Skip to main content

Advertisement

Log in

Monogenic causes of stroke: now and the future

  • Review
  • Published:
Journal of Neurology Aims and scope Submit manuscript

Abstract

Most stroke is multifactorial with multiple polygenic risk factors each conferring small increases in risk interacting with environmental risk factors, but it can also arise from mutations in a single gene. This review covers single-gene disorders which lead to stroke as a major phenotype, with a focus on those which cause cerebral small vessel disease (SVD), an area where there has been significant recent progress with findings that may inform us about the pathogenesis of SVD more broadly. We also discuss the impact that next generation sequencing technology (NGST) is likely to have on clinical practice in this area. The most common form of monogenic SVD is cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, due to the mutations in the NOTCH3 gene. Several other inherited forms of SVD include cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy, retinal vasculopathy with cerebral leukodystrophy, collagen type IV α1 and α2 gene-related arteriopathy and FOXC1 deletion related arteriopathy. These monogenic forms of SVD, with overlapping clinical phenotypes, are beginning to provide insights into how the small arteries in the brain can be damaged and some of the mechanisms identified may also be relevant to more common sporadic SVD. Despite the discovery of these disorders, it is often challenging to clinically and radiologically distinguish between syndromes, while screening multiple genes for causative mutations that can be costly and time-consuming. The rapidly falling cost of NGST may allow quicker diagnosis of these rare causes of SVD, and can also identify previously unknown disease-causing variants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pantoni L (2010) Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol 9:689–701

    Article  PubMed  Google Scholar 

  2. Joutel A, Corpechot C, Ducros A et al (1996) Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature 383:707–710

    Article  CAS  PubMed  Google Scholar 

  3. Razvi SSM, Davidson R, Bone I, Muir KW (2005) The prevalence of cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy (CADASIL) in the west of Scotland. J Neurol Neurosurg Psychiatry 76:739–741

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Narayan SK, Gorman G, Kalaria RN et al (2012) The minimum prevalence of CADASIL in northeast England. Neurology 78:1025–1027

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Rutten-Jacobs LC, Kilarski LL, Bevan S et al (2015) Abstract 26: Prevalence of CADASIL and Fabry Disease in a Large Cohort of MRI defined Younger onset Lacunar Stroke. Stroke 46:A26

  6. Adib-Samii P, Brice G, Martin RJ, Markus HS (2010) Clinical spectrum of CADASIL and the effect of cardiovascular risk factors on phenotype: study in 200 consecutively recruited individuals. Stroke 41:630–634

    Article  PubMed  Google Scholar 

  7. Dichgans M, Mayer M, Uttner I et al (1998) The phenotypic spectrum of CADASIL: clinical findings in 102 cases. Ann Neurol 44:731–739

    Article  CAS  PubMed  Google Scholar 

  8. Desmond DW, Moroney JT, Lynch T et al (1999) The natural history of CADASIL: a pooled analysis of previously published cases. Stroke 30:1230–1233

    Article  CAS  PubMed  Google Scholar 

  9. Roine S, Pöyhönen M, Timonen S et al (2005) Neurologic symptoms are common during gestation and puerperium in CADASIL. Neurology 64:1441–1443

    Article  CAS  PubMed  Google Scholar 

  10. Hinze S, Goonasekera M, Nannucci S et al (2015) Longitudinally extensive spinal cord infarction in CADASIL. Pract Neurol 15:60–62

    Article  CAS  PubMed  Google Scholar 

  11. Tournier-Lasserve E, Joutel A, Melki J et al (1993) Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy maps to chromosome 19q12. Nat Genet 3:256–259

    Article  CAS  PubMed  Google Scholar 

  12. O’Sullivan M, Jarosz JM, Martin RJ et al (2001) MRI hyperintensities of the temporal lobe and external capsule in patients with CADASIL. Neurology 56:628–634

    Article  PubMed  Google Scholar 

  13. Lesnik Oberstein SA, van den Boom R, van Buchem MA et al (2001) Cerebral microbleeds in CADASIL. Neurology 57:1066–1070

    Article  CAS  PubMed  Google Scholar 

  14. Morroni M, Marzioni D, Ragno M et al (2013) Role of electron microscopy in the diagnosis of cadasil syndrome: a study of 32 patients. PLoS One 8:e65482

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Singhal S, Bevan S, Barrick T et al (2004) The influence of genetic and cardiovascular risk factors on the CADASIL phenotype. Brain 127:2031–2038

    Article  PubMed  Google Scholar 

  16. Opherk C, Peters N, Holtmannspötter M et al (2006) Heritability of MRI lesion volume in CADASIL: evidence for genetic modifiers. Stroke 37:2684–2689

    Article  PubMed  Google Scholar 

  17. Fukutake T (2011) Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL): from discovery to gene identification. J Stroke Cerebrovasc Dis 20:85–93

    Article  PubMed  Google Scholar 

  18. Mendioroz M, Fernández-Cadenas I, Del Río-Espinola A et al (2010) A missense HTRA1 mutation expands CARASIL syndrome to the Caucasian population. Neurology 75:2033–2035

    Article  CAS  PubMed  Google Scholar 

  19. Fukutake T, Hirayama K (1995) Familial young-adult-onset arteriosclerotic leukoencephalopathy with alopecia and lumbago without arterial hypertension. Eur Neurol 35:69–79

    Article  CAS  PubMed  Google Scholar 

  20. Yanagawa S, Ito N, Arima K, Ikeda S-IS (2002) Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy. Neurology 58:817–820

    Article  PubMed  Google Scholar 

  21. Arima K, Yanagawa S, Ito N, Ikeda S (2003) Cerebral arterial pathology of CADASIL and CARASIL (Maeda syndrome). Neuropathology 23:327–334

    Article  PubMed  Google Scholar 

  22. Richards A, van den Maagdenberg AMJM, Jen JC et al (2007) C-terminal truncations in human 3′-5′ DNA exonuclease TREX1 cause autosomal dominant retinal