Skip to main content

Advertisement

Log in

Chemoreflexes, Sleep Apnea, and Sympathetic Dysregulation

  • Hypertension and the Brain (S Stocker, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Obstructive sleep apnea (OSA) and hypertension are closely linked conditions. Disordered breathing events in OSA are characterized by increasing efforts against an occluded airway while asleep, resulting in a marked sympathetic response. This is predominantly due to hypoxemia activating the chemoreflexes, resulting in reflex increases in sympathetic neural outflow. In addition, apnea – and the consequent lack of inhibition of the sympathetic system that occurs with lung inflation during normal breathing – potentiates central sympathetic outflow. Sympathetic activation persists into the daytime, and is thought to contribute to hypertension and other adverse cardiovascular outcomes. This review discusses chemoreflex physiology and sympathetic modulation during normal sleep, as well as the sympathetic dysregulation seen in OSA, its extension into wakefulness, and changes after treatment. Evidence supporting the role of the peripheral chemoreflex in the sympathetic dysregulation seen in OSA, including in the context of comorbid obesity, metabolic syndrome, and systemic hypertension, is reviewed. Finally, alterations in cardiovascular variability and other potential mechanisms that may play a role in the autonomic imbalance in OSA are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Peppard PE, Young T, Barnet JH, Palta M, Hagen EW, Hla KM. Increased prevalence of sleep-disordered breathing in adults. Am J Epidemiol. 2013;177(9):1006–14.

    PubMed Central  PubMed  Google Scholar 

  2. Somers VK, White DP, Amin R, Abraham WT, Costa F, Culebras A, et al. Sleep apnea and cardiovascular disease: an American Heart Association/american College Of Cardiology Foundation Scientific Statement from the American Heart Association Council for High Blood Pressure Research Professional Education Committee, Council on Clinical Cardiology, Stroke Council, and Council On Cardiovascular Nursing. In collaboration with the National Heart, Lung, and Blood Institute National Center on Sleep Disorders Research (National Institutes of Health). Circulation. 2008;118(10):1080–111.

    PubMed  Google Scholar 

  3. Somers VK, White DP, Amin R, Abraham WT, Costa F, Culebras A, et al. Sleep apnea and cardiovascular disease: an American Heart Association/American College of Cardiology Foundation Scientific Statement from the American Heart Association Council for High Blood Pressure Research Professional Education Committee, Council on Clinical Cardiology, Stroke Council, and Council on Cardiovascular Nursing. J Am Coll Cardiol. 2008;52(8):686–717.

    PubMed  Google Scholar 

  4. Shahar E, Whitney CW, Redline S, Lee ET, Newman AB, Nieto FJ, et al. Sleep-disordered breathing and cardiovascular disease: cross-sectional results of the Sleep Heart Health Study. Am J Respir Crit Care Med. 2001;163(1):19–25.

    CAS  PubMed  Google Scholar 

  5. Arzt M, Young T, Finn L, Skatrud JB, Bradley TD. Association of sleep-disordered breathing and the occurrence of stroke. Am J Respir Crit Care Med. 2005;172(11):1447–51.

    PubMed Central  PubMed  Google Scholar 

  6. Marin JM, Carrizo SJ, Vicente E, Agusti AG. Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: an observational study. Lancet. 2005;365(9464):1046–53.

    PubMed  Google Scholar 

  7. Mehra R, Benjamin EJ, Shahar E, Gottlieb DJ, Nawabit R, Kirchner HL, et al. Association of nocturnal arrhythmias with sleep-disordered breathing: the Sleep Heart Health Study. Am J Respir Crit Care Med. 2006;173(8):910–6.

    PubMed Central  PubMed  Google Scholar 

  8. Dempsey JA, Veasey SC, Morgan BJ, O’Donnell CP. Pathophysiology of sleep apnea. Physiol Rev. 2010;90(1):47–112.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Sanchez-de-la-Torre M, Campos-Rodriguez F, Barbe F. Obstructive sleep apnoea and cardiovascular disease. Lancet Respir Med. 2013;1(1):61–72.

    PubMed  Google Scholar 

  10. Young T, Peppard P, Palta M, Hla KM, Finn L, Morgan B, et al. Population-based study of sleep-disordered breathing as a risk factor for hypertension. Arch Intern Med. 1997;157(15):1746–52.

    CAS  PubMed  Google Scholar 

  11. Haas DC, Foster GL, Nieto FJ, Redline S, Resnick HE, Robbins JA, et al. Age-dependent associations between sleep-disordered breathing and hypertension: importance of discriminating between systolic/diastolic hypertension and isolated systolic hypertension in the Sleep Heart Health Study. Circulation. 2005;111(5):614–21.

    PubMed  Google Scholar 

  12. Marin JM, Agusti A, Villar I, Forner M, Nieto D, Carrizo SJ, et al. Association between treated and untreated obstructive sleep apnea and risk of hypertension. JAMA. 2012;307(20):2169–76.

    CAS  PubMed  Google Scholar 

  13. Brostrom A, Sunnergren O, Johansson P, Svensson E, Ulander M, Nilsen P, et al. Symptom profile of undiagnosed obstructive sleep apnoea in hypertensive outpatients in primary care: a structural equation model analysis. Qual Prim Care. 2012;20(4):287–98.

    PubMed  Google Scholar 

  14. Pedrosa RP, Drager LF, Gonzaga CC, Sousa MG, de Paula LK, Amaro AC, et al. Obstructive sleep apnea: the most common secondary cause of hypertension associated with resistant hypertension. Hypertension. 2011;58(5):811–7.

    CAS  PubMed  Google Scholar 

  15. Kushida CA, Littner MR, Hirshkowitz M, Morgenthaler TI, Alessi CA, Bailey D, et al. Practice parameters for the use of continuous and bilevel positive airway pressure devices to treat adult patients with sleep-related breathing disorders. Sleep. 2006;29(3):375–80.

    PubMed  Google Scholar 

  16. Peppard PE, Young T, Palta M, Skatrud J. Prospective study of the association between sleep-disordered breathing and hypertension. N Engl J Med. 2000;342(19):1378–84.

    CAS  PubMed  Google Scholar 

  17. Caples SM, Kara T, Somers VK. Cardiopulmonary consequences of obstructive sleep apnea. Semin Respir Crit Care Med. 2005;26(1):25–32.

    PubMed  Google Scholar 

  18. Konecny T, Kara T, Somers VK. Obstructive sleep apnea and hypertension: an update. Hypertension. 2014;63(2):203–9. Recent evidence review on the relationship between obstructive sleep apnea and hypertension.

