Skip to main content

Advertisement

Log in

Laminins

  • At-a-Glance Article
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Laminins are cell adhesion molecules that comprise a family of glycoproteins found predominantly in basement membranes, which are the thin sheets of extracellular matrix that underlie epithelial and endothelial cells and surround muscle cells, Schwann cells, and fat cells. Many laminins self-assemble to form networks that remain in close association with cells through interactions with cell surface receptors. Laminins are vital for many physiological functions. They are essential for early embryonic development and organogenesis and have crucial functions in several tissues including muscle, nerve, skin, kidney, lung, and the vasculature. A great wealth of data on laminins is available, and an in-depth description is not attempted here. In this review, I will instead provide a snapshot of laminin structure, tissue distribution, and interactions with other matrix molecules and receptors and briefly describe laminin mutations in mice and humans. Several illuminating and timely reviews are cited that can be consulted for references to original articles and more detailed information concerning laminins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abrass CK, Berfield AK, Ryan MC, Carter WG, Hansen KM (2006) Abnormal development of glomerular endothelial and mesangial cells in mice with targeted disruption of the lama3 gene. Kidney Int 70:1062–1071

    Article  CAS  PubMed  Google Scholar 

  • Aumailley M, Bruckner-Tuderman L, Carter WG, Deutzmann R, Edgar D, Ekblom P, et al (2005) A simplified laminin nomenclature. Matrix Biol 24:326–332

    Article  CAS  PubMed  Google Scholar 

  • Chen ZL, Strickland S (2003) Laminin γ1 is critical for Schwann cell differentiation, axon myelination, and regeneration in the peripheral nerve. J Cell Biol 163:889–899

    Article  CAS  PubMed  Google Scholar 

  • Dainichi T, Kurono S, Ohyama B, Ishii N, Sanzen N, Hayashi M, Shimono C, Taniguchi Y, Koga H, Karashima T, Yasumoto S, Zillikens D, Sekiguchi K, Hashimoto T (2009) Anti-laminin gamma-1 pemphigoid. Proc Natl Acad Sci USA 106:2800–2805

    Article  CAS  PubMed  Google Scholar 

  • Denes V, Witkovsky P, Koch M, Hunter DD, Pinzon-Duarte G, Brunken WJ (2007) Laminin deficits induce alterations in the development of dopaminergic neurons in the mouse retina. Vis Neurosci 24:549–562

    Article  PubMed  Google Scholar 

  • Ekblom P, Lonai P, Talts JF (2003) Expression and biological role of laminin-1. Matrix Biol 22:35–37

    Article  CAS  PubMed  Google Scholar 

  • Fukumoto S, Miner JH, Ida H, Fukumoto E, Yuasa K, Miyazaki H, Hoffman MP, Yamada Y (2006) Laminin α5 is required for dental epithelium growth and polarity and the development of tooth bud and shape. J Biol Chem 281:5008–5016

    Article  CAS  PubMed  Google Scholar 

  • Gubler MC (2008) Inherited diseases of the glomerular basement membrane. Nat Clin Pract Nephrol 4:24–37

    Article  CAS  PubMed  Google Scholar 

  • Häger M, Gawlik K, Nyström A, Sasaki T, Durbeej M (2005) Laminin α1 chain corrects male fertility caused by absence of laminin α2 chain. Am J Pathol 167:823–833

    PubMed  Google Scholar 

  • Hallmann R, Horn N, Selg M, Wendler O, Pausch F, Sorokin LM (2005) Expression and function of laminins in the embryonic and mature vasculature. Physiol Rev 85:979–1000

    Article  CAS  PubMed  Google Scholar 

  • Ho MSP, Böse K, Mokkapati S, Nischt R, Smyth N (2008) Nidogens—extracellular matrix linker molecules. Microsc Res Tech 71:387–395

    Article  CAS  PubMed  Google Scholar 

  • Ido H, Ito S, Taniguchi Y, Hayashi M, Sato-Nishuchi R, Sanzen N, Hayashi Y, Futaki S, Sekiguchi K (2008) Laminin isoforms containing γ3 chain are unable to bind integrins due to the absence of the glutamatic acid residue conserved in the C-terminal regions of the γ1 and γ2 chains. J Biol Chem 283:28148–28157

    Article  Google Scholar 

  • Jimenez-Mallebrera C, Brown SC, Sewry CA, Muntoni F (2005) Congenital muscular dystrophy: molecular and cellular aspects. Cell Mol Life Sci 62:809–823

