Skip to main content

Advertisement

Log in

Autophagy in Neurodegenerative Diseases and Metal Neurotoxicity

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Autophagy generally refers to cell catabolic and recycling process in which cytoplasmic components are delivered to lysosomes for degradation. During the last two decades, autophagy research has experienced a recent boom because of a newfound connection between this process and many human diseases. Autophagy plays a significant role in maintaining cellular homeostasis and protects cells from varying insults, including misfolded and aggregated proteins and damaged organelles, which is particularly crucial in neuronal survival. Mounting evidence has implicated autophagic dysfunction in the pathogenesis of several major neurodegenerative disorders, such as Parkinson’s disease, Alzheimer’s disease and Huntington’s disease, where deficient elimination of abnormal and toxic protein aggregates promotes cellular stress, failure and death. In addition, autophagy has also been found to affect neurotoxicity induced by exposure to essential metals, such as manganese, copper, and iron, and other heavy metals, such as cadmium, lead, and methylmercury. This review examines current literature on the role of autophagy in the mechanisms of disease pathogenesis amongst common neurodegenerative disorders and of metal-induced neurotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Klionsky DJ (2007) Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol 8:931–937

    Article  CAS  PubMed  Google Scholar 

  2. Ohsumi Y (2014) Historical landmarks of autophagy research. Cell Res 24:9–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cuervo AM, Wong E (2014) Chaperone-mediated autophagy: roles in disease and aging. Cell Res 24:92–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wong E, Cuervo AM (2010) Autophagy gone awry in neurodegenerative diseases. Nature Neurosci 13:805–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:880–884

    Article  CAS  PubMed  Google Scholar 

  8. Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizushima N (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885–889

    Article  CAS  PubMed  Google Scholar 

  9. Martinez-Vicente M (2015) Autophagy in neurodegenerative diseases: from pathogenic dysfunction to therapeutic modulation. Semin Cell Dev Biol 40:115–126

    Article  CAS  PubMed  Google Scholar 

  10. Thomas B (2009) Parkinson’s disease: from molecular pathways in disease to therapeutic approaches. Antioxid Redox Signal 11:2077–2082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mizuno Y, Hattori N, Kubo S, Sato S, Nishioka K, Hatano T, Tomiyama H, Funayama M, Machida Y, Mochizuki H (2008) Progress in the pathogenesis and genetics of Parkinson’s disease. Philos Trans R Soc Lond B Biol Sci 363:2215–2227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vogiatzi T, Xilouri M, Vekrellis K, Stefanis L (2008) Wild type alpha-synuclein is degraded by chaperone-mediated autophagy and macroautophagy in neuronal cells. J Biol Chem 283:23542–23556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Webb JL, Ravikumar B, Atkins J, Skepper JN, Rubinsztein DC (2003) Alpha-synuclein is degraded by both autophagy and the proteasome. J Biol Chem 278:25009–25013

    Article  CAS  PubMed  Google Scholar 

  14. Spencer B, Potkar R, Trejo M, Rockenstein E, Patrick C, Gindi R, Adame A, Wyss-Coray T, Masliah E (2009) Beclin 1 gene transfer activates autophagy and ameliorates the neurodegenerative pathology in alpha-synuclein models of Parkinson’s and Lewy body diseases. J Neurosci 29:13578–13588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nah J, Yuan J, Jung YK (2015) Autophagy in neurodegenerative diseases: from mechanism to therapeutic approach. Mol Cells 38:381–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ghavami S, Shojaei S, Yeganeh B, Ande SR, Jangamreddy JR, Mehrpour M, Christoffersson J, Chaabane W, Moghadam AR, Kashani HH, Hashemi M, Owji AA, Los MJ (2014) Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog Neurobiol 112:24–49

    Article  CAS  PubMed  Google Scholar 

  17. Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D (2004) Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science 305:1292–1295

    Article  CAS  PubMed  Google Scholar 

  18. Martinez-Vicente M, Talloczy Z, Kaushik S, Massey AC, Mazzulli J, Mosharov EV, Hodara R, Fredenburg R, Wu DC, Follenzi A, Dauer W, Przedborski S, Ischiropoulos H, Lansbury PT, Sulzer D, Cuervo AM (2008) Dopamine-modified alpha-synuclein blocks chaperone-mediated autophagy. J Clin Invest 118:777–788

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Shen YF, Tang Y, Zhang XJ, Huang KX, Le WD (2013) Adaptive changes in autophagy after UPS impairment in Parkinson’s disease. Acta Pharmacol Sin 34:667–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lynch-Day MA, Mao K, Wang K, Zhao M, Klionsky DJ (2012) The role of autophagy in Parkinson’s disease. Cold Spring Harb Perspect in Med 2:a009357

    Article  CAS  Google Scholar 

  21. Winslow AR, Chen CW, Corrochano S, Acevedo-Arozena A, Gordon DE, Peden AA, Lichtenberg M, Menzies FM, Ravikumar B, Imarisio S, Brown S, O’Kane CJ, Rubinsztein DC (2010) Alpha-synuclein impairs macroautophagy: implications for Parkinson’s disease. J Cell Biol 190:1023–1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dehay B, Martinez-Vicente M, Caldwell GA, Caldwell KA, Yue Z, Cookson MR, Klein C, Vila M, Bezard E (2013) Lysosomal impairment in Parkinson’s disease. Mov Disord 28:725–732

    Article  CAS  PubMed  Google Scholar 

  23. Ramirez A, Heimbach A, Grundemann J, Stiller B, Hampshire D, Cid LP, Goebel I, Mubaidin AF, Wriekat AL, Roeper J, Al-Din A, Hillmer AM, Karsak M, Liss B, Woods CG, Behrens MI, Kubisch C (2006) Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet 38:1184–1191