    CAS  PubMed  Google Scholar 

  19. Ghias M, Scherlag BJ, Lu Z, Niu G, Moers A, Jackman WM, et al. The role of ganglionated plexi in apnea-related atrial fibrillation. J Am Coll Cardiol. 2009;54(22):2075–83.

    PubMed  Google Scholar 

  20. Freet CS, Stoner JF, Tang X. Baroreflex and chemoreflex controls of sympathetic activity following intermittent hypoxia. Auton Neurosci. 2013;174(1–2)):8–14. Recent review of baroreflexes and chemoreflexes in the context of intermittent hypoxia.

    CAS  PubMed  Google Scholar 

  21. Lu Z, Nie L, He B, Yu L, Salim M, Huang B, et al. Increase in vulnerability of atrial fibrillation in an acute intermittent hypoxia model: importance of autonomic imbalance. Auton Neurosci. 2013;177(2):148–53.

    PubMed  Google Scholar 

  22. Fung ML, Tipoe GL, Leung PS. Mechanisms of maladaptive responses of peripheral chemoreceptors to intermittent hypoxia in sleep-disordered breathing. Sheng Li Xue Bao. 2014;66(1):23–9. Recent review of mechanisms underlying the peripheral chemoreflex in response to intermittent hypoxia.

    CAS  PubMed  Google Scholar 

  23. Sunderram J, Androulakis IP. Molecular mechanisms of chronic intermittent hypoxia and hypertension. Crit Rev Biomed Eng. 2012;40(4):265–78. Recent review of molecular mechanisms underlying chronic intermittent hypoxemia and development of hypertension.

    PubMed Central  PubMed  Google Scholar 

  24. Peers C, Wyatt CN, Evans AM. Mechanisms for acute oxygen sensing in the carotid body. Respir Physiol Neurobiol. 2010;174(3):292–8.

    CAS  PubMed  Google Scholar 

  25. Nurse CA. Neurotransmitter and neuromodulatory mechanisms at peripheral arterial chemoreceptors. Exp Physiol. 2010;95(6):657–67.

    CAS  PubMed  Google Scholar 

  26. Somers VK, Mark AL, Zavala DC, Abboud FM. Contrasting effects of hypoxia and hypercapnia on ventilation and sympathetic activity in humans. J Appl Physiol (1985). 1989;67(5):2101–6. Early study demonstrating effects of hypoxia on sympathetic activity.

    CAS  Google Scholar 

  27. Somers VK, Mark AL, Zavala DC, Abboud FM. Influence of ventilation and hypocapnia on sympathetic nerve responses to hypoxia in normal humans. J Appl Physiol (1985). 1989;67(5):2095–100. Early study demonstrating effects of hypoxia on sympathetic activity.

    CAS  Google Scholar 

  28. Somers VK, Mark AL, Abboud FM. Interaction of baroreceptor and chemoreceptor reflex control of sympathetic nerve activity in normal humans. J Clin Invest. 1991;87(6):1953–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Kara T, Narkiewicz K, Somers VK. Chemoreflexes–physiology and clinical implications. Acta Physiol Scand. 2003;177(3):377–84. Early study on cardiovascular variability in patients with obstructive sleep apnea.

    CAS  PubMed  Google Scholar 

  30. Kline DD. Chronic intermittent hypoxia affects integration of sensory input by neurons in the nucleus tractus solitarii. Respir Physiol Neurobiol. 2010;174(1–2):29–36.

    PubMed Central  PubMed  Google Scholar 

  31. Calvelo MG, Abboud FM, Ballard DR, Abdel-Sayed W. Reflex vascular responses to stimulation of chemoreceptors with nicotine and cyanide. Activation of adrenergic constriction in muscle and noncholinergic dilatation in dog’s paw. Circ Res. 1970;27(2):259–76.

    CAS  PubMed  Google Scholar 

  32. Heistad DD, Abboud FM, Mark AL, Schmid PG. Response of muscular and cutaneous vessels to physiologic stimulation of chemoreceptors (38505). Proc Soc Exp Biol Med. 1975;148(1):198–202.

    CAS  PubMed  Google Scholar 

  33. Honig A. Peripheral arterial chemoreceptors and reflex control of sodium and water homeostasis. Am J Physiol. 1989;257(6 Pt 2):R1282–1302.

    CAS  PubMed  Google Scholar 

  34. Somers VK, Dyken ME, Clary MP, Abboud FM. Sympathetic neural mechanisms in obstructive sleep apnea. J Clin Invest. 1995;96(4):1897–904. Early study demonstrating increased sympathetic activity during sleep and wakefulness in obstructive sleep apnea, and decrease with continuous positive airway pressure treatment.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Heistad DD, Abboud FM, Mark AL, Schmid PG. Interaction of baroreceptor and chemoreceptor reflexes. Modulation of the chemoreceptor reflex by changes in baroreceptor activity. J Clin Invest. 1974;53(5):1226–36.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Angell-James JE, Daly MB. Some aspects of upper respiratory tract reflexes. Acta Otolaryngol. 1975;79(3–4):242–52.

    CAS  PubMed  Google Scholar 

  37. Daly MB, Korner PI, Angell-James JE, Oliver JR. Cardiovascular-respiratory reflex interactions between carotid bodies and upper-airways receptors in the monkey. Am J Physiol. 1978;234(3):H293–299.

    CAS  PubMed  Google Scholar 

  38. Daly MD, Angell-James JE, Elsner R. Role of carotid-body chemoreceptors and their reflex interactions in bradycardia and cardiac arrest. Lancet. 1979;1(8119):764–7.

    CAS  PubMed  Google Scholar 

  39. Phillipson EA, McClean PA, Sullivan CE, Zamel N. Interaction of metabolic and behavioral respiratory control during hypercapnia and speech. Am Rev Respir Dis. 1978;117(5):903–9.

    CAS  PubMed  Google Scholar 

  40. Somers VK, Dyken ME, Mark AL, Abboud FM. Sympathetic-nerve activity during sleep in normal subjects. N Engl J Med. 1993;328(5):303–7. Discussion of normal chemoreflex physiology.

    CAS  PubMed  Google Scholar 

  41. White DP, Weil JV, Zwillich CW. Metabolic rate and breathing during sleep. J Appl Physiol (1985). 1985;59(2):384–91.

    CAS  Google Scholar 

  42. Horner RL, Brooks D, Kozar LF, Tse S, Phillipson EA. Immediate effects of arousal from sleep on cardiac autonomic outflow in the absence of breathing in dogs. J Appl Physiol (1985). 1995;79(1):151–62.

