Skip to main content
Log in

pH-Sensitive NMDA Inhibitors Improve Outcome in a Murine Model of SAH

  • Translational Research
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Background

Despite intensive research, neurological morbidity from delayed cerebral ischemia remains common after aneurysmal subarachnoid hemorrhage (SAH). In the current study, we evaluate the neuroprotective effects of a pH-dependent GluN2B subunit-selective NMDA receptor antagonist in a murine model of SAH.

Methods

Following induction of SAH, 12 ± 2 week old male C57-BL/6 mice received NP10075, a pH-dependent NMDA receptor antagonist, or vehicle. In a separate series of experiments, NP10075 and the non-pH sensitive NMDA antagonist, NP10191, were administered to normoglycemic and hyperglycemic mice. Both histological (right middle cerebral artery diameter, NeuN, and Fluoro-Jade B staining) and functional endpoints (rotarod latency and neuroseverity score) were evaluated to assess the therapeutic benefit of NP10075.

Results

Administration of NP10075 was well tolerated and had minimal hemodynamic effects following SAH. Administration of the pH-sensitive NMDA antagonist NP10075, but not NP10191, was associated with a durable improvement in the functional performance of both normoglycemic and hyperglycemic animals. NP10075 was also associated with a reduction in vasospasm in the middle cerebral artery associated with hemorrhage. There was no significant difference between treatment with nimodipine + NP10075, as compared to NP10075 alone.

Conclusions

These data demonstrate that use of a pH-dependent NMDA antagonist has the potential to work selectively in areas of ischemia known to undergo acidic pH shifts, and thus may be associated with selective regional efficacy and fewer behavioral side effects than non-selective NMDA antagonists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Linn FH, Rinkel GJ, Algra A, van Gijn J. Incidence of subarachnoid hemorrhage: role of region, year, and rate of computed tomography: a meta-analysis. Stroke. 1996;27(4):625–9.

    Article  CAS  PubMed  Google Scholar 

  2. van Gijn J, Kerr RS, Rinkel GJ. Subarachnoid haemorrhage. Lancet. 2007;369(9558):306–18.

    Article  PubMed  Google Scholar 

  3. Locksley HB. Natural history of subarachnoid hemorrhage, intracranial aneurysms and arteriovenous malformations. Based on 6,368 cases in the cooperative study. J Neurosurg. 1966;25(2):219–39.

    Article  CAS  PubMed  Google Scholar 

  4. Longstreth WT Jr, Nelson LM, Koepsell TD, van Belle G. Clinical course of spontaneous subarachnoid hemorrhage: a population-based study in King County, Washington. Neurology. 1993;43(4):712–8.

    Article  PubMed  Google Scholar 

  5. Treggiari MM, Walder B, Suter PM, Romand JA. Systematic review of the prevention of delayed ischemic neurological deficits with hypertension, hypervolemia, and hemodilution therapy following subarachnoid hemorrhage. J Neurosurg. 2003;98(5):978–84.

    Article  PubMed  Google Scholar 

  6. Gump W, Laskowitz DT. Management of post-subarachnoid hemorrhage vasospasm. Curr Atheroscler Rep. 2008;10(4):354–60.

    Article  PubMed  Google Scholar 

  7. Dearden NM. Mechanisms and prevention of secondary brain damage during intensive care. Clin Neuropathol. 1998;17(4):221–8.

    CAS  PubMed  Google Scholar 

  8. Kemp JA, McKernan RM. NMDA receptor pathways as drug targets. Nat Neurosci. 2002;5(Suppl):1039–42.

    Article  CAS  PubMed  Google Scholar 

  9. Choi D. Antagonizing excitotoxicity: a therapeutic strategy for stroke? Mt Sinai J Med. 1998;65(2):133–8.

    CAS  PubMed  Google Scholar 

  10. Palmer GC. Neuroprotection by NMDA receptor antagonists in a variety of neuropathologies. Curr Drug Targets. 2001;2(3):241–71.

    Article  CAS  PubMed  Google Scholar 

  11. Low SJ, Roland CL. Review of NMDA antagonist-induced neurotoxicity and implications for clinical development. Int J Clin Pharmacol Ther. 2004;42(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  12. Kornhuber J, Weller M. Psychotogenicity and N-methyl-d-aspartate receptor antagonism: implications for neuroprotective pharmacotherapy. Biol Psychiatry. 1997;41(2):135–44.

    Article  CAS  PubMed  Google Scholar 

  13. Lutsep HL, Clark WM. Neuroprotection in acute ischaemic stroke. Current status and future potential. Drugs R D. 1999;1(1):3–8.

