK, Tom P, Wang D. Aquaporins: relevance to cerebrospinal fluid physiology and therapeutic potential in hydrocephalus. 2010;1–12.

  94. Owler BK, Pitham T, Wang D. Aquaporins: relevance to cerebrospinal fluid physiology and therapeutic potential in hydrocephalus. Cerebrospinal Fluid Res. 2010;7:15.

    Article  PubMed  Google Scholar 

  95. Papadopoulos MC, Manley GT, Krishna S, Verkman AS. Aquaporin-4 facilitates reabsorption of excess fluid in vasogenic brain edema. FASEB J. 2004;18:1291–3.

    PubMed  CAS  Google Scholar 

  96. Tang Y, Wu P, Su J, Xiang J, Cai D, Dong Q. Effects of aquaporin-4 on edema formation following intracerebral hemorrhage. Exp Neurol. 2010;223:485–95.

    Article  PubMed  CAS  Google Scholar 

  97. Mao X, Enno TL, Del Bigio MR. Aquaporin 4 changes in rat brain with severe hydrocephalus. Eur J Neurosci. 2006;23:2929–36.

    Article  PubMed  Google Scholar 

  98. Feng X, Papadopoulos MC, Liu J, Li L, Zhang D, Zhang H, Verkman AS, Ma T. Sporadic obstructive hydrocephalus in Aqp4 null mice. J Neurosci Res. 2009;87:1150–5.

    Article  PubMed  CAS  Google Scholar 

  99. Bloch O, Auguste KI, Manley GT, Verkman AS. Accelerated progression of kaolin-induced hydrocephalus in aquaporin-4-deficient mice. J Cereb Blood Flow Metab. 2006;26:1527–37.

    Article  PubMed  CAS  Google Scholar 

  100. Skjolding AD, Rowland IJ, Søgaard LV, Praetorius J, Penkowa M, Juhler M. Hydrocephalus induces dynamic spatiotemporal regulation of aquaporin-4 expression in the rat brain. Cerebrospinal Fluid Res. 2010;7:20.

    Article  PubMed  CAS  Google Scholar 

  101. Hiroaki Y, Tani K, Kamegawa A, Gyobu N, Nishikawa K, Suzuki H, Walz T, Sasaki S, Mitsuoka K, Kimura K, Mizoguchi A, Fujiyoshi Y. Implications of the aquaporin-4 structure on array formation and cell adhesion. J Mol Biol. 2006;355:628–39.

    Article  PubMed  CAS  Google Scholar 

  102. Li X, Kong H, Wu W, Xiao M, Sun X, Hu G. Aquaporin-4 maintains ependymal integrity in adult mice. Neuroscience. 2009;162:67–77.

    Article  PubMed  CAS  Google Scholar 

  103. Zhou J, Kong H, Hua X, Xiao M, Ding J, Hu G. Altered blood–brain barrier integrity in adult aquaporin-4 knockout mice. Neuroreport. 2008;19:1–5.

    Article  PubMed  Google Scholar 

  104. Kalani MYS, Filippidis AS, Rekate HL. Hydrocephalus and aquaporins: the role of aquaporin-1. Acta Neurochir Suppl. 2012;113:51–4.

    Article  PubMed  CAS  Google Scholar 

  105. Oshio K, Watanabe H, Song Y, Verkman AS, Manley GT. Reduced cerebrospinal fluid production and intracranial pressure in mice lacking choroid plexus water channel aquaporin-1. FASEB J. 2005;19:76–8.

    PubMed  CAS  Google Scholar 

  106. Paul L, Madan M, Rammling M, Chigurupati S, Chan SL, Pattisapu JV. Expression of aquaporin 1 and 4 in a congenital hydrocephalus rat model. Neurosurgery. 2011;68:462–73.