    CAS  Google Scholar 

  43. Horner RL, Rivera MP, Kozar LF, Phillipson EA. The ventilatory response to arousal from sleep is not fully explained by differences in CO(2) levels between sleep and wakefulness. J Physiol. 2001;534(Pt 3):881–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Blasi A, Jo J, Valladares E, Morgan BJ, Skatrud JB, Khoo MC. Cardiovascular variability after arousal from sleep: time-varying spectral analysis. J Appl Physiol (1985). 2003;95(4):1394–404.

    Google Scholar 

  45. Orem J. Neuronal mechanisms of respiration in REM sleep. Sleep. 1980;3(3–4):251–67.

    CAS  PubMed  Google Scholar 

  46. Ringler J, Basner RC, Shannon R, Schwartzstein R, Manning H, Weinberger SE, et al. Hypoxemia alone does not explain blood pressure elevations after obstructive apneas. J Appl Physiol (1985). 1990;69(6):2143–8.

    CAS  Google Scholar 

  47. O’Donnell CP, Ayuse T, King ED, Schwartz AR, Smith PL, Robotham JL. Airway obstruction during sleep increases blood pressure without arousal. J Appl Physiol (1985). 1996;80(3):773–81.

    Google Scholar 

  48. Waeber B, Burnier M. Ambulatory blood pressure monitoring to assess cardiovascular risk in women. Hypertension. 2011;57(3):377–8.

    CAS  PubMed  Google Scholar 

  49. Portaluppi F, Provini F, Cortelli P, Plazzi G, Bertozzi N, Manfredini R, et al. Undiagnosed sleep-disordered breathing among male nondippers with essential hypertension. J Hypertens. 1997;15(11):1227–33.

    CAS  PubMed  Google Scholar 

  50. Endeshaw YW, White WB, Kutner M, Ouslander JG, Bliwise DL. Sleep-disordered breathing and 24-hour blood pressure pattern among older adults. J Gerontol A Biol Sci Med Sci. 2009;64(2):280–5.

    PubMed  Google Scholar 

  51. Saito M, Mano T, Iwase S, Koga K, Abe H, Yamazaki Y. Responses in muscle sympathetic activity to acute hypoxia in humans. J Appl Physiol (1985). 1988;65(4):1548–52.

    CAS  Google Scholar 

  52. Morgan BJ. Acute and chronic cardiovascular responses to sleep disordered breathing. Sleep. 1996;19(10 Suppl):S206–209.

    CAS  PubMed  Google Scholar 

  53. Xie A, Skatrud JB, Crabtree DC, Puleo DS, Goodman BM, Morgan BJ. Neurocirculatory consequences of intermittent asphyxia in humans. J Appl Physiol (1985). 2000;89(4):1333–9.

    CAS  Google Scholar 

  54. Cutler MJ, Swift NM, Keller DM, Wasmund WL, Smith ML. Hypoxia-mediated prolonged elevation of sympathetic nerve activity after periods of intermittent hypoxic apnea. J Appl Physiol (1985). 2004;96(2):754–61.

    Google Scholar 

  55. Cutler MJ, Swift NM, Keller DM, Wasmund WL, Burk JR, Smith ML. Periods of intermittent hypoxic apnea can alter chemoreflex control of sympathetic nerve activity in humans. Am J Physiol Heart Circ Physiol. 2004;287(5):H2054–2060.

    CAS  PubMed  Google Scholar 

  56. Dick TE, Hsieh YH, Wang N, Prabhakar N. Acute intermittent hypoxia increases both phrenic and sympathetic nerve activities in the rat. Exp Physiol. 2007;92(1):87–97.

    PubMed  Google Scholar 

  57. Xing T, Pilowsky PM. Acute intermittent hypoxia in rat in vivo elicits a robust increase in tonic sympathetic nerve activity that is independent of respiratory drive. J Physiol. 2010;588(Pt 16):3075–88.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Bao G, Metreveli N, Li R, Taylor A, Fletcher EC. Blood pressure response to chronic episodic hypoxia: role of the sympathetic nervous system. J Appl Physiol (1985). 1997;83(1):95–101.

    CAS  Google Scholar 

  59. Zoccal DB, Bonagamba LG, Oliveira FR, Antunes-Rodrigues J, Machado BH. Increased sympathetic activity in rats submitted to chronic intermittent hypoxia. Exp Physiol. 2007;92(1):79–85.

    PubMed  Google Scholar 

  60. Zoccal DB, Simms AE, Bonagamba LG, Braga VA, Pickering AE, Paton JF, et al. Increased sympathetic outflow in juvenile rats submitted to chronic intermittent hypoxia correlates with enhanced expiratory activity. J Physiol. 2008;586(13):3253–65.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Tamisier R, Pepin JL, Levy P. Sleep and pulmonary diseases. Handb Clin Neurol. 2011;98:471–87.

    CAS  PubMed  Google Scholar 

  62. Smith ML, Pacchia CF. Sleep apnoea and hypertension: role of chemoreflexes in humans. Exp Physiol. 2007;92(1):45–50.

    PubMed  Google Scholar 

  63. Bao G, Randhawa PM, Fletcher EC. Acute blood pressure elevation during repetitive hypocapnic and eucapnic hypoxia in rats. J Appl Physiol (1985). 1997;82(4):1071–8.

    CAS  Google Scholar 

  64. Greenberg HE, Sica AL, Scharf SM, Ruggiero DA. Expression of c-fos in the rat brainstem after chronic intermittent hypoxia. Brain Res. 1999;816(2):638–45.

    CAS  PubMed  Google Scholar 

  65. Prabhakar NR, Kumar GK, Nanduri J. Intermittent hypoxia augments acute hypoxic sensing via HIF-mediated ROS. Respir Physiol Neurobiol. 2010;174(3):230–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. MacFarlane PM, Mitchell GS. Respiratory long-term facilitation following intermittent hypoxia requires reactive oxygen species formation. Neuroscience. 2008;152(1):189–97.

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Marrone O, Riccobono L, Salvaggio A, Mirabella A, Bonanno A, Bonsignore MR. Catecholamines and blood pressure in obstructive sleep apnea syndrome. Chest. 1993;103(3):722–7.

    CAS  PubMed  Google Scholar 

  68. Fletcher EC, Miller J, Schaaf JW, Fletcher JG. Urinary catecholamines before and after tracheostomy in patients with obstructive sleep apnea and hypertension. Sleep. 1987;10(1):35–44.