    Article  CAS  PubMed  Google Scholar 

  14. Giffard RG, Monyer H, Christine CW, Choi DW. Acidosis reduces NMDA receptor activation, glutamate neurotoxicity, and oxygen-glucose deprivation neuronal injury in cortical cultures. Brain Res. 1990;506(2):339–42.

    Article  CAS  PubMed  Google Scholar 

  15. Tang CM, Dichter M, Morad M. Modulation of the N-methyl-d-aspartate channel by extracellular H+. Proc Natl Acad Sci USA. 1990;87(16):6445–9.

    Article  CAS  PubMed  Google Scholar 

  16. Traynelis SF, Cull-Candy SG. Proton inhibition of N-methyl-d-aspartate receptors in cerebellar neurons. Nature. 1990;345(6273):347–50.

    Article  CAS  PubMed  Google Scholar 

  17. Traynelis SF, Cull-Candy SG. Pharmacological properties and H+ sensitivity of excitatory amino acid receptor channels in rat cerebellar granule neurones. J Physiol. 1991;433:727–63.

    CAS  PubMed  Google Scholar 

  18. Vyklicky L Jr, Vlachova V, Krusek J. The effect of external pH changes on responses to excitatory amino acids in mouse hippocampal neurones. J Physiol. 1990;430:497–517.

    CAS  PubMed  Google Scholar 

  19. Mott DD, Doherty JJ, Zhang S, Washburn MS, Fendley MJ, Lyuboslavsky P, et al. Phenylethanolamines inhibit NMDA receptors by enhancing proton inhibition. Nat Neurosci. 1998;1(8):659–67.

    Article  CAS  PubMed  Google Scholar 

  20. Silver IA, Erecinska M. Ion homeostasis in rat brain in vivo: intra- and extracellular [Ca2+] and [H+] in the hippocampus during recovery from short-term, transient ischemia. J Cereb Blood Flow Metab. 1992;12(5):759–72.

    Article  CAS  PubMed  Google Scholar 

  21. Katsura K, Asplund B, Ekholm A, Siesjo BK. Extra- and intra-cellular pH in the brain during ischaemia, related to tissue lactate content in normo- and hyper-capnic rats. Eur J Neurosci. 1992;4(2):166–76.

    Article  PubMed  Google Scholar 

  22. McEvoy RC, Andersson J, Sandler S, Hellerstrom C. Multiple low-dose streptozotocin-induced diabetes in the mouse. Evidence for stimulation of a cytotoxic cellular immune response against an insulin-producing beta cell line. J Clin Invest. 1984;74(3):715–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Parra A, McGirt MJ, Sheng H, Laskowitz DT, Pearlstein RD, Warner DS. Mouse model of subarachnoid hemorrhage associated cerebral vasospasm: methodological analysis. Neurol Res. 2002;24(5):510–6.

    Article  PubMed  Google Scholar 

  24. Zhou J, Payen JF, Wilson DA, Traystman RJ, van Zijl PC. Using the amide proton signals of intracellular proteins and peptides to detect pH effects in MRI. Nat Med. 2003;9(8):1085–90.

    Article  CAS  PubMed  Google Scholar 

  25. Mesis RG, Wang H, Lombard FW, Yates R, Vitek MP, Borel CO, et al. Dissociation between vasospasm and functional improvement in a murine model of subarachnoid hemorrhage. Neurosurg Focus. 2006;21(3):E4.

    Article  PubMed  Google Scholar 

  26. Schmued LC, Hopkins KJ. Fluoro-Jade B: a high affinity fluorescent marker for the localization of neuronal degeneration. Brain Res. 2000;874(2):123–30.

    Article  CAS  PubMed  Google Scholar 

  27. Wang H, Durham L, Dawson H, Song P, Warner DS, Sullivan PM, et al. An apolipoprotein E-based therapeutic improves outcome and reduces Alzheimer’s disease pathology following closed head injury: evidence of pharmacogenomic interaction. Neuroscience. 2007;144(4):1324–33.

    Article  CAS  PubMed  Google Scholar 

  28. Traynelis SF, Burgess MF, Zheng F, Lyuboslavsky P, Powers JL. Control of voltage-independent zinc inhibition of NMDA receptors by the NR1 subunit. J Neurosci. 1998;18(16):6163–75.