    Article  CAS  PubMed  Google Scholar 

  24. Dehay B, Ramirez A, Martinez-Vicente M, Perier C, Canron MH, Doudnikoff E, Vital A, Vila M, Klein C, Bezard E (2012) Loss of P-type ATPase ATP13A2/PARK9 function induces general lysosomal deficiency and leads to Parkinson disease neurodegeneration. Proc Natl Acad Sci USA 109:9611–9616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Orenstein SJ, Kuo SH, Tasset I, Arias E, Koga H, Fernandez-Carasa I, Cortes E, Honig LS, Dauer W, Consiglio A, Raya A, Sulzer D, Cuervo AM (2013) Interplay of LRRK2 with chaperone-mediated autophagy. Nat Neurosci 16:394–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kabuta T, Furuta A, Aoki S, Furuta K, Wada K (2008) Aberrant interaction between Parkinson disease-associated mutant UCH-L1 and the lysosomal receptor for chaperone-mediated autophagy. J Biol Chem 283:23731–23738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lesage S, Brice A (2009) Parkinson’s disease: from monogenic forms to genetic susceptibility factors. Hum Mol Genet 18:R48–R59

    Article  CAS  PubMed  Google Scholar 

  28. Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392:605–608

    Article  CAS  PubMed  Google Scholar 

  29. Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S, Ali Z, Del Turco D, Bentivoglio AR, Healy DG, Albanese A, Nussbaum R, Gonzalez-Maldonado R, Deller T, Salvi S, Cortelli P, Gilks WP, Latchman DS, Harvey RJ, Dallapiccola B, Auburger G, Wood NW (2004) Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304:1158–1160

    Article  CAS  PubMed  Google Scholar 

  30. Vives-Bauza C, Zhou C, Huang Y, Cui M, de Vries RL, Kim J, May J, Tocilescu MA, Liu W, Ko HS, Magrane J, Moore DJ, Dawson VL, Grailhe R, Dawson TM, Li C, Tieu K, Przedborski S (2010) PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci USA 107:378–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Narendra D, Tanaka A, Suen DF, Youle RJ (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183:795–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. de Vries RL, Przedborski S (2013) Mitophagy and Parkinson’s disease: be eaten to stay healthy. Mol Cell Neurosci 55:37–43

    Article  PubMed  CAS  Google Scholar 

  33. Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K, Gautier CA, Sou YS, Saiki S, Kawajiri S, Sato F, Kimura M, Komatsu M, Hattori N, Tanaka K (2010) PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol 189:211–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang X, Winter D, Ashrafi G, Schlehe J, Wong YL, Selkoe D, Rice S, Steen J, LaVoie MJ, Schwarz TL (2011) PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 147:893–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee JY, Nagano Y, Taylor JP, Lim KL, Yao TP (2010) Disease-causing mutations in parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy. J Cell Biol 189:671–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Song S, Jang S, Park J, Bang S, Choi S, Kwon KY, Zhuang X, Kim E, Chung J (2013) Characterization of PINK1 (PTEN-induced putative kinase 1) mutations associated with Parkinson disease in mammalian cells and Drosophila. J Biol Chem 288:5660–5672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang JD, Cao YL, Li Q, Yang YP, Jin M, Chen D, Wang F, Wang GH, Qin ZH, Hu LF, Liu CF (2015) A pivotal role of FOS-mediated BECN1/Beclin 1 upregulation in dopamine D2 and D3 receptor agonist-induced autophagy activation. Autophagy 11:2057–2073

    Article  CAS  PubMed  Google Scholar 

  38. Kim C, Rockenstein E, Spencer B, Kim HK, Adame A, Trejo M, Stafa K, Lee HJ, Lee SJ, Masliah E (2015) Antagonizing neuronal toll-like receptor 2 prevents synucleinopathy by activating autophagy. Cell Rep 13:771–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jiang T, Yu JT, Tian Y, Tan L (2013) Epidemiology and etiology of Alzheimer’s disease: from genetic to non-genetic factors. Curr Alzheimer Res 10:852–867

    Article  CAS  PubMed  Google Scholar 

  40. Cheung ZH, Ip NY (2011) Autophagy deregulation in neurodegenerative diseases—recent advances and future perspectives. J Neurochem 118:317–325

    Article  CAS  PubMed  Google Scholar 

  41. Price DL, Tanzi RE, Borchelt DR, Sisodia SS (1998) Alzheimer’s disease: genetic studies and transgenic models. Annu Rev Genet 32:461–493

    Article  CAS  PubMed  Google Scholar 

  42. Nixon RA, Wegiel J, Kumar A, Yu WH, Peterhoff C, Cataldo A, Cuervo AM (2005) Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol 64:113–122

    Article  PubMed  Google Scholar 

  43. Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G, Ikeda M, Chi H, Lin C, Li G, Holman K, Tsuda T, Mar L, Foncin JF, Bruni AC, Montesi MP, Sorbi S, Rainero I, Pinessi L, Nee L, Chumakov I, Pollen D, Brookes A, Sanseau P, Polinsky RJ, Wasco W, Da Silva HA, Haines JL, Perkicak-Vance MA, Tanzi RE, Roses AD, Fraser PE, Rommens JM, St George-Hyslop PH (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 375:754–760

    Article  CAS  PubMed  Google Scholar 

  44. Lee JH, Yu WH, Kumar A, Lee S, Mohan PS, Peterhoff CM, Wolfe DM, Martinez-Vicente M, Massey AC, Sovak G, Uchiyama Y, Westaway D, Cuervo AM, Nixon RA (2010) Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 141:1146–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Boland B, Kumar A, Lee S, Platt FM, Wegiel J, Yu WH, Nixon RA (2008) Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer’s disease. J Neurosci Off J Soc Neurosci 28:6926–6937