    CAS  PubMed  Google Scholar 

  69. Carlson JT, Hedner J, Elam M, Ejnell H, Sellgren J, Wallin BG. Augmented resting sympathetic activity in awake patients with obstructive sleep apnea. Chest. 1993;103(6):1763–8.

    CAS  PubMed  Google Scholar 

  70. Leuenberger UA, Brubaker D, Quraishi S, Hogeman CS, Imadojemu VA, Gray KS. Effects of intermittent hypoxia on sympathetic activity and blood pressure in humans. Auton Neurosci. 2005;121(1–2):87–93.

    PubMed  Google Scholar 

  71. Smith ML, Niedermaier ON, Hardy SM, Decker MJ, Strohl KP. Role of hypoxemia in sleep apnea-induced sympathoexcitation. J Auton Nerv Syst. 1996;56(3):184–90.

    CAS  PubMed  Google Scholar 

  72. Narkiewicz K, van de Borne PJ, Montano N, Dyken ME, Phillips BG, Somers VK. Contribution of tonic chemoreflex activation to sympathetic activity and blood pressure in patients with obstructive sleep apnea. Circulation. 1998;97(10):943–5.

    CAS  PubMed  Google Scholar 

  73. Narkiewicz K, van de Borne PJ, Cooley RL, Dyken ME, Somers VK. Sympathetic activity in obese subjects with and without obstructive sleep apnea. Circulation. 1998;98(8):772–6.

    CAS  PubMed  Google Scholar 

  74. Querido JS, Kennedy PM, Sheel AW. Hyperoxia attenuates muscle sympathetic nerve activity following isocapnic hypoxia in humans. J Appl Physiol (1985). 2010;108(4):906–12.

    Google Scholar 

  75. Shoemaker JK, Vovk A, Cunningham DA. Peripheral chemoreceptor contributions to sympathetic and cardiovascular responses during hypercapnia. Can J Physiol Pharmacol. 2002;80(12):1136–44.

    CAS  PubMed  Google Scholar 

  76. Morgan BJ, Crabtree DC, Palta M, Skatrud JB. Combined hypoxia and hypercapnia evokes long-lasting sympathetic activation in humans. J Appl Physiol (1985). 1995;79(1):205–13.

    CAS  Google Scholar 

  77. Tamisier R, Nieto L, Anand A, Cunnington D, Weiss JW. Sustained muscle sympathetic activity after hypercapnic but not hypocapnic hypoxia in normal humans. Respir Physiol Neurobiol. 2004;141(2):145–55.

    PubMed  Google Scholar 

  78. Swierblewska E, Hering D, Kara T, Kunicka K, Kruszewski P, Bieniaszewski L, et al. An independent relationship between muscle sympathetic nerve activity and pulse wave velocity in normal humans. J Hypertens. 2010;28(5):979–84.

    CAS  PubMed  Google Scholar 

  79. Narkiewicz K, Kato M, Phillips BG, Pesek CA, Davison DE, Somers VK. Nocturnal continuous positive airway pressure decreases daytime sympathetic traffic in obstructive sleep apnea. Circulation. 1999;100(23):2332–5.

    CAS  PubMed  Google Scholar 

  80. Imadojemu VA, Mawji Z, Kunselman A, Gray KS, Hogeman CS, Leuenberger UA. Sympathetic chemoreflex responses in obstructive sleep apnea and effects of continuous positive airway pressure therapy. Chest. 2007;131(5):1406–13. More recent study on effects of continuous positive airway pressure on sympathetic activity in obstructive sleep apnea.

    PubMed  Google Scholar 

  81. Hedner J, Darpo B, Ejnell H, Carlson J, Caidahl K. Reduction in sympathetic activity after long-term CPAP treatment in sleep apnoea: cardiovascular implications. Eur Respir J. 1995;8(2):222–9.

    CAS  PubMed  Google Scholar 

  82. Waradekar NV, Sinoway LI, Zwillich CW, Leuenberger UA. Influence of treatment on muscle sympathetic nerve activity in sleep apnea. Am J Respir Crit Care Med. 1996;153(4 Pt 1):1333–8.

    CAS  PubMed  Google Scholar 

  83. Pinto P, Barbara C, Montserrat JM, Patarrao RS, Guarino MP, Carmo MM, et al. Effects of CPAP on nitrate and norepinephrine levels in severe and mild-moderate sleep apnea. BMC Pulm Med. 2013;13:13.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Myhill PC, Davis WA, Peters KE, Chubb SA, Hillman D, Davis TM. Effect of continuous positive airway pressure therapy on cardiovascular risk factors in patients with type 2 diabetes and obstructive sleep apnea. J Clin Endocrinol Metab. 2012;97(11):4212–8.

    CAS  PubMed  Google Scholar 

  85. Drager LF, Pedrosa RP, Diniz PM, Diegues-Silva L, Marcondes B, Couto RB, et al. The effects of continuous positive airway pressure on prehypertension and masked hypertension in men with severe obstructive sleep apnea. Hypertension. 2011;57(3):549–55.

    CAS  PubMed  Google Scholar 

  86. Yorgun H, Kabakci G, Canpolat U, Kirmizigul E, Sahiner L, Ates AH, et al. Predictors of blood pressure reduction with nocturnal continuous positive airway pressure therapy in patients with obstructive sleep apnea and prehypertension. Angiology. 2014;65(2):98–103.

    PubMed  Google Scholar 

  87. Faccenda JF, Mackay TW, Boon NA, Douglas NJ. Randomized placebo-controlled trial of continuous positive airway pressure on blood pressure in the sleep apnea-hypopnea syndrome. Am J Respir Crit Care Med. 2001;163(2):344–8.

    CAS  PubMed  Google Scholar 

  88. Pepperell JC, Ramdassingh-Dow S, Crosthwaite N, Mullins R, Jenkinson C, Stradling JR, et al. Ambulatory blood pressure after therapeutic and subtherapeutic nasal continuous positive airway pressure for obstructive sleep apnoea: a randomised parallel trial. Lancet. 2002;359(9302):204–10.

    PubMed  Google Scholar 

  89. Bazzano LA, Khan Z, Reynolds K, He J. Effect of nocturnal nasal continuous positive airway pressure on blood pressure in obstructive sleep apnea. Hypertension. 2007;50(2):417–23.

    CAS  PubMed  Google Scholar 

  90. Sharma SK, Agrawal S, Damodaran D, Sreenivas V, Kadhiravan T, Lakshmy R, et al. CPAP for the metabolic syndrome in patients with obstructive sleep apnea. N Engl J Med. 2011;365(24):2277–86.