    CAS  PubMed  Google Scholar 

  29. Takata K, Sheng H, Borel CO, Laskowitz DT, Warner DS, Lombard FW. Simvastatin treatment duration and cognitive preservation in experimental subarachnoid hemorrhage. J Neurosurg Anesthesiol. 2009;21(4):326–33.

    Article  PubMed  Google Scholar 

  30. Sun PZ, Zhou J, Sun W, Huang J, van Zijl PC. Detection of the ischemic penumbra using pH-weighted MRI. J Cereb Blood Flow Metab. 2007;27(6):1129–36.

    Article  PubMed  Google Scholar 

  31. Petruk KC, West M, Mohr G, Weir BK, Benoit BG, Gentili F, et al. Nimodipine treatment in poor-grade aneurysm patients. Results of a multicenter double-blind placebo-controlled trial. J Neurosurg. 1988;68(4):505–17.

    Article  CAS  PubMed  Google Scholar 

  32. Pickard JD, Murray GD, Illingworth R, Shaw MD, Teasdale GM, Foy PM, et al. Effect of oral nimodipine on cerebral infarction and outcome after subarachnoid haemorrhage: British aneurysm nimodipine trial. BMJ. 1989;298(6674):636–42.

    Article  CAS  PubMed  Google Scholar 

  33. Boyce S, Wyatt A, Webb JK, O’Donnell R, Mason G, Rigby M, et al. Selective NMDA NR2B antagonists induce antinociception without motor dysfunction: correlation with restricted localisation of NR2B subunit in dorsal horn. Neuropharmacology. 1999;38(5):611–23.

    Article  CAS  PubMed  Google Scholar 

  34. Koroshetz WJ, Moskowitz MA. Emerging treatments for stroke in humans. Trends Pharmacol Sci. 1996;17(6):227–33.

    Article  CAS  PubMed  Google Scholar 

  35. Hickenbottom SL, Grotta J. Neuroprotective therapy. Semin Neurol. 1998;18(4):485–92.

    Article  CAS  PubMed  Google Scholar 

  36. Rogawski MA. Low affinity channel blocking (uncompetitive) NMDA receptor antagonists as therapeutic agents toward an understanding of their favorable tolerability. Amino Acids. 2000;19(1):133–49.

    Article  CAS  PubMed  Google Scholar 

  37. Bian L, Liu L, Wang C, Hussain M, Yuan Y, Liu G, Wang W, Zhao X. Hyperglycemia within day 14 of aneurysmal subarachnoid hemorrhage predicts 1-year mortality. Clin Neurol Neurosurg. 2013;115(7):959–64.

    Article  PubMed  Google Scholar 

  38. Parsons MW, Barber PA, Desmond PM, Baird TA, Darby DG, Byrnes G, Tress BM, Davis SM. Acute hyperglycemia adversely affects stroke outcome: a magnetic resonance imaging and spectroscopy study. Ann Neurol. 2002;52(1):20–8.

    Article  PubMed  Google Scholar 

  39. Schlenk F, Vajkoczy P, Sarrafzadeh A. Inpatient hyperglycemia following aneurysmal subarachnoid hemorrhage: relation to cerebral metabolism and outcome. Neurocrit Care. 2009;11(1):56–63.

    Article  CAS  PubMed  Google Scholar 

  40. Holmgaard K, Aalkjaer C, Lambert JD, Bek T. N-Methyl-d-aspartic acid causes relaxation of porcine retinal arterioles through an adenosine receptor-dependent mechanism. Invest Ophthalmol Vis Sci. 2008;49(10):4590–4.

    Article  PubMed  Google Scholar 

  41. Busija DW, Bari F, Domoki F, Louis T. Mechanisms involved in the cerebrovascular dilator effects of N-methyl-d-aspartate in cerebral cortex. Brain Res Rev. 2007;56(1):89–100.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Stroke Therapy Academic Industry Roundtable (STAIR). Recommendations for standards regarding preclinical neuroprotective and restorative drug development. Stroke. 1999;30(12):2752–8.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH Grant 1R41NS056858-01A2 (DTL), 2R44NS049666-02A1(SJM), and AHA-SDG (MLJ). Lawrence J. Wilson is now in the Department of Chemistry at Emory University, Atlanta GA.

Conflict of interest

Dr. Laskowitz has served as a consultant for NeurOp Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel T. Laskowitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., James, M.L., Venkatraman, T.N. et al. pH-Sensitive NMDA Inhibitors Improve Outcome in a Murine Model of SAH. Neurocrit Care 20, 119–131 (2014). https://doi.org/10.1007/s12028-013-9944-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-013-9944-9

Keywords

Navigation