    Article  CAS  Google Scholar 

  46. Nixon RA (2007) Autophagy, amyloidogenesis and Alzheimer disease. J Cell Sci 120:4081–4091

    Article  CAS  PubMed  Google Scholar 

  47. Ulamek-Koziol M, Furmaga-Jablonska W, Januszewski S, Brzozowska J, Scislewska M, Jablonski M, Pluta R (2013) Neuronal autophagy: self-eating or self-cannibalism in Alzheimer’s disease. Neurochem Res 38:1769–1773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yu WH, Cuervo AM, Kumar A, Peterhoff CM, Schmidt SD, Lee JH, Mohan PS, Mercken M, Farmery MR, Tjernberg LO, Jiang Y, Duff K, Uchiyama Y, Naslund J, Mathews PM, Cataldo AM, Nixon RA (2005) Macroautophagy—a novel beta-amyloid peptide-generating pathway activated in Alzheimer’s disease. J Cell Biol 171:87–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hamano T, Gendron TF, Causevic E, Yen SH, Lin WL, Isidoro C, Deture M, Ko LW (2008) Autophagic-lysosomal perturbation enhances tau aggregation in transfectants with induced wild-type tau expression. Eur J Neurosci 27:1119–1130

    Article  PubMed  Google Scholar 

  50. Berger Z, Ravikumar B, Menzies FM, Oroz LG, Underwood BR, Pangalos MN, Schmitt I, Wullner U, Evert BO, O’Kane CJ, Rubinsztein DC (2006) Rapamycin alleviates toxicity of different aggregate-prone proteins. Hum Mol Genet 15:433–442

    Article  CAS  PubMed  Google Scholar 

  51. Caccamo A, Majumder S, Richardson A, Strong R, Oddo S (2010) Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-beta, and tau: effects on cognitive impairments. J Biol Chem 285:13107–13120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jaeger PA, Pickford F, Sun CH, Lucin KM, Masliah E, Wyss-Coray T (2010) Regulation of amyloid precursor protein processing by the Beclin 1 complex. PLoS One 5:e11102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Small SA, Kent K, Pierce A, Leung C, Kang MS, Okada H, Honig L, Vonsattel JP, Kim TW (2005) Model-guided microarray implicates the retromer complex in Alzheimer’s disease. Ann Neurol 58:909–919

    Article  CAS  PubMed  Google Scholar 

  54. Rohn TT, Wirawan E, Brown RJ, Harris JR, Masliah E, Vandenabeele P (2011) Depletion of Beclin-1 due to proteolytic cleavage by caspases in the Alzheimer’s disease brain. Neurobiol Dis 43:68–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pickford F, Masliah E, Britschgi M, Lucin K, Narasimhan R, Jaeger PA, Small S, Spencer B, Rockenstein E, Levine B, Wyss-Coray T (2008) The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. J Clin Invest 118:2190–2199

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Yue Z, Friedman L, Komatsu M, Tanaka K (2009) The cellular pathways of neuronal autophagy and their implication in neurodegenerative diseases. Biochim Biophys Acta 1793:1496–1507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dong XX, Wang Y, Qin ZH (2009) Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol Sin 30:379–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Borsello T, Croquelois K, Hornung JP, Clarke PG (2003) N-methyl-d-aspartate-triggered neuronal death in organotypic hippocampal cultures is endocytic, autophagic and mediated by the c-Jun N-terminal kinase pathway. Eur J Neurosci 18:473–485

    Article  PubMed  Google Scholar 

  59. Wang Y, Wang W, Li D, Li M, Wang P, Wen J, Liang M, Su B, Yin Y (2014) IGF-1 alleviates NMDA-induced excitotoxicity in cultured hippocampal neurons against autophagy via the NR2B/PI3K-AKT-mTOR pathway. J Cell Physiol 229:1618–1629

    Article  CAS  PubMed  Google Scholar 

  60. Lee S, Sato Y, Nixon RA (2011) Lysosomal proteolysis inhibition selectively disrupts axonal transport of degradative organelles and causes an Alzheimer’s-like axonal dystrophy. J Neurosci Off J Soc Neurosci 31:7817–7830

    Article  CAS  Google Scholar 

  61. Li SH, Li XJ (2004) Huntingtin–protein interactions and the pathogenesis of Huntington’s disease. Trends Genet 20:146–154

    Article  PubMed  CAS  Google Scholar 

  62. Jeong H, Then F, Melia TJ Jr, Mazzulli JR, Cui L, Savas JN, Voisine C, Paganetti P, Tanese N, Hart AC, Yamamoto A, Krainc D (2009) Acetylation targets mutant huntingtin to autophagosomes for degradation. Cell 137:60–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bauer PO, Goswami A, Wong HK, Okuno M, Kurosawa M, Yamada M, Miyazaki H, Matsumoto G, Kino Y, Nagai Y, Nukina N (2010) Harnessing chaperone-mediated autophagy for the selective degradation of mutant huntingtin protein. Nat Biotechnol 28:256–263

    Article  CAS  PubMed  Google Scholar 

  64. Zheng S, Clabough EB, Sarkar S, Futter M, Rubinsztein DC, Zeitlin SO (2010) Deletion of the huntingtin polyglutamine stretch enhances neuronal autophagy and longevity in mice. PLoS Genet 6:e1000838

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, Scaravilli F, Easton DF, Duden R, O’Kane CJ, Rubinsztein DC (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36:585–595

    Article  CAS  PubMed  Google Scholar 

  66. Schmelzle T, Hall MN (2000) TOR, a central controller of cell growth. Cell 103:253–262

    Article  CAS  PubMed  Google Scholar 

  67. Martinez-Vicente M, Talloczy Z, Wong E, Tang G, Koga H, Kaushik S, de Vries R, Arias E, Harris S, Sulzer D, Cuervo AM (2010) Cargo recognition failure is responsible for inefficient autophagy in Huntington’s disease. Nat Neurosci 13:567–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Shibata M, Lu T, Furuya T, Degterev A, Mizushima N, Yoshimori T, MacDonald M, Yankner B, Yuan J (2006) Regulation of intracellular accumulation of mutant Huntingtin by Beclin 1. J Biol Chem 281:14474–14485

    Article  CAS  PubMed  Google Scholar 

  69. Farina M, Avila DS, da Rocha JB, Aschner M (2013) Metals, oxidative stress and neurodegeneration: a focus on iron, manganese and mercury. Neurochem Int 62:575–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chatterjee S, Sarkar S, Bhattacharya S (2014) Toxic metals and autophagy. Chem Res Toxicol 27:1887–1900