    CAS  PubMed  Google Scholar 

  91. Montesi SB, Edwards BA, Malhotra A, Bakker JP. The effect of continuous positive airway pressure treatment on blood pressure: a systematic review and meta-analysis of randomized controlled trials. J Clin Sleep Med. 2012;8(5):587–96.

    PubMed Central  PubMed  Google Scholar 

  92. Phillips CL, Grunstein RR, Darendeliler MA, Mihailidou AS, Srinivasan VK, Yee BJ, et al. Health outcomes of continuous positive airway pressure versus oral appliance treatment for obstructive sleep apnea: a randomized controlled trial. Am J Respir Crit Care Med. 2013;187(8):879–87.

    PubMed  Google Scholar 

  93. Barbe F, Duran-Cantolla J, Sanchez-de-la-Torre M, Martinez-Alonso M, Carmona C, Barcelo A, et al. Effect of continuous positive airway pressure on the incidence of hypertension and cardiovascular events in nonsleepy patients with obstructive sleep apnea: a randomized controlled trial. JAMA. 2012;307(20):2161–8.

    CAS  PubMed  Google Scholar 

  94. Martinez-Garcia MA, Capote F, Campos-Rodriguez F, Lloberes P, DiazdeAtauri MJ, Somoza M, et al. Effect of CPAP on blood pressure in patients with obstructive sleep apnea and resistant hypertension: the HIPARCO randomized clinical trial. JAMA. 2013;310(22):2407–15.

    CAS  PubMed  Google Scholar 

  95. Barbe F, Mayoralas LR, Duran J, Masa JF, Maimo A, Montserrat JM, et al. Treatment with continuous positive airway pressure is not effective in patients with sleep apnea but no daytime sleepiness. a randomized, controlled trial. Ann Intern Med. 2001;134(11):1015–23.

    CAS  PubMed  Google Scholar 

  96. Robinson GV, Smith DM, Langford BA, Davies RJ, Stradling JR. Continuous positive airway pressure does not reduce blood pressure in nonsleepy hypertensive OSA patients. Eur Respir J. 2006;27(6):1229–35.

    CAS  PubMed  Google Scholar 

  97. Narkiewicz K, van de Borne PJ, Pesek CA, Dyken ME, Montano N, Somers VK. Selective potentiation of peripheral chemoreflex sensitivity in obstructive sleep apnea. Circulation. 1999;99(9):1183–9.

    CAS  PubMed  Google Scholar 

  98. Iturriaga R, Rey S, Del Rio R. Cardiovascular and ventilatory acclimatization induced by chronic intermittent hypoxia: a role for the carotid body in the pathophysiology of sleep apnea. Biol Res. 2005;38(4):335–40.

    PubMed  Google Scholar 

  99. Zoccal DB, Machado BH. Coupling between respiratory and sympathetic activities as a novel mechanism underpinning neurogenic hypertension. Curr Hypertens Rep. 2011;13(3):229–36.

    PubMed  Google Scholar 

  100. Del Rio R, Moya EA, Parga MJ, Madrid C, Iturriaga R. Carotid body inflammation and cardiorespiratory alterations in intermittent hypoxia. Eur Respir J. 2012;39(6):1492–500.

    PubMed  Google Scholar 

  101. Somers VK, Mark AL, Abboud FM. Potentiation of sympathetic nerve responses to hypoxia in borderline hypertensive subjects. Hypertension. 1988;11(6 Pt 2):608–12.

    CAS  PubMed  Google Scholar 

  102. Peng YJ, Overholt JL, Kline D, Kumar GK, Prabhakar NR. Induction of sensory long-term facilitation in the carotid body by intermittent hypoxia: implications for recurrent apneas. Proc Natl Acad Sci U S A. 2003;100(17):10073–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Peng YJ, Rennison J, Prabhakar NR. Intermittent hypoxia augments carotid body and ventilatory response to hypoxia in neonatal rat pups. J Appl Physiol (1985). 2004;97(5):2020–5.

    Google Scholar 

  104. Braga VA, Burmeister MA, Sharma RV, Davisson RL. Cardiovascular responses to peripheral chemoreflex activation and comparison of different methods to evaluate baroreflex gain in conscious mice using telemetry. Am J Physiol Regul Integr Comp Physiol. 2008;295(4):R1168–1174.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Guyenet PG, Stornetta RL, Bayliss DA. Retrotrapezoid nucleus and central chemoreception. J Physiol. 2008;586(8):2043–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Huang J, Lusina S, Xie T, Ji E, Xiang S, Liu Y, et al. Sympathetic response to chemostimulation in conscious rats exposed to chronic intermittent hypoxia. Respir Physiol Neurobiol. 2009;166(2):102–6.

    CAS  PubMed  Google Scholar 

  107. Del Rio R, Moya EA, Iturriaga R. Carotid body and cardiorespiratory alterations in intermittent hypoxia: the oxidative link. Eur Respir J. 2010;36(1):143–50.

    PubMed  Google Scholar 

  108. Hudson S, Johnson CD, Marshall JM. Changes in muscle sympathetic nerve activity and vascular responses evoked in the spinotrapezius muscle of the rat by systemic hypoxia. J Physiol. 2011;589(Pt 9):2401–14.

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Gonzalez-Martin MC, Vega-Agapito MV, Conde SV, Castaneda J, Bustamante R, Olea E, et al. Carotid body function and ventilatory responses in intermittent hypoxia. Evidence for anomalous brainstem integration of arterial chemoreceptor input. J Cell Physiol. 2011;226(8):1961–9.

    CAS  PubMed  Google Scholar 

  110. Lam SY, Tipoe GL, Liong EC, Fung ML. Differential expressions and roles of hypoxia-inducible factor-1alpha, -2alpha and -3alpha in the rat carotid body during chronic and intermittent hypoxia. Histol Histopathol. 2008;23(3):271–80.

    CAS  PubMed  Google Scholar 

  111. Lam SY, Liu Y, Ng KM, Lau CF, Liong EC, Tipoe GL, et al. Chronic intermittent hypoxia induces local inflammation of the rat carotid body via functional upregulation of proinflammatory cytokine pathways. Histochem Cell Biol. 2012;137(3):303–17.

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Prabhakar NR, Semenza GL. Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Physiol Rev. 2012;92(3):967–1003.

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Harper RM, Kumar R, Macey PM, Ogren JA, Richardson HL. Functional neuroanatomy and sleep-disordered breathing: implications for autonomic regulation. Anat Rec (Hoboken). 2012;295(9):1385–95.