    Article  PubMed  Google Scholar 

  107. Carlo WA, McDonald SA, Tyson JE, Stoll BJ, Ehrenkranz RA, Shankaran S, Goldberg RN, Das A, Schendel D, Thorsen P, Skogstrand K, Hougaard DM, Oh W, Laptook AR, Duara S, Fanaroff AA, Donovan EF, Korones SB, Stevenson DK, Papile L-A, Finer NN, O'Shea TM, Poindexter BB, Wright LL, Ambalavanan N, Higgins RD. Cytokines and neurodevelopmental outcomes in extremely low birth weight infants. J Pediatr. 2011;159:919–925.e3.

    Article  PubMed  CAS  Google Scholar 

  108. Cherian S, Whitelaw A, Thoresen M, Love S. The pathogenesis of neonatal post-hemorrhagic hydrocephalus. Brain Pathol. 2006;14:305–11.

    Article  Google Scholar 

  109. Tada T, Kanaji M, Shigeaki K. Induction of communicating hydrocephalus in mice by intrathecal injection of human recombinant transforming growth factor-β1. J Neuroimmunol. 1994;50:153–8.

    Article  PubMed  CAS  Google Scholar 

  110. Savman K, Blennow M, Hagberg H, Tarkowski E, Thoresen M, Whitelaw A. Cytokine response in cerebrospinal fluid from preterm infants with posthaemorrhagic ventricular dilatation. Acta Paediatr. 2002;91:1357–63.

    Article  PubMed  CAS  Google Scholar 

  111. Cherian S, Thoresen M, Silver IA, Whitelaw A, Love S. Transforming growth factor-betas in a rat model of neonatal posthaemorrhagic hydrocephalus. Neuropathol Appl Neurobiol. 2004;30:585–600.

    Article  PubMed  CAS  Google Scholar 

  112. Aquilina K, Hobbs C, Tucker A, Whitelaw A, Thoresen M. Do drugs that block transforming growth factor beta reduce posthaemorrhagic ventricular dilatation in a neonatal rat model? Acta Paediatr. 2008;97:1181–6.

    Article  PubMed  CAS  Google Scholar 

  113. Hoque N, Thoresen M, Aquilina K, Hogan S, Whitelaw A. Decorin and colchicine as potential treatments for post-haemorrhagic ventricular dilatation in a neonatal rat model. Neonatology. 2011;100:271–6.

    Article  PubMed  Google Scholar 

  114. Jordan FL, Thomas WE. Brain macrophages: questions of origin and interrelationship. Brain Res. 1988;472:165–78.

    PubMed  CAS  Google Scholar 

  115. Lu J, Kaur C, Ling EA. An immunohistochemical study of the intraventricular macrophages in induced hydrocephalus in prenatal rats following a maternal injection of 6-aminonicotinamide. J Anat. 1996;188(Pt 2):491–5.

    PubMed  CAS  Google Scholar 

  116. Ling EA, Kaur C, Lu J. Origin, nature, and some functional considerations of intraventricular macrophages, with special reference to the epiplexus cells. Microsc Res Tech. 1998;41:43–56.

    Article  PubMed  CAS  Google Scholar 

  117. Xin Z-L, Wu X-K, Xu J-R, Li X. Arachnoid cell involvement in the mechanism of coagulation-initiated inflammation in the subarachnoid space after subarachnoid hemorrhage. J Zhejiang Univ Sci B. 2010;11:516–23.

    Article  PubMed  Google Scholar 

  118. Hua Y, Xi G, Keep RF, Hoff JT. Complement activation in the brain after experimental intracerebral hemorrhage. J Neurosurg. 2000;92:1016–22.

    Article  PubMed  CAS  Google Scholar 

  119. Xi G, Hua Y, Keep RF, Younger JG, Hoff JT. Systemic complement depletion diminishes perihematomal brain edema in rats. Stroke. 2001;32:162–7.

    Article  PubMed  CAS  Google Scholar 

  120. Lee J-Y, Keep RF, He Y, Sagher O, Hua Y, Xi G. Hemoglobin and iron handling in brain after subarachnoid hemorrhage and the effect of deferoxamine on early brain injury. J Cereb Blood Flow Metab. 2010;30:1793–803.