    Article  CAS  PubMed  Google Scholar 

  71. Bowman AB, Kwakye GF, Herrero Hernandez E, Aschner M (2011) Role of manganese in neurodegenerative diseases. J Trace Elem Med Biol Organ Soc Miner Trace Elem 25:191–203

    Article  CAS  Google Scholar 

  72. Sidoryk-Wegrzynowicz M, Aschner M (2013) Manganese toxicity in the central nervous system: the glutamine/glutamate-gamma-aminobutyric acid cycle. J Intern Med 273:466–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Au C, Benedetto A, Aschner M (2008) Manganese transport in eukaryotes: the role of DMT1. Neurotoxicology 29:569–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Martinez-Finley EJ, Gavin CE, Aschner M, Gunter TE (2013) Manganese neurotoxicity and the role of reactive oxygen species. Free Radic Biol Med 62:65–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Aschner M, Guilarte TR, Schneider JS, Zheng W (2007) Manganese: Recent advances in understanding its transport and neurotoxicity. Toxicol Appl Pharmacol 221:131–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Finkelstein Y, Milatovic D, Aschner M (2007) Modulation of cholinergic systems by manganese. Neurotoxicology 28:1003–1014

    Article  CAS  PubMed  Google Scholar 

  77. Huang CC, Weng YH, Lu CS, Chu NS, Yen TC (2003) Dopamine transporter binding in chronic manganese intoxication. J Neurol 250:1335–1339

    Article  CAS  PubMed  Google Scholar 

  78. McDougall SA, Reichel CM, Farley CM, Flesher MM, Der-Ghazarian T, Cortez AM, Wacan JJ, Martinez CE, Varela FA, Butt AE, Crawford CA (2008) Postnatal manganese exposure alters dopamine transporter function in adult rats: potential impact on nonassociative and associative processes. Neuroscience 154:848–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhang J, Cao R, Cai T, Aschner M, Zhao F, Yao T, Chen Y, Cao Z, Luo W, Chen J (2013) The role of autophagy dysregulation in manganese-induced dopaminergic neurodegeneration. Neurotox Res 24:478–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gorojod RM, Alaimo A, Porte Alcon S, Pomilio C, Saravia F, Kotler ML (2015) The autophagic-lysosomal pathway determines the fate of glial cells under manganese-induced oxidative stress conditions. Free Radic Biol Med. doi:10.1016/j.freeradbiomed.2015.06.034

    PubMed  Google Scholar 

  81. Afeseh Ngwa H, Kanthasamy A, Gu Y, Fang N, Anantharam V, Kanthasamy AG (2011) Manganese nanoparticle activates mitochondrial dependent apoptotic signaling and autophagy in dopaminergic neuronal cells. Toxicol Appl Pharmacol 256:227–240

    Article  CAS  PubMed  Google Scholar 

  82. Scheiber IF, Dringen R (2013) Astrocyte functions in the copper homeostasis of the brain. Neurochem Int 62:556–565

    Article  CAS  PubMed  Google Scholar 

  83. Scheiber IF, Mercer JF, Dringen R (2014) Metabolism and functions of copper in brain. Prog Neurobiol 116:33–57

    Article  CAS  PubMed  Google Scholar 

  84. Rivera-Mancia S, Perez-Neri I, Rios C, Tristan-Lopez L, Rivera-Espinosa L, Montes S (2010) The transition metals copper and iron in neurodegenerative diseases. Chem Biol Interact 186:184–199

    Article  CAS  PubMed  Google Scholar 

  85. Davies P, Wang X, Sarell CJ, Drewett A, Marken F, Viles JH, Brown DR (2011) The synucleins are a family of redox-active copper binding proteins. Biochemistry 50:37–47

    Article  CAS  PubMed  Google Scholar 

  86. Dudzik CG, Walter ED, Abrams BS, Jurica MS, Millhauser GL (2013) Coordination of copper to the membrane-bound form of alpha-synuclein. Biochemistry 52:53–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Xiao G, Fan Q, Wang X, Zhou B (2013) Huntington disease arises from a combinatory toxicity of polyglutamine and copper binding. Proc Natl Acad Sci USA 110:14995–15000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Paris I, Perez-Pastene C, Couve E, Caviedes P, Ledoux S, Segura-Aguilar J (2009) Copper dopamine complex induces mitochondrial autophagy preceding caspase-independent apoptotic cell death. J Biol Chem 284:13306–13315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Anandhan A, Rodriguez-Rocha H, Bohovych I, Griggs AM, Zavala-Flores L, Reyes-Reyes EM, Seravalli J, Stanciu LA, Lee J, Rochet J, Khalimonchuk O, Franco R (2014) Overexpression of alpha-synuclein at non-toxic levels increases dopaminergic cell death induced by copper exposure via modulation of protein degradation pathways. Neurobiol Dis 81:76–92

  90. Trejo-Solis C, Jimenez-Farfan D, Rodriguez-Enriquez S, Fernandez-Valverde F, Cruz-Salgado A, Ruiz-Azuara L, Sotelo J (2012) Copper compound induces autophagy and apoptosis of glioma cells by reactive oxygen species and JNK activation. BMC Cancer 12:156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhong W, Zhu H, Sheng F, Tian Y, Zhou J, Chen Y, Li S, Lin J (2014) Activation of the MAPK11/12/13/14 (p38 MAPK) pathway regulates the transcription of autophagy genes in response to oxidative stress induced by a novel copper complex in HeLa cells. Autophagy 10:1285–1300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Guo WJ, Ye SS, Cao N, Huang J, Gao J, Chen QY (2010) ROS-mediated autophagy was involved in cancer cell death induced by novel copper(II) complex. Exp Toxicol Pathol 62:577–582

    Article  CAS  PubMed  Google Scholar 

  93. Biasiotto G, Di Lorenzo D, Archetti S, Zanella I (2015) Iron and neurodegeneration: is ferritinophagy the link? Mol Neurobiol. doi:10.1007/s12035-015-9473-y