    Google Scholar 

  114. Fletcher EC, Lesske J, Qian W, Miller 3rd CC, Unger T. Repetitive, episodic hypoxia causes diurnal elevation of blood pressure in rats. Hypertension. 1992;19(6 Pt 1):555–61.

    CAS  PubMed  Google Scholar 

  115. Fletcher EC. Invited review: physiological consequences of intermittent hypoxia: systemic blood pressure. J Appl Physiol (1985). 2001;90(4):1600–5.

    CAS  Google Scholar 

  116. Prabhakar NR, Kumar GK. Mechanisms of sympathetic activation and blood pressure elevation by intermittent hypoxia. Respir Physiol Neurobiol. 2010;174(1–2):156–61.

    PubMed Central  PubMed  Google Scholar 

  117. Garcia-Rio F, Racionero MA, Pino JM, Martinez I, Ortuno F, Villasante C, et al. Sleep apnea and hypertension. Chest. 2000;117(5):1417–25.

    CAS  PubMed  Google Scholar 

  118. Foster GE, Brugniaux JV, Pialoux V, Duggan CT, Hanly PJ, Ahmed SB, et al. Cardiovascular and cerebrovascular responses to acute hypoxia following exposure to intermittent hypoxia in healthy humans. J Physiol. 2009;587(Pt 13):3287–99.

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Heusser K, Dzamonja G, Tank J, Palada I, Valic Z, Bakovic D, et al. Cardiovascular regulation during apnea in elite divers. Hypertension. 2009;53(4):719–24.

    CAS  PubMed  Google Scholar 

  120. Steinback CD, Breskovic T, Banic I, Dujic Z, Shoemaker JK. Autonomic and cardiovascular responses to chemoreflex stress in apnoea divers. Auton Neurosci. 2010;156(1–2):138–43.

    PubMed  Google Scholar 

  121. Breskovic T, Ivancev V, Banic I, Jordan J, Dujic Z. Peripheral chemoreflex sensitivity and sympathetic nerve activity are normal in apnea divers during training season. Auton Neurosci. 2010;154(1–2):42–7.

    PubMed  Google Scholar 

  122. Kimoff RJ, Brooks D, Horner RL, Kozar LF, Render-Teixeira CL, Champagne V, et al. Ventilatory and arousal responses to hypoxia and hypercapnia in a canine model of obstructive sleep apnea. Am J Respir Crit Care Med. 1997;156(3 Pt 1):886–94.

    CAS  PubMed  Google Scholar 

  123. Grassi G, Facchini A, Trevano FQ, Dell’Oro R, Arenare F, Tana F, et al. Obstructive sleep apnea-dependent and -independent adrenergic activation in obesity. Hypertension. 2005;46(2):321–5.

    CAS  PubMed  Google Scholar 

  124. Trombetta IC, Maki-Nunes C, Toschi-Dias E, Alves MJ, Rondon MU, Cepeda FX, et al. Obstructive sleep apnea is associated with increased chemoreflex sensitivity in patients with metabolic syndrome. Sleep. 2013;36(1):41–9.

    PubMed Central  PubMed  Google Scholar 

  125. Brooks D, Horner RL, Kozar LF, Render-Teixeira CL, Phillipson EA. Obstructive sleep apnea as a cause of systemic hypertension. Evidence from a canine model. J Clin Invest. 1997;99(1):106–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Lesske J, Fletcher EC, Bao G, Unger T. Hypertension caused by chronic intermittent hypoxia–influence of chemoreceptors and sympathetic nervous system. J Hypertens. 1997;15(12 Pt 2):1593–603.

    CAS  PubMed  Google Scholar 

  127. Narkiewicz K, Somers VK. Endurance training in mild hypertension—effects on ambulatory blood pressure and neural circulatory control. Blood Press Monit. 1997;2(5):229–35.

    PubMed  Google Scholar 

  128. Trzebski A, Tafil M, Zoltowski M, Przybylski J. Increased sensitivity of the arterial chemoreceptor drive in young men with mild hypertension. Cardiovasc Res. 1982;16(3):163–72.

    CAS  PubMed  Google Scholar 

  129. Floras JS, Hara K. Sympathoneural and haemodynamic characteristics of young subjects with mild essential hypertension. J Hypertens. 1993;11(6):647–55.

    CAS  PubMed  Google Scholar 

  130. Grassi G, Seravalle G, Bertinieri G, Turri C, Dell’Oro R, Stella ML, et al. Sympathetic and reflex alterations in systo-diastolic and systolic hypertension of the elderly. J Hypertens. 2000;18(5):587–93.

    CAS  PubMed  Google Scholar 

  131. Hering D, Kucharska W, Kara T, Somers VK, Narkiewicz K. Resting sympathetic outflow does not predict the morning blood pressure surge in hypertension. J Hypertens. 2011;29(12):2381–6.

    CAS  PubMed  Google Scholar 

  132. Przybylski J. Do arterial chemoreceptors play a role in the pathogenesis of hypertension? Med Hypotheses. 1981;7(2):127–31.

    CAS  PubMed  Google Scholar 

  133. Smith P, Jago R, Heath D. Anatomical variation and quantitative histology of the normal and enlarged carotid body. J Pathol. 1982;137(4):287–304.

    CAS  PubMed  Google Scholar 

  134. Kluge P. Vascularization and morphology of carotid bodies in patients with essential hypertension. Acta Physiol Pol. 1985;36(1):76–82.

    CAS  PubMed  Google Scholar 

  135. Iturriaga R, Moya EA, Del Rio R. Cardiorespiratory alterations induced by intermittent hypoxia in a rat model of sleep apnea. Adv Exp Med Biol. 2010;669:271–4.

    PubMed  Google Scholar 

  136. Narkiewicz K, Montano N, Cogliati C, van de Borne PJ, Dyken ME, Somers VK. Altered cardiovascular variability in obstructive sleep apnea. Circulation. 1998;98(11):1071–7.

    CAS  PubMed  Google Scholar 

  137. Noda A, Yasuma F, Okada T, Yokota M. Circadian rhythm of autonomic activity in patients with obstructive sleep apnea syndrome. Clin Cardiol. 1998;21(4):271–6.

    CAS  PubMed  Google Scholar 

  138. Wiklund U, Olofsson BO, Franklin K, Blom H, Bjerle P, Niklasson U. Autonomic cardiovascular regulation in patients with obstructive sleep apnoea: a study based on spectral analysis of heart rate variability. Clin Physiol. 2000;20(3):234–41.

