Skip to main content
Log in

Possible role of Akt to improve vascular endothelial dysfunction in diabetic and hyperhomocysteinemic rats

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The study has been designed to investigate the effect of demethylasterroquinone B1 (DAQ B1), an activator of Akt, in diabetes mellitus (DM) and hyperhomocyteinemia (HHcy)-induced vascular endothelial dysfunction. Streptozotocin (55 mg kg−1, i.v.) and methionine (1.7% w/w, p.o., 4 weeks) were administered to rats to produce DM (serum glucose >140 mg dl−1) and HHcy (serum homocysteine >10 µM), respectively. Vascular endothelial dysfunction was assessed using isolated aortic ring preparation, electron microscopy of thoracic aorta and serum concentration of nitrite/nitrate. The expression of messenger RNA for p22phox and eNOS was assessed by reverse transcription-polymerase chain reaction. Serum thiobarbituric acid reactive substances (TBARS) and aortic superoxide anion were estimated to assess oxidative stress. DAQ B1 (5 mg kg−1, p.o.) or atorvastatin (30 mg kg−1, p.o.) in diabetic and hyperhomocysteinemic rats significantly reduced serum glucose and homocysteine concentration. DAQ B1 or atorvastatin markedly improved acetylcholine-induced endothelium-dependent relaxation, vascular endothelial lining, serum nitrite/nitrate concentration and serum TBARS in diabetic and hyperhomocysteinemic rats. However, this ameliorative effect of DAQ B1 has been prevented by L-NAME (25 mg kg−1, i.p.), an inhibitor of eNOS. Therefore, it may be concluded that DAQ B1-induced activation of Akt may activate eNOS and consequently reduce oxidative stress to improve vascular endothelial dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. De Vriese AS, Verbeuren TJ, van de Voorde J, Lameire NH, Vanhoutte PM (2000) Endothelial dysfunction in diabetes. Br J Pharmacol 130:963–974

    Article  PubMed  CAS  Google Scholar 

  2. Lentz SR, Rodionov RN, Dayal S (2003) Hyperhomocysteinemia, endothelial dysfunction and cardiovascular risk: the potential role of ADMA. Atheroscler Suppl 4:61–65

    Article  PubMed  CAS  Google Scholar 

  3. Luscher TF, Vanhoutte PM (1987) Endothelium dependent vascular response in normotensive and hypertensive dahl rats. Hypertension 9:157–163

    PubMed  CAS  Google Scholar 

  4. Bonetti PO, Lerman L, Lerman A (2003) Endothelial dysfunction: a marker of atherosclerotic risk. Arterioscler Thromb Vasc Biol 23: 168–175

    Article  PubMed  CAS  Google Scholar 

  5. Pieper GM, Langenstroer P, Siebeneich W (1997) Diabetic induced endothelial dysfunction in rat aorta: role of hydroxyl radicals. Cardiovasc Res 37:145–156

    Article  Google Scholar 

  6. Ungwari Z, Paeher P, Rischak K, Szollar L, Koller A (1999) Dysfunction of nitric oxide mediation in isolated rat arterioles with methionine diet-induced hyperhomocystenemia. Arterioscler Thromb Vasc Biol 19:1899–1904

    Google Scholar 

  7. Ungvari Z, Sarkadi-Nagy E, Bagi Z, Szollar L, Koller A (2000) Simultaneously increased TXA2 activity in isolated arterioles and platelets of rats with hyperhomocysteinemia. Arterioscler Thromb Vasc Biol 20:1203–1208

    PubMed  CAS  Google Scholar 

  8. Li H, Forstermann U (2000) Nitric oxide in the pathogenesis of vascular disease. J Pathol 190:244–262

    Article  PubMed  CAS  Google Scholar 

  9. Endemann DH, Schiffrin EL (2004) Endothelial dysfunction. J Am Soc Nephrol 15:1983–1992

    Article  PubMed  CAS  Google Scholar 

  10. Dimmeler S, Fleming B, Fisslthaler B, Herman C, Busse B, Zeiher AM (1999) Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399:601–605

    Article  PubMed  CAS  Google Scholar 

  11. Fulton D, Gratton JP, McCabe TJ, Fontana J, Fujio Y, Walsh K, Franke TF, Papapetropolous A, Sessa WC (1999) Regulation of endothelium derived nitric oxide production by the protein kinase Akt. Nature 400:792

    Article  CAS  Google Scholar 

  12. Suzuki J, Iwai M, Li Z, Li JM, Min LJ, Ide A, Yoshii T, Oshita A, Mogi M, Horiuchi M (2005) Effect of combination of calcium antagonist, azelnidipine, and AT1 receptor blocker, olmesartan, on atherosclerosis in apolipoprotein E-deficient mice. J Hypertens 23:1383–1389

    Article  PubMed  CAS  Google Scholar 

  13. Hanada M, Feng J, Hemmings BA (2004) Structure, regulation and function of PKB/Akt – a major therapeutic target. Biochem Biophys Acta 1697:3–16

    PubMed  CAS  Google Scholar 

  14. Iaccarino G, Ciccarelli M, Sorriento D, Cipoletta E, Cerullo V, Iovino GL, Paudice A, Elia A, Santulli G, Campanile A, Arcuccie O, Pastore L, Salvatore F, Condorelli G, Trimareo B. (2004) Akt participates in endothelial dysfunction in hypertension. Circulation 109:2587–2593

    Article  PubMed  CAS  Google Scholar 

  15. Zhang B, Salituro G, Szalkowski D, Li Z, Zhang Y, Royo I, Vilella D, Diez MT, Peelaez F, Rubey C, Kendall RL, Mao X, Griffin P, Calaycay J, Zierath JR, Heck JV, Smith RG, Moller DE (1999) Discovery of a small molecule insulin mimetic with antidiabetic activity in mice. Science 284:974–977

    Article  PubMed  CAS  Google Scholar 

  16. Westerlund J, Wolf BA, Bergsten P (2002) Glucose dependent promotion of insulin release from mouse pancreatic islet by the insulin-mimetic compound L-783,281. Diabetes 51:S50–S52

    PubMed  CAS  Google Scholar 

  17. Webster NG, Park K, Pirrung MC (2003) Signaling effect of demethylasterroquinone b1, a selective insulin receptor modulator. ChemBioChem 4:379–385

    Article  PubMed  CAS  Google Scholar 

  18. Dimitrova KR, DeGroot KW, Pacquing AM, Suyderhoud JP, Pirovic EA, Munro TJ, Wieneke JA, Myers AK, Kim YD (2002) Estradiol prevents homocysteine-induced endothelial injury in male rats. Cardiovasc Res 53:589–596

    Article  PubMed  CAS  Google Scholar 

  19. Mitra S, Singh M (1998) Possible mechanism of captopril induced endothelium-dependent relaxation in isolated rabbit aorta. Mol Cell Biochem 183:63–67

    Article  Google Scholar 

  20. Ignarro LJ, Bryns RE, Buga GM, Wood KS, Chaudhari G (1988) Pharmacological evidence that endothelium-derived relaxing factor is NO: use of pyrogallol and superoxide dismutase to study endothelium dependent and NO-elicited vascular smooth muscle relaxation. J Pharmacol Exp Ther 244:181–188

    PubMed  CAS  Google Scholar 

  21. Schiller NK, Timothy AM, Chen IL, Rice RC, Akers DL, Kadowitz PJ, McNamaran DB (1999) Endothelial cell regrowth and morphology after balloon catheter injury of alloxan-induced diabetic rabbits. Am J Physiol 277:240–248

    Google Scholar 

  22. Chomezynskl P, Sacchi N (1987) Single step method of RNA isolation by acid guanidium thiocynate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Google Scholar 

  23. Sastry KVH, Moudgal RP, Mohan J, Tyagi JS, Rao GS (2002) Spectrophotometric determination of serum nitrite and nitrate by copper-cadmium alloy. Anal Biochem 306:79–82

    Article  PubMed  CAS  Google Scholar 

  24. Wang HD, Pagano PJ, Du Y, Cayatte AJ, Quihin MT, Brecher P (1998) Cohen RASuperoxide anion from the adventitia of the rat thoracic aorta inactivates nitric oxide. Circ Res 82:810–818

    PubMed  CAS  Google Scholar 

  25. Ma FA, Liu LY, Xiong XM (2003) Protective effects of lovastatin on vascular endothelium injured by low density lipoprotein. Acta Pharmacol Sin 24:1027–1032

    PubMed  CAS  Google Scholar 

  26. Kohn AD, Summer SA, Birnbaum MJ, Roth RA (1996) Expression of constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J Biol Chem 271:31372–31378

    Article  PubMed  CAS  Google Scholar 

  27. Calera MR, Martinez C, Liu H, Jack AKE, Birnbaum MJ, Pilch PF (1998) Insulin increases the association of Akt-2 with Glut4-containing vesicles. J Biol Chem 273:7201–7204