    PubMed  Google Scholar 

  94. Sheftel AD, Mason AB, Ponka P (2012) The long history of iron in the Universe and in health and disease. Biochim Biophys Acta 1820:161–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Batista-Nascimento L, Pimentel C, Menezes RA, Rodrigues-Pousada C (2012) Iron and neurodegeneration: from cellular homeostasis to disease. Oxid Med Cell Longev 2012:128647

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Hayflick SJ, Kruer MC, Gregory A, Haack TB, Kurian MA, Houlden HH, Anderson J, Boddaert N, Sanford L, Harik SI, Dandu VH, Nardocci N, Zorzi G, Dunaway T, Tarnopolsky M, Skinner S, Holden KR, Frucht S, Hanspal E, Schrander-Stumpel C, Mignot C, Heron D, Saunders DE, Kaminska M, Lin JP, Lascelles K, Cuno SM, Meyer E, Garavaglia B, Bhatia K, de Silva R, Crisp S, Lunt P, Carey M, Hardy J, Meitinger T, Prokisch H, Hogarth P (2013) Beta-propeller protein-associated neurodegeneration: a new X-linked dominant disorder with brain iron accumulation. Brain J Neurol 136:1708–1717

    Article  Google Scholar 

  97. Saitsu H, Nishimura T, Muramatsu K, Kodera H, Kumada S, Sugai K, Kasai-Yoshida E, Sawaura N, Nishida H, Hoshino A, Ryujin F, Yoshioka S, Nishiyama K, Kondo Y, Tsurusaki Y, Nakashima M, Miyake N, Arakawa H, Kato M, Mizushima N, Matsumoto N (2013) De novo mutations in the autophagy gene WDR45 cause static encephalopathy of childhood with neurodegeneration in adulthood. Nat Genet 45:445–449, 449e441

    Article  CAS  PubMed  Google Scholar 

  98. Meyer E, Kurian MA, Hayflick SJ (2015) Neurodegeneration with brain iron accumulation: genetic diversity and pathophysiological mechanisms. Annu Rev Genomics Hum Genet 16:257–279

    Article  CAS  PubMed  Google Scholar 

  99. He Y, Wan S, Hua Y, Keep RF, Xi G (2008) Autophagy after experimental intracerebral hemorrhage. J Cereb Blood Flow Metab 28:897–905

    Article  CAS  PubMed  Google Scholar 

  100. Chen CW, Chen TY, Tsai KL, Lin CL, Yokoyama KK, Lee WS, Chiueh CC, Hsu C (2012) Inhibition of autophagy as a therapeutic strategy of iron-induced brain injury after hemorrhage. Autophagy 8:1510–1520

    Article  CAS  PubMed  Google Scholar 

  101. Zukor H, Song W, Liberman A, Mui J, Vali H, Fillebeen C, Pantopoulos K, Wu TD, Guerquin-Kern JL, Schipper HM (2009) HO-1-mediated macroautophagy: a mechanism for unregulated iron deposition in aging and degenerating neural tissues. J Neurochem 109:776–791

    Article  CAS  PubMed  Google Scholar 

  102. Chew KC, Ang ET, Tai YK, Tsang F, Lo SQ, Ong E, Ong WY, Shen HM, Lim KL, Dawson VL, Dawson TM, Soong TW (2011) Enhanced autophagy from chronic toxicity of iron and mutant A53T alpha-synuclein: implications for neuronal cell death in Parkinson disease. J Biol Chem 286:33380–33389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kamalinia G, Khodagholi F, Atyabi F, Amini M, Shaerzadeh F, Sharifzadeh M, Dinarvand R (2013) Enhanced brain delivery of deferasirox–lactoferrin conjugates for iron chelation therapy in neurodegenerative disorders: in vitro and in vivo studies. Mol Pharm 10:4418–4431

    Article  CAS  PubMed  Google Scholar 

  104. Prohaska R, Sibon OC, Rudnicki DD, Danek A, Hayflick SJ, Verhaag EM, Vonk JJ, Margolis RL, Walker RH (2012) Brain, blood, and iron: perspectives on the roles of erythrocytes and iron in neurodegeneration. Neurobiol Dis 46:607–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Colombelli C, Aoun M, Tiranti V (2015) Defective lipid metabolism in neurodegeneration with brain iron accumulation (NBIA) syndromes: not only a matter of iron. J Inherit Metab Dis 38:123–136

    Article  CAS  PubMed  Google Scholar 

  106. Castino R, Fiorentino I, Cagnin M, Giovia A, Isidoro C (2011) Chelation of lysosomal iron protects dopaminergic SH-SY5Y neuroblastoma cells from hydrogen peroxide toxicity by precluding autophagy and Akt dephosphorylation. Toxicol Sci 123:523–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sakaida I, Kyle ME, Farber JL (1990) Autophagic degradation of protein generates a pool of ferric iron required for the killing of cultured hepatocytes by an oxidative stress. Mol Pharmacol 37:435–442

    CAS  PubMed  Google Scholar 

  108. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, Morrison B 3rd, Stockwell BR (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149:1060–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Fuchs Y, Steller H (2015) Live to die another way: modes of programmed cell death and the signals emanating from dying cells. Nat Rev Mol Cell Biol 16:329–344

    Article  CAS  PubMed  Google Scholar 

  110. Chen L, Liu L, Huang S (2008) Cadmium activates the mitogen-activated protein kinase (MAPK) pathway via induction of reactive oxygen species and inhibition of protein phosphatases 2A and 5. Free Radic Biol Med 45:1035–1044

    Article  CAS  PubMed  Google Scholar 

  111. Manca D, Ricard AC, Tra HV, Chevalier G (1994) Relation between lipid peroxidation and inflammation in the pulmonary toxicity of cadmium. Arch Toxicol 68:364–369

    Article  CAS  PubMed  Google Scholar 

  112. Torra M, To-Figueras J, Rodamilans M, Brunet M, Corbella J (1995) Cadmium and zinc relationships in the liver and kidney of humans exposed to environmental cadmium. Sci Total Environ 170:53–57