    CAS  PubMed  Google Scholar 

  139. Khoo MC, Kim TS, Berry RB. Spectral indices of cardiac autonomic function in obstructive sleep apnea. Sleep. 1999;22(4):443–51.

    CAS  PubMed  Google Scholar 

  140. Roche F, Court-Fortune I, Pichot V, Duverney D, Costes F, Emonot A, et al. Reduced cardiac sympathetic autonomic tone after long-term nasal continuous positive airway pressure in obstructive sleep apnoea syndrome. Clin Physiol. 1999;19(2):127–34.

    CAS  PubMed  Google Scholar 

  141. Balachandran JS, Bakker JP, Rahangdale S, Yim-Yeh S, Mietus JE, Goldberger AL, et al. Effect of mild, asymptomatic obstructive sleep apnea on daytime heart rate variability and impedance cardiography measurements. Am J Cardiol. 2012;109(1):140–5.

    PubMed Central  PubMed  Google Scholar 

  142. Frattola A, Parati G, Cuspidi C, Albini F, Mancia G. Prognostic value of 24-hour blood pressure variability. J Hypertens. 1993;11(10):1133–7.

    CAS  PubMed  Google Scholar 

  143. Fauchier L, Babuty D, Cosnay P, Autret ML, Fauchier JP. Heart rate variability in idiopathic dilated cardiomyopathy: characteristics and prognostic value. J Am Coll Cardiol. 1997;30(4):1009–14.

    CAS  PubMed  Google Scholar 

  144. Kleiger RE, Miller JP, Bigger Jr JT, Moss AJ. Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol. 1987;59(4):256–62.

    CAS  PubMed  Google Scholar 

  145. Ponikowski P, Chua TP, Piepoli M, Ondusova D, Webb-Peploe K, Harrington D, et al. Augmented peripheral chemosensitivity as a potential input to baroreflex impairment and autonomic imbalance in chronic heart failure. Circulation. 1997;96(8):2586–94.

    CAS  PubMed  Google Scholar 

  146. Leung RS. Sleep-disordered breathing: autonomic mechanisms and arrhythmias. Prog Cardiovasc Dis. 2009;51(4):324–38.

    PubMed  Google Scholar 

  147. Carlson JT, Hedner JA, Sellgren J, Elam M, Wallin BG. Depressed baroreflex sensitivity in patients with obstructive sleep apnea. Am J Respir Crit Care Med. 1996;154(5):1490–6.

    CAS  PubMed  Google Scholar 

  148. Bonsignore MR, Parati G, Insalaco G, Marrone O, Castiglioni P, Romano S, et al. Continuous positive airway pressure treatment improves baroreflex control of heart rate during sleep in severe obstructive sleep apnea syndrome. Am J Respir Crit Care Med. 2002;166(3):279–86.

    PubMed  Google Scholar 

  149. Vitela M, Herrera-Rosales M, Haywood JR, Mifflin SW. Baroreflex regulation of renal sympathetic nerve activity and heart rate in renal wrap hypertensive rats. Am J Physiol Regul Integr Comp Physiol. 2005;288(4):R856–862.

    CAS  PubMed  Google Scholar 

  150. Cooper VL, Elliott MW, Pearson SB, Taylor CM, Mohammed MM, Hainsworth R. Daytime variability of baroreflex function in patients with obstructive sleep apnoea: implications for hypertension. Exp Physiol. 2007;92(2):391–8.

    CAS  PubMed  Google Scholar 

  151. Zoccal DB, Bonagamba LG, Paton JF, Machado BH. Sympathetic-mediated hypertension of awake juvenile rats submitted to chronic intermittent hypoxia is not linked to baroreflex dysfunction. Exp Physiol. 2009;94(9):972–83.

    CAS  PubMed  Google Scholar 

  152. Eckberg DL, Eckberg MJ. Human sinus node responses to repetitive, ramped carotid baroreceptor stimuli. Am J Physiol. 1982;242(4):H638–644.

    CAS  PubMed  Google Scholar 

  153. Baekey DM, Molkov YI, Paton JF, Rybak IA, Dick TE. Effect of baroreceptor stimulation on the respiratory pattern: insights into respiratory-sympathetic interactions. Respir Physiol Neurobiol. 2010;174(1–2):135–45.

    PubMed Central  PubMed  Google Scholar 

  154. Lohmeier TE, Barrett AM, Irwin ED. Prolonged activation of the baroreflex: a viable approach for the treatment of hypertension? Curr Hypertens Rep. 2005;7(3):193–8.

    PubMed  Google Scholar 

  155. Nishida Y, Tandai-Hiruma M, Kemuriyama T, Hagisawa K. Long-term blood pressure control: is there a set-point in the brain? J Physiol Sci. 2012;62(3):147–61.

    PubMed  Google Scholar 

  156. Ling L, Fuller DD, Bach KB, Kinkead R, Olson Jr EB, Mitchell GS. Chronic intermittent hypoxia elicits serotonin-dependent plasticity in the central neural control of breathing. J Neurosci. 2001;21(14):5381–8.

    CAS  PubMed  Google Scholar 

  157. Mandel DA, Schreihofer AM. Modulation of the sympathetic response to acute hypoxia by the caudal ventrolateral medulla in rats. J Physiol. 2009;587(Pt 2):461–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  158. de Paula PM, Tolstykh G, Mifflin S. Chronic intermittent hypoxia alters NMDA and AMPA-evoked currents in NTS neurons receiving carotid body chemoreceptor inputs. Am J Physiol Regul Integr Comp Physiol. 2007;292(6):R2259–2265.

    PubMed  Google Scholar 

  159. Knight WD, Little JT, Carreno FR, Toney GM, Mifflin SW, Cunningham JT. Chronic intermittent hypoxia increases blood pressure and expression of FosB/DeltaFosB in central autonomic regions. Am J Physiol Regul Integr Comp Physiol. 2011;301(1):R131–139.

    CAS  PubMed Central  PubMed  Google Scholar 

  160. Cunningham JT, Knight WD, Mifflin SW, Nestler EJ. An Essential role for DeltaFosB in the median preoptic nucleus in the sustained hypertensive effects of chronic intermittent hypoxia. Hypertension. 2012;60(1):179–87.

    CAS  PubMed Central  PubMed  Google Scholar 

  161. Weiss JW, Liu MD, Huang J. Physiological basis for a causal relationship of obstructive sleep apnoea to hypertension. Exp Physiol. 2007;92(1):21–6.