    Article  PubMed  CAS  Google Scholar 

  121. Nakamura T, Keep RF, Hua Y, Hoff JT, Xi G. Oxidative DNA injury after experimental intracerebral hemorrhage. Brain Res. 2005;1039:30–6.

    Article  PubMed  CAS  Google Scholar 

  122. Iwanowski L, Olszewski J. The effects of subarachnoid injections of iron-containing substances on the central nervous system. J Neuropathol Exp Neurol. 1960;19:433–48.

    Article  PubMed  CAS  Google Scholar 

  123. Savman K, Nilsson UA, Blennow M, Kjellmer I, Whitelaw A. Non-protein-bound iron is elevated in cerebrospinal fluid from preterm infants with posthemorrhagic ventricular dilatation. Pediatr Res. 2001;49:208–12.

    Article  PubMed  CAS  Google Scholar 

  124. Gu Y, Hua Y, Keep RF, Morgenstern LB, Xi G. Deferoxamine reduces intracerebral hematoma-induced iron accumulation and neuronal death in piglets. Stroke. 2009;40:2241–3.

    Article  PubMed  CAS  Google Scholar 

  125. Zhao F, Hua Y, He Y, Keep RF, Xi G. Minocycline-induced attenuation of iron overload and brain injury after experimental intracerebral hemorrhage. Stroke. 2011;42:3587–93.

    Article  PubMed  Google Scholar 

  126. Moos T. Brain iron homeostasis. Dan Med Bull. 2002;49:279–301.

    PubMed  CAS  Google Scholar 

  127. Qing WG, Dong YQ, Ping TQ, Lai LG, Fang LD, Min HW, Xia L, Heng PY. Brain edema after intracerebral hemorrhage in rats: the role of iron overload and aquaporin 4. J Neurosurg. 2009;110:462–8.

    Article  PubMed  CAS  Google Scholar 

  128. Takeuchi S, Nawashiro H. Letter by Takeuchi and Nawashiro regarding article, “role of iron in brain injury after intraventricular hemorrhage.”. Stroke. 2011;42:e378–8.

    Article  PubMed  Google Scholar 

  129. Shooman D, Portess H, Sparrow O. A review of the current treatment methods for posthaemorrhagic hydrocephalus of infants. Cerebrospinal Fluid Res. 2009;6:1.

    Article  PubMed  Google Scholar 

  130. Neilson JP. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Obstet Gynecol. 2007;109:189–90.

    Article  PubMed  Google Scholar 

  131. Fowlie PW, Davis PG. Prophylactic indomethacin for preterm infants: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2003;88:F464–6.

    Article  PubMed  CAS  Google Scholar 

  132. Whitelaw A, Jary S, Kmita G, Wroblewska J, Musialik-Swietlinska E, Mandera M, Hunt L, Carter M, Pople I. Randomized trial of drainage, irrigation and fibrinolytic therapy for premature infants with posthemorrhagic ventricular dilatation: developmental outcome at 2 years. Pediatrics. 2010;125:e852–8.

    Article  PubMed  Google Scholar 

  133. Whitelaw A, Kennedy CR, Brion LP. Diuretic therapy for newborn infants with posthemorrhagic ventricular dilatation. Cochrane Database Syst Rev. 2001;CD002270.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer Strahle.

Additional information

This work was supported by grants NS-039866 and NS-073595 from the National Institutes of Health (NIH) and 0840016 N from American Heart Association (AHA). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH and AHA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strahle, J., Garton, H.J.L., Maher, C.O. et al. Mechanisms of Hydrocephalus After Neonatal and Adult Intraventricular Hemorrhage. Transl. Stroke Res. 3 (Suppl 1), 25–38 (2012). https://doi.org/10.1007/s12975-012-0182-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-012-0182-9

Keywords

Navigation