    Article  CAS  PubMed  Google Scholar 

  113. Goering PL, Fisher BR, Kish CL (1993) Stress protein synthesis induced in rat liver by cadmium precedes hepatotoxicity. Toxicol Appl Pharmacol 122:139–148

    Article  CAS  PubMed  Google Scholar 

  114. Oliveira H, Lopes T, Almeida T, Pereira Mde L, Santos C (2012) Cadmium-induced genetic instability in mice testis. Hum Exp Toxicol 31:1228–1236

    Article  PubMed  CAS  Google Scholar 

  115. Akesson A, Bjellerup P, Lundh T, Lidfeldt J, Nerbrand C, Samsioe G, Skerfving S, Vahter M (2006) Cadmium-induced effects on bone in a population-based study of women. Environ Health Perspect 114:830–834

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Sarkar S, Yadav P, Bhatnagar D (1997) Cadmium-induced lipid peroxidation and the antioxidant system in rat erythrocytes: the role of antioxidants. J Trace Elem Med Biol 11:8–13

    Article  CAS  PubMed  Google Scholar 

  117. Baxter LC, Sparks DL, Johnson SC, Lenoski B, Lopez JE, Connor DJ, Sabbagh MN (2006) Relationship of cognitive measures and gray and white matter in Alzheimer’s disease. J Alzheimer’s Dis JAD 9:253–260

    PubMed  Google Scholar 

  118. Wang B, Du Y (2013) Cadmium and its neurotoxic effects. Oxid Med Cell Longev 2013:898034

    PubMed  PubMed Central  Google Scholar 

  119. Chen S, Xu Y, Xu B, Guo M, Zhang Z, Liu L, Ma H, Chen Z, Luo Y, Huang S, Chen L (2011) CaMKII is involved in cadmium activation of MAPK and mTOR pathways leading to neuronal cell death. J Neurochem 119:1108–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Yuan Y, Jiang CY, Xu H, Sun Y, Hu FF, Bian JC, Liu XZ, Gu JH, Liu ZP (2013) Cadmium-induced apoptosis in primary rat cerebral cortical neurons culture is mediated by a calcium signaling pathway. PLoS ONE 8:e64330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Xu B, Chen S, Luo Y, Chen Z, Liu L, Zhou H, Chen W, Shen T, Han X, Chen L, Huang S (2011) Calcium signaling is involved in cadmium-induced neuronal apoptosis via induction of reactive oxygen species and activation of MAPK/mTOR network. PLoS One 6:e19052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Shukla GS, Hussain T, Chandra SV (1987) Possible role of regional superoxide dismutase activity and lipid peroxide levels in cadmium neurotoxicity: in vivo and in vitro studies in growing rats. Life Sci 41:2215–2221

    Article  CAS  PubMed  Google Scholar 

  123. Figueiredo-Pereira ME, Yakushin S, Cohen G (1998) Disruption of the intracellular sulfhydryl homeostasis by cadmium-induced oxidative stress leads to protein thiolation and ubiquitination in neuronal cells. J Biol Chem 273:12703–12709

    Article  CAS  PubMed  Google Scholar 

  124. Rajanna B, Hobson M, Boykin M, Chetty CS (1990) Effects of chronic treatment with cadmium on ATPases, uptake of catecholamines, and lipid peroxidation in rat brain synaptosomes. Ecotoxicol Environ Saf 20:36–41

    Article  CAS  PubMed  Google Scholar 

  125. Borisova T, Krisanova N, Sivko R, Kasatkina L, Borysov A, Griffin S, Wireman M (2011) Presynaptic malfunction: the neurotoxic effects of cadmium and lead on the proton gradient of synaptic vesicles and glutamate transport. Neurochem Int 59:272–279

    Article  CAS  PubMed  Google Scholar 

  126. Ali MM, Mathur N, Chandra SV (1990) Effect of chronic cadmium exposure on locomotor behaviour of rats. Indian J Exp Biol 28:653–656

    CAS  PubMed  Google Scholar 

  127. Gutierrez-Reyes EY, Albores A, Rios C (1998) Increase of striatal dopamine release by cadmium in nursing rats and its prevention by dexamethasone-induced metallothionein. Toxicology 131:145–154

    Article  CAS  PubMed  Google Scholar 

  128. Del Pino J, Zeballos G, Anadon MJ, Capo MA, Diaz MJ, Garcia J, Frejo MT (2014) Higher sensitivity to cadmium induced cell death of basal forebrain cholinergic neurons: a cholinesterase dependent mechanism. Toxicology 325:151–159

    Article  PubMed  CAS  Google Scholar 

  129. Okuda B, Iwamoto Y, Tachibana H, Sugita M (1997) Parkinsonism after acute cadmium poisoning. Clin Neurol Neurosurg 99:263–265

    Article  CAS  PubMed  Google Scholar 

  130. Li X, Lv Y, Yu S, Zhao H, Yao L (2012) The effect of cadmium on Abeta levels in APP/PS1 transgenic mice. Exp Ther Med 4:125–130

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Jiang LF, Yao TM, Zhu ZL, Wang C, Ji LN (2007) Impacts of Cd(II) on the conformation and self-aggregation of Alzheimer’s tau fragment corresponding to the third repeat of microtubule-binding domain. Biochim Biophys Acta 1774:1414–1421

    Article  CAS  PubMed  Google Scholar 

  132. Bar-Sela S, Reingold S, Richter ED (2001) Amyotrophic lateral sclerosis in a battery-factory worker exposed to cadmium. Int J Occup Environ Health 7:109–112

    Article  CAS  PubMed  Google Scholar 

  133. Wang Q, Zhu J, Zhang K, Jiang C, Wang Y, Yuan Y, Bian J, Liu X, Gu J, Liu Z (2013) Induction of cytoprotective autophagy in PC-12 cells by cadmium. Biochem Biophys Res Commun 438:186–192

    Article  CAS  PubMed  Google Scholar 

  134. Zou H, Zhuo L, Han T, Hu D, Yang X, Wang Y, Yuan Y, Gu J, Bian J, Liu X, Liu Z (2015) Autophagy and gap junctional intercellular communication inhibition are involved in cadmium-induced apoptosis in rat liver cells. Biochem Biophys Res Commun 459:713–719