    CAS  PubMed  Google Scholar 

  162. Ziegler MG, Milic M, Elayan H. Cardiovascular regulation in obstructive sleep apnea. Drug Discov Today Dis Models. 2011;8(4):155–60.

    PubMed Central  PubMed  Google Scholar 

  163. Pagani M, Schwartz PJ, Banks R, Lombardi F, Malliani A. Reflex responses of sympathetic preganglionic neurones initiated by different cardiovascular receptors in spinal animals. Brain Res. 1974;68(2):215–25.

    CAS  PubMed  Google Scholar 

  164. Gupta PD. Spinal autonomic afferents in elicitation of tachycardia in volume infusion in the dog. Am J Physiol. 1975;229(2):303–8.

    CAS  PubMed  Google Scholar 

  165. Sundlof GWB. Human muscle nerve sympathetic activity at rest. Relationship to blood pressure and age. J Physiol. 1978;274:621–37.

    CAS  PubMed Central  PubMed  Google Scholar 

  166. Abboud FM. Integration of reflex responses in the control of blood pressure and vascular resistance. Am J Cardiol. 1979;44(5):903–11.

    CAS  PubMed  Google Scholar 

  167. Patel HM, Heffernan MJ, Ross AJ, Muller MD. Sex differences in forearm vasoconstrictor response to voluntary apnea. Am J Physiol Heart Circ Physiol. 2014;306(3):H309–316.

    CAS  PubMed  Google Scholar 

  168. Foster GE, Poulin MJ, Hanly PJ. Intermittent hypoxia and vascular function: implications for obstructive sleep apnoea. Exp Physiol. 2007;92(1):51–65.

    PubMed  Google Scholar 

  169. Capone C, Faraco G, Coleman C, Young CN, Pickel VM, Anrather J, et al. Endothelin 1-dependent neurovascular dysfunction in chronic intermittent hypoxia. Hypertension. 2012;60(1):106–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  170. Kato M, Roberts-Thomson P, Phillips BG, Haynes WG, Winnicki M, Accurso V, et al. Impairment of endothelium-dependent vasodilation of resistance vessels in patients with obstructive sleep apnea. Circulation. 2000;102(21):2607–10.

    CAS  PubMed  Google Scholar 

  171. Feng J, Zhang D, Chen B. Endothelial mechanisms of endothelial dysfunction in patients with obstructive sleep apnea. Sleep Breath. 2012;16(2):283–94.

    PubMed  Google Scholar 

  172. Akinnusi ME, Laporta R, El-Solh AA. Lectin-like oxidized low-density lipoprotein receptor-1 modulates endothelial apoptosis in obstructive sleep apnea. Chest. 2011;140(6):1503–10.

    CAS  PubMed  Google Scholar 

  173. Kohler M, Craig S, Pepperell JC, Nicoll D, Bratton DJ, Nunn AJ, et al. CPAP improves endothelial function in patients with minimally symptomatic OSA: results from a subset study of the MOSAIC trial. Chest. 2013;144(3):896–902.

    PubMed  Google Scholar 

  174. Totoson P, Fhayli W, Faury G, Korichneva I, Cachot S, Baldazza M, et al. Atorvastatin protects against deleterious cardiovascular consequences induced by chronic intermittent hypoxia. Exp Biol Med (Maywood). 2013;238(2):223–32.

    CAS  Google Scholar 

  175. Pratt-Ubunama MN, Nishizaka MK, Boedefeld RL, Cofield SS, Harding SM, Calhoun DA. Plasma aldosterone is related to severity of obstructive sleep apnea in subjects with resistant hypertension. Chest. 2007;131(2):453–9.

    CAS  PubMed  Google Scholar 

  176. Marcus NJ, Li YL, Bird CE, Schultz HD, Morgan BJ. Chronic intermittent hypoxia augments chemoreflex control of sympathetic activity: role of the angiotensin II type 1 receptor. Respir Physiol Neurobiol. 2010;171(1):36–45.

    CAS  PubMed Central  PubMed  Google Scholar 

  177. Pimenta E, Gordon RD, Stowasser M. Salt, aldosterone and hypertension. J Hum Hypertens. 2013;27(1):1–6.

    CAS  PubMed  Google Scholar 

  178. Nunes FC, Ribeiro TP, Franca-Silva MS, Medeiros IA, Braga VA. Superoxide scavenging in the rostral ventrolateral medulla blunts the pressor response to peripheral chemoreflex activation. Brain Res. 2010;1351:141–9.

    CAS  PubMed  Google Scholar 

  179. Dettoni JL, Consolim-Colombo FM, Drager LF, Rubira MC, Souza SB, Irigoyen MC, et al. Cardiovascular effects of partial sleep deprivation in healthy volunteers. J Appl Physiol (1985). 2012;113(2):232–6.

    CAS  Google Scholar 

  180. Sunbul M, Kanar BG, Durmus E, Kivrak T, Sari I. Acute sleep deprivation is associated with increased arterial stiffness in healthy young adults. Sleep Breath. 2014;18(1):215–20.

    PubMed  Google Scholar 

  181. Mansukhani MP, Allison TG, Lopez-Jimenez F, Somers VK, Caples SM. Functional aerobic capacity in patients with sleep-disordered breathing. Am J Cardiol. 2013;111(11):1650–4.

    PubMed Central  PubMed  Google Scholar 

  182. Rizzi CF, Cintra F, Mello-Fujita L, Rios LF, Mendonca ET, Feres MC, et al. Does obstructive sleep apnea impair the cardiopulmonary response to exercise? Sleep. 2013;36(4):547–53.

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Regional Development Fund - Project FNUSAICRC (No. CZ.1.05/1.1.00/02.0123) and by grant of IGA of Ministry of Health No. NT11401-5/2011 and the National Heart, Lung, and Blood Institute of the National Institutes of Health under Award Number R01HL065176. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health

Compliance with Ethics Guidelines

Conflict of Interest

Meghna P. Mansukhani, Tomas Kara, and Sean M. Caples each declare that they have no conflict of interest.

Virend K. Somers has served as a consultant for ResMed, Respicardia, PriceWaterhouse Coopers, and SORIN. Dr. Somers has also had research support derived from a gift from the Respironics Foundation to the Mayo Foundation.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meghna P. Mansukhani.

Additional information

This article is part of the Topical Collection on Hypertension and the Brain

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansukhani, M.P., Kara, T., Caples, S.M. et al. Chemoreflexes, Sleep Apnea, and Sympathetic Dysregulation. Curr Hypertens Rep 16, 476 (2014). https://doi.org/10.1007/s11906-014-0476-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-014-0476-2

Keywords

Navigation