    Article  PubMed  CAS  Google Scholar 

  28. Burgering BMT, Coffer PJ (1995) Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 376:599–602

    Article  PubMed  CAS  Google Scholar 

  29. Begum N, Sandu OA, Ito M, Lohman SM, Smolenski A (2001) Active Rho kinase associates with insulin receptor substrate-1 and inhibits insulin signaling in vascular smooth muscle cells. J Biol Chem 22:6214–6222

    Google Scholar 

  30. Waly M, Olteanu H, Banerjee R, Choi S-W, Mason JB, Parker BS, Sukumar S, Shim S, Sharma A, Benzecry JM, Power-Charnitsky V-A, Deth RC (2004) Activation of methionine synthase by insulin-like growth factor-1 and dopamine: a target for neurodevelopemental toxins and thimerosal. Mol Psychiatry 9:358–370

    Article  PubMed  CAS  Google Scholar 

  31. Fonesca V, Keebler M, Dicker-Brown A, DeSouza C, Poirier LA, Murthy SN, McNamara DB (2002) The effect of troglitazone on plasma homocysteine, hepatic and red blood cell S-adenosyl methionine, and S-adenosyl homocysteine and enzymes in homocysteine metabolism in zucker rats. Metabolism 61:783–786

    Article  Google Scholar 

  32. Zdychova J, Komers R (2005) Emerging role of Akt kinase/protein kinase B signaling in pathophysiology of diabetes and its complications. Physiol Res 54:1–16

    PubMed  CAS  Google Scholar 

  33. Zhang HS, Cao EH, Qin JF (2005) Homocysteine induces cell cycle G1 arrest in endothelial cells through the PI3K/Akt/FOXO signaling pathway. Pharmacology 74:57–64

    Article  PubMed  CAS  Google Scholar 

  34. Stitt TN, Drujan D, Clarke BA, Panaro F, Timofeyva Y, Kline WO, Gonzalez M, Yancopoulos GD, Glass DJ (2004) The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell 14:395–403

    Article  PubMed  CAS  Google Scholar 

  35. Potente M, Urbich C, Sasaki KI, Hofmann WK, Heeschen C, Aicher A, Kollipara R, DePinho RA, Zeiher AM, Dimmeler S (2005) Involvement of Foxo transcription factors in angiogenesis and postnatal neovascularization. J Clin Invest 115:2382–2392

    Article  PubMed  CAS  Google Scholar 

  36. Toba H, Gomyo E, Miki S, Shimizu T, Yoshimura A, Inoue R, Sawai N, Tsukamoto R, Asayama J, Kobara M, Nakata T (2006) Hyperinsulinaemia increases the gene expression of endothelial nitric oxide synthase and the phosphatidylinositol 3-kinase/akt pathway in rat aorta. Clin Exp Pharmacol Physiol 33:440–447

    Article  PubMed  CAS  Google Scholar 

  37. Kung CF, Moreau P, Takase H, Luscher TF (1994) L-NAME hypertension alters endothelial and smooth muscle function in rat aorta. Hypertension 26:744–750

    Google Scholar 

  38. Hayden MR, Tyagi SC (2004) Homocysteine and reactive oxygen species in metabolic syndrome, type 2 diabetes mellitus, and atheroscleropathy: the pleotropic effects of folate supplementation. Nutr J 3:4–27

    Article  PubMed  Google Scholar 

  39. Zalba G, Beaumont FJ, San Jose G, Fortuño A, Fortuño MA, Etayo JC, Díez J (2000) Vascular NADH/NADPH oxidase is involved in enhanced superoxide production in spontaneously hypertensive rats. Hypertension 35:1055–1061

    PubMed  CAS  Google Scholar 

  40. van Heerebeek L, Meischl C, Stooker W, Meijer CJLM, Niessen HWM, Ross D (2002) NADPH oxidase(s): new source(s) of reactive oxygen species in the vascular system? J Clin Pathol 55:561–568

    Article  PubMed  Google Scholar 

  41. Kobayashi N, Mita S, Yoshida K (2003) Celiprolol activates eNOS through the PI3K-Akt pathway and inhibits VCAM-1 via NF-κB induced by oxidative stress. Hypertension 42:1004–1013

    Article  PubMed  CAS  Google Scholar 

  42. Wagner AH, Schroeter MR, Hecker M (2001) 17ß-Estradiol inhibition of NADPH oxidase expression in human endothelial cells. FASEB J 15:2121–2130

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manjeet Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shah, D.I., Singh, M. Possible role of Akt to improve vascular endothelial dysfunction in diabetic and hyperhomocysteinemic rats. Mol Cell Biochem 295, 65–74 (2007). https://doi.org/10.1007/s11010-006-9273-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-006-9273-9

Keywords

Navigation