    Article  CAS  PubMed  Google Scholar 

  135. Wang T, Wang Q, Song R, Zhang Y, Zhang K, Yuan Y, Bian J, Liu X, Gu J, Liu Z (2015) Autophagy plays a cytoprotective role during cadmium-induced oxidative damage in primary neuronal cultures. Biol Trace Elem Res 168(2):481–489

  136. Dong Z, Wang L, Xu J, Li Y, Zhang Y, Zhang S, Miao J (2009) Promotion of autophagy and inhibition of apoptosis by low concentrations of cadmium in vascular endothelial cells. Toxicol In Vitro 23:105–110

    Article  CAS  PubMed  Google Scholar 

  137. Surolia R, Karki S, Kim H, Yu Z, Kulkarni T, Mirov SB, Carter AB, Rowe SM, Matalon S, Thannickal VJ, Agarwal A, Antony VB (2015) Heme oxygenase-1-mediated autophagy protects against pulmonary endothelial cell death and development of emphysema in cadmium-treated mice. Am J Physiol Lung Cell Mol Physiol 309:L280–L292

    Article  CAS  PubMed  Google Scholar 

  138. Lim SC, Hahm KS, Lee SH, Oh SH (2010) Autophagy involvement in cadmium resistance through induction of multidrug resistance-associated protein and counterbalance of endoplasmic reticulum stress WI38 lung epithelial fibroblast cells. Toxicology 276:18–26

    Article  CAS  PubMed  Google Scholar 

  139. Chargui A, Zekri S, Jacquillet G, Rubera I, Ilie M, Belaid A, Duranton C, Tauc M, Hofman P, Poujeol P, El May MV, Mograbi B (2011) Cadmium-induced autophagy in rat kidney: an early biomarker of subtoxic exposure. Toxicol Sci 121:31–42

    Article  CAS  PubMed  Google Scholar 

  140. Son YO, Wang X, Hitron JA, Zhang Z, Cheng S, Budhraja A, Ding S, Lee JC, Shi X (2011) Cadmium induces autophagy through ROS-dependent activation of the LKB1–AMPK signaling in skin epidermal cells. Toxicol Appl Pharmacol 255:287–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Wang SH, Shih YL, Ko WC, Wei YH, Shih CM (2008) Cadmium-induced autophagy and apoptosis are mediated by a calcium signaling pathway. Cell Mol Life Sci CMLS 65:3640–3652

    Article  CAS  PubMed  Google Scholar 

  142. Wang SH, Shih YL, Kuo TC, Ko WC, Shih CM (2009) Cadmium toxicity toward autophagy through ROS-activated GSK-3beta in mesangial cells. Toxicol Sci 108:124–131

    Article  CAS  PubMed  Google Scholar 

  143. Wei X, Qi Y, Zhang X, Qiu Q, Gu X, Tao C, Huang D, Zhang Y (2014) Cadmium induces mitophagy through ROS-mediated PINK1/Parkin pathway. Toxicol Mech Methods 24:504–511

    Article  CAS  PubMed  Google Scholar 

  144. Pi H, Xu S, Zhang L, Guo P, Li Y, Xie J, Tian L, He M, Lu Y, Li M, Zhang Y, Zhong M, Xiang Y, Deng L, Zhou Z, Yu Z (2013) Dynamin 1-like-dependent mitochondrial fission initiates overactive mitophagy in the hepatotoxicity of cadmium. Autophagy 9:1780–1800

    Article  CAS  PubMed  Google Scholar 

  145. Oteiza PI, Mackenzie GG, Verstraeten SV (2004) Metals in neurodegeneration: involvement of oxidants and oxidant-sensitive transcription factors. Mol Aspects Med 25:103–115

    Article  CAS  PubMed  Google Scholar 

  146. White LD, Cory-Slechta DA, Gilbert ME, Tiffany-Castiglioni E, Zawia NH, Virgolini M, Rossi-George A, Lasley SM, Qian YC, Basha MR (2007) New and evolving concepts in the neurotoxicology of lead. Toxicol Appl Pharmacol 225:1–27

    Article  CAS  PubMed  Google Scholar 

  147. Liu J, Gao D, Chen Y, Jing J, Hu Q, Chen Y (2014) Lead exposure at each stage of pregnancy and neurobehavioral development of neonates. Neurotoxicology 44:1–7

    Article  PubMed  CAS  Google Scholar 

  148. Bijoor AR, Sudha S, Venkatesh T (2012) Neurochemical and neurobehavioral effects of low lead exposure on the developing brain. Indian J Clin Biochem IJCB 27:147–151

    Article  CAS  PubMed  Google Scholar 

  149. Geng F, Mai X, Zhan J, Xu L, Shao J, Meeker J, Lozoff B (2014) Low-level prenatal lead exposure alters auditory recognition memory in 2-month-old infants: an event-related potentials (ERPs) study. Dev Neuropsychol 39:516–528

    Article  PubMed  PubMed Central  Google Scholar 

  150. Ethier AA, Muckle G, Bastien C, Dewailly E, Ayotte P, Arfken C, Jacobson SW, Jacobson JL, Saint-Amour D (2012) Effects of environmental contaminant exposure on visual brain development: a prospective electrophysiological study in school-aged children. Neurotoxicology 33:1075–1085

    Article  CAS  PubMed  Google Scholar 

  151. Borja-Aburto VH, Hertz-Picciotto I, Rojas Lopez M, Farias P, Rios C, Blanco J (1999) Blood lead levels measured prospectively and risk of spontaneous abortion. Am J Epidemiol 150:590–597

    Article  CAS  PubMed  Google Scholar 

  152. Jelliffe-Pawlowski LL, Miles SQ, Courtney JG, Materna B, Charlton V (2006) Effect of magnitude and timing of maternal pregnancy blood lead (Pb) levels on birth outcomes. J Perinatol 26:154–162