    Article  CAS  PubMed  Google Scholar 

  • Knöll R, Postel R, Wang J, Krätzner R, Hennecke G, Vacaru AM, et al (2007) Laminin-α4 and integrin-linked kinase mutations cause human cardiomyopathy via simultaneous defects in cardiomyocytes and endothelial cells. Circulation 116:515–525

    Article  PubMed  Google Scholar 

  • Kuang W, Xu H, Vachon PH, Liu L, Loechel F, Wewer UM, Engvall E (1998) Merosin-deficient congenital muscular dystrophy. Partial genetic correction in two mouse models. J Clin Invest 102:844–852

    Article  CAS  PubMed  Google Scholar 

  • Kuster JE, Guarnieri MH, Ault JG, Flaherty L, Swiatek PJ (1997) IAP insertion in the murine LamB3 gene results in junctional epidermolysis bullosa. Mamm Genome 8:673–681

    Article  CAS  PubMed  Google Scholar 

  • Li J, Tzu J, Chen Y, Zhang YP, Nguyen NT, Gao J, Bradley M, Keene DR, Oro AE, Miner JH, Marinkovich MP (2003) Laminin-10 is crucial for hair morphogenesis. EMBO J 22:2400–2410

    Article  CAS  PubMed  Google Scholar 

  • Li S, Liquari P, McKee KK, Harrison D, Patel R, Lee S, Yurchenco PD (2005) Laminin-sulfatide binding initiates basement membrane assembly and enables receptor signaling in Schwann cells and fibroblasts. J Cell Biol 169:179–189

    Article  CAS  PubMed  Google Scholar 

  • Libby RT, Lavallee CR, Balkema GW, Brunken WJ, Hunter DD (1999) Disruption of laminin β2 chain production causes alterations in the morphology and function of the CNS. J Neurosci 19:9399–9411

    CAS  PubMed  Google Scholar 

  • McKee KK, Harrison D, Capizzi S, Yurchenco PD (2007) Role of laminin terminal globular domains in basement membrane assembly. J Biol Chem 282:21437–21447

    Article  CAS  PubMed  Google Scholar 

  • Meng X, Klement JF, Leperi DA, Birk DE, Sasaki T, Timpl R, Uitto J, Pulkkinen L (2003) Targeted inactivation of murine laminin γ2-chain gene recapitulates human junctional epidermolysis bullosa. J Invest Dermatol 121:720–731

    Article  CAS  PubMed  Google Scholar 

  • Miner JH (2008) Laminins and their roles in mammals. Microsc Res Tech 71:349–356

    Article  CAS  PubMed  Google Scholar 

  • Miner JH, Li C (2000) Defective glomerulogenesis in the absence of laminin α5 demonstrates a developmental role for the kidney glomerular basement membrane. Dev Biol 217:278–289

    Article  CAS  PubMed  Google Scholar 

  • Miner JH, Yurchenco PD (2004) Laminin functions in tissue morphogenesis. Annu Rev Cell Dev Biol 20:255–284

    Article  CAS  PubMed  Google Scholar 

  • Miner JH, Cunningham J, Sanes JR (1998) Roles for laminin in embryogenesis: exencephaly, syndactyly, and placentopathy in mice lacking the laminin α5 chain. J Cell Biol 143:1713–1723

    Article  CAS  PubMed  Google Scholar 

  • Miner JH, Li C, Mudd JL, Go G, Sutherland AE (2004) Compositional and structural requirements for laminins and basement membranes during mouse embryo implantation and gastrulation. Development 131:2247–2256

    Article  CAS  PubMed  Google Scholar 

  • Miyagoe Y, Hanaoka K, Nonaka I, Hayasaka M, Nabeshima Y, Arahata K, Nabeshima Y, Takeda S (1997) Laminin α2 chain-null mutant mice by targeted disruption of the Lama2: a new model of merosin (laminin 2)-deficient congenital muscular dystrophy. FEBS Lett 415:33–39

    Article  CAS  PubMed  Google Scholar 

  • Nguyen NM, Miner JH, Pierce RA, Senior RM (2002) Laminin α5 is required for lobar septation and visceral pieural basement membrane formation in the developing mouse lung. Dev Biol 246:231–244

    Article  CAS  PubMed  Google Scholar 

  • Nguyen NM, Pulkkinen L, Schleuter JA, Meneguzzi G, Uitto J, Senior RM (2006) Lung development in laminin γ2 chain deficiency: abnormal tracheal hemidesmosomes with normal branching morphogenesis and epithelial differentiation. Respir Res 7:28

    Article  PubMed  Google Scholar 

  • Niimi T, Hayashi Y, Futaki S, Sekiguchi K (2004) SOX7 and SOX17 regulate the parietal endoderm-specific enhancer activity of mouse laminin α1 gene. J Biol Chem 279:38055–38061

    Article  CAS  PubMed  Google Scholar 

  • Nishiuchi R, Takagi J, Hayashi M, Ido H, Yagi Y, Sanzen N, Tsuji T, Yamada M, Sekiguchi K (2006) Ligand-binding specificities of laminin-binding integrins: a comprehensive survey of laminin-integrin interactions using recombinant α3β1, α6β1, α7β1 and α6β4 integrins. Matrix Biol 25:189–197

    Article  CAS  PubMed  Google Scholar 

  • Noakes PG, Gautam M, Mudd J, Sanes JR, Merlie JP (1995a) Aberrant differentiation of neuromuscular junctions in mice lacking s-laminin/laminin β2. Nature 374:258–262

    Article  CAS  PubMed  Google Scholar 

  • Noakes PG, Miner JH, Gautam M, Cunningham JM, Sanes JR, Merlie JP (1995b) The renal glomerulus of mice lacking s-laminin/laminin β2: nephrosis despite molecular compensation by β1. Nat Genet 10:400–406

    Article  CAS  PubMed  Google Scholar 

  • Patarroyo M, Tryggvason K, Virtanen I (2002) Laminin isoforms in tumor invasion, angiogenesis and metastasis. Cancer Biol 12:197–207

    Article  CAS  Google Scholar 

  • Patton BL, Cunningham JM, Thyboll J, Kortesmaa J, Westerblad H, Edstrom L, Tryggvason K, Sanes JR (2001) Properly formed but improperly localized synaptic specializations in the absence of laminin α4. Nat Neurosci 4:597–604

    Article  CAS  PubMed  Google Scholar 

  • Patton BL, Wang B, Tarumi YS, Seburn KL, Burgess RW (2008) A single point mutation in the LN domain of LAMA2 causes muscular dystrophy and peripheral amyelination. J Cell Sci 121:1593–1604

    Article  CAS  PubMed  Google Scholar 

  • Pillers DA, Kempton JB, Duncan NM, Pang J, Dwinnel SJ, Trune DR (2002) Hearing loss in the laminin-deficient dy mouse model of congenital muscular dystrophy. Mol Genet Metab 76:217–224

    Article  CAS  PubMed  Google Scholar 

  • Rebustini TT, Patel VN, Stewart JS, Layvey A, Georges-Labouesse E, Miner JH, Hoffman HP (2007) Laminin α5 is necessary for submandibular gland epithelial morphogenesis and influences FGFR expression through β1 integrin signaling. Dev Biol 308:15–29

    Article  CAS  PubMed  Google Scholar 

  • Ryan MC, Lee K, Miyashita Y, Carter WG (1999) Targeted disruption of the LAMA3 gene in mice reveals abnormalities in survival and late stage differentiation of epithelial cells. J Cell Biol 145:1309–1323

    Article  CAS  PubMed  Google Scholar 

  • Sasaki T, Fässler R, Hohenester E (2004) Laminin: the crux of basement membrane assembly. J Cell Biol 164:959–963

    Article  CAS  PubMed  Google Scholar 

  • Scheele S, Falk M, Franzen A, Ellin F, Ferletta M, Lonai P, Andersson B, Timpl R, Forsberg E, Ekblom P (2005) Laminin α1 globular domains 4–5 induce fetal development but are not vital for embryonic basement membrane assembly. Proc Natl Acad Sci USA 102:1502–1506

    Article  CAS  PubMed  Google Scholar 

  • Scheele S, Nyström A, Durbeej M, Talts JF, Ekblom M, Ekblom P (2007) Laminin isoforms in development and disease. J Mol Med 85:825–836

    Article  CAS  PubMed  Google Scholar 

  • Sciandra F, Gawlik KI, Brancaccio A, Durbeej M (2007) Dystroglycan: a possible mediator for reducing congenital muscular dystrophy? Trends Biotech 25:262–268

    Article  CAS  Google Scholar 

  • Smyth N, Vatansever SH, Murray P, Meyer M, Frie C, Paulsson M, Edgar D (1999) Absence of basement membranes after targeting the LAMC1 gene results in embryonic lethality due to failure of endoderm differentiation. J Cell Biol 144:151–160

    Article  CAS  PubMed  Google Scholar 

  • Sunada Y, Bernier SM, Kozak CA, Yamada Y, Campbell KP (1994) Deficiency of merosin in dystrophic dy mice and genetic linkage of laminin M gene to dy locus. J Biol Chem 269:13729–13732

    CAS  PubMed  Google Scholar 

  • Sunada Y, Bernier SM, Utani A, Yamada Y, Campbell KP (1995) Identification of a novel mutant transcript of laminin α2 chain gene responsible for muscular dystrophy and dysmyelination in dy2J mice. Hum Mol Genet 4:1055–1061

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N, Yokoyama F, Nomizu M (2005) Functional sites in the laminin α chains. Connect Tissue Res 46:142–152

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi Y, Ido H, Sanzen N, Hayashi M, Sato-Nishiuchi R, Futaki S, Sekiguchi K (2009) The C-terminal region of laminin β chains modulates the integrin binding affinities of laminins. J Biol Chem 284:7820–7831

    Article  CAS  PubMed  Google Scholar 

  • Thyboll J, Kortesmaa J, Cao R, Soininen R, Wang L, Iivanainen A, Sorokin L, Risling M, Cao Y, Tryggvason K (2002) Deletion of the laminin α4 chain leads to impaired microvessel maturation. Mol Cell Biol 22:1194–1202

    Article  CAS  PubMed  Google Scholar 

  • Timpl R, Rohde H, Robey PG, Rennard SI, Foidart JM, Martin GR (1979) Laminin—a glycoprotein from basement membrane. J Biol Chem 254:9933–9937

    CAS  PubMed  Google Scholar 

  • Timpl R, Tisi D, Talts JF, Andac Z, Sasaki T, Hohenester E (2000) Structure and function of laminin LG modules. Matrix Biol 19:309–317

    Article  CAS  PubMed  Google Scholar 

  • Timpl R, Sasaki T, Kostka G, Chu M-L (2003) Fibulins: a versatile family of extracellular matrix proteins. Nat Rev Mol Cell Biol 4:479–489

    Article  CAS  PubMed  Google Scholar 

  • Tran M, Rousselle P, Nokelainen P, Tallapragada S, Nguyen NT, Fincher EF, Marinkovich MP (2008) Targeting a tumor-specific laminin domain critical for human carcinogenesis. Cancer Res 68:2885–2894

    Article  CAS  PubMed  Google Scholar 

  • Tzu J, Marinkovich MP (2008) Bridging structure with function: structural, regulatory, and developmental role of laminins. Int J Biochem Cell Biol 40:199–214

    Article  CAS  PubMed  Google Scholar 

  • Wagner WJ, Chang AC, Owens J, Hong MJ, Brooks A, Coligan JE (2000) Aberrant development of thymocytes in mice lacking laminin-2. Dev Immunol 7:179–193

    Article  Google Scholar 

  • Wallquist W, Plantman S, Thams S, Thyboll J, Kortesmaa J, Lännergren J, Domogatskaya A, Ogren SO, Risling M, Hammarberg H, Tryggvason K, Culheim S (2005) Impeded interaction between Schwann cells and axons in the absence of laminin α4. J Neurosci 25:3692–3700

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Hoshijima M, Lam J, Zhou Z, Jokiel A, Dalton ND, Hultenby K, Ruiz-Lozano P Jr, Ross J, Tryggvason K, Chien KR (2006) Cardiomyopathy associated with microcirculation dysfunction in laminin α4 chain-deficient mice. J Biol Chem 281:213–220

    Article  CAS  PubMed  Google Scholar 

  • Willem M, Miosge N, Halfter W, Smyth N, Jannetti I, Burghart E, Timpl R, Mayer U (2002) Specific ablation of the nidogen-binding site in the laminin γ1 chain interferes with kidney and lung development. Development 129:2711–2722

    CAS  PubMed  Google Scholar 

  • Xu H, Christmas P, Wu XR, Wewer UM, Engvall E (1994a) Defective muscle basement membrane and lack of M-laminin in the dystrophic dy/dy mouse. Proc Natl Acad Sci USA 91:5572–5576

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Wu XR, Wewer UM, Engvall E (1994b) Murine muscular dystrophy caused by a mutation in the laminin α2 (Lama2) gene. Nat Genet 8:297–302

    Article  CAS  PubMed  Google Scholar 

  • Yuasa K, Fukumoto S, Kamasaki Y, Yamada A, Fukumoto E, Kanaoka K, Saito K, Harada M, Arikawa-Hirasawa E, Miyagoe-Suzuki Y, Takeda S, Okamoto K, Kato Y, Fujiwara T (2004) Laminin α2 is essential for odontoblast differentiation regulating dentin sialoprotein expression. J Biol Chem 279:10286–10292

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Madeleine Durbeej.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durbeej, M. Laminins. Cell Tissue Res 339, 259–268 (2010). https://doi.org/10.1007/s00441-009-0838-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-009-0838-2

Keywords

Navigation