    Article  CAS  PubMed  Google Scholar 

  153. Gonzalez-Cossio T, Peterson KE, Sanin LH, Fishbein E, Palazuelos E, Aro A, Hernandez-Avila M, Hu H (1997) Decrease in birth weight in relation to maternal bone-lead burden. Pediatrics 100:856–862

    Article  CAS  PubMed  Google Scholar 

  154. Mason LH, Harp JP, Han DY (2014) Pb neurotoxicity: neuropsychological effects of lead toxicity. Biomed Res Int 2014:840547

    PubMed  PubMed Central  Google Scholar 

  155. Neal AP, Guilarte TR (2010) Molecular neurobiology of lead (Pb(2+)): effects on synaptic function. Mol Neurobiol 42:151–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Marchetti C (2003) Molecular targets of lead in brain neurotoxicity. Neurotox Res 5:221–236

    Article  PubMed  Google Scholar 

  157. Nava-Ruiz C, Mendez-Armenta M, Rios C (2012) Lead neurotoxicity: effects on brain nitric oxide synthase. J Mol Histol 43:553–563

    Article  CAS  PubMed  Google Scholar 

  158. Chin-Chan M, Navarro-Yepes J, Quintanilla-Vega B (2015) Environmental pollutants as risk factors for neurodegenerative disorders: Alzheimer and Parkinson diseases. Front Cell Neurosci 9:124

    Article  PubMed  PubMed Central  Google Scholar 

  159. Zhang J, Cai T, Zhao F, Yao T, Chen Y, Liu X, Luo W, Chen J (2012) The role of alpha-synuclein and tau hyperphosphorylation-mediated autophagy and apoptosis in lead-induced learning and memory injury. Int J Biol Sci 8:935–944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Sui L, Zhang RH, Zhang P, Yun KL, Zhang HC, Liu L, Hu MX (2015) Lead toxicity induces autophagy to protect against cell death through mTORC1 pathway in cardiofibroblasts. Biosci Rep. doi:10.1042/BSR20140164

    PubMed  PubMed Central  Google Scholar 

  161. Parks JM, Johs A, Podar M, Bridou R, Hurt RA Jr, Smith SD, Tomanicek SJ, Qian Y, Brown SD, Brandt CC, Palumbo AV, Smith JC, Wall JD, Elias DA, Liang L (2013) The genetic basis for bacterial mercury methylation. Science 339:1332–1335

    Article  CAS  PubMed  Google Scholar 

  162. Sheehan MC, Burke TA, Navas-Acien A, Breysse PN, McGready J, Fox MA (2014) Global methylmercury exposure from seafood consumption and risk of developmental neurotoxicity: a systematic review. Bull World Health Organ 92:254F–269F

    Article  Google Scholar 

  163. Kerper LE, Ballatori N, Clarkson TW (1992) Methylmercury transport across the blood–brain barrier by an amino acid carrier. Am J Physiol 262:R761–R765

    CAS  PubMed  Google Scholar 

  164. Jo S, Woo HD, Kwon HJ, Oh SY, Park JD, Hong YS, Pyo H, Park KS, Ha M, Kim H, Sohn SJ, Kim YM, Lim JA, Lee SA, Eom SY, Kim BG, Lee KM, Lee JH, Hwang MS, Kim J (2015) Estimation of the biological half-Life of methylmercury using a population toxicokinetic model. Int J Environ Res Public Health 12:9054–9067

    Article  PubMed  PubMed Central  Google Scholar 

  165. do Nascimento JL, Oliveira KR, Crespo-Lopez ME, Macchi BM, Maues LA, Pinheiro MdCN, Silveira LC, Herculano AM (2008) Methylmercury neurotoxicity & antioxidant defenses. Indian J Med Res 128:373–382

    CAS  PubMed  Google Scholar 

  166. Martinez-Finley EJ, Caito S, Slaughter JC, Aschner M (2013) The role of skn-1 in methylmercury-induced latent dopaminergic neurodegeneration. Neurochem Res 38:2650–2660

    Article  CAS  PubMed  Google Scholar 

  167. Cao B, Lv W, Jin S, Tang J, Wang S, Zhao H, Guo H, Su J, Cao X (2013) Degeneration of peripheral nervous system in rats experimentally induced by methylmercury intoxication. Neurol Sci 34:663–669

    Article  PubMed  Google Scholar 

  168. Shaw CM, Mottet NK, Body RL, Luschei ES (1975) Variability of neuropathologic lesions in experimental methylmercurial encephalopathy in primates. Am J Pathol 80:451–470

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Gimenez-Xavier P, Francisco R, Platini F, Perez R, Ambrosio S (2008) LC3-I conversion to LC3-II does not necessarily result in complete autophagy. Int J Mol Med 22:781–785

    CAS  PubMed  Google Scholar 

  170. Chang SH, Lee HJ, Kang B, Yu KN, Minai-Tehrani A, Lee S, Kim SU, Cho MH (2013) Methylmercury induces caspase-dependent apoptosis and autophagy in human neural stem cells. J Toxicol Sci 38:823–831

    Article  CAS  PubMed  Google Scholar 

  171. Yuntao F, Chenjia G, Panpan Z, Wenjun Z, Suhua W, Guangwei X, Haifeng S, Jian L, Wanxin P, Yun F, Cai J, Aschner M, Rongzhu L (2014) Role of autophagy in methylmercury-induced neurotoxicity in rat primary astrocytes. Arch Toxicol. doi:10.1007/s00204-014-1425-1

  172. Farina M, Rocha JB, Aschner M (2011) Mechanisms of methylmercury-induced neurotoxicity: evidence from experimental studies. Life Sci 89:555–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Grant from the National Institutes of Health (R01 ES07331, R01 ES10563 and R01 ES020852).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Aschner.

Additional information

Ziyan Zhang and Mahfuzur Miah have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Miah, M., Culbreth, M. et al. Autophagy in Neurodegenerative Diseases and Metal Neurotoxicity. Neurochem Res 41, 409–422 (2016). https://doi.org/10.1007/s11064-016-1844-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-1844-x

Keywords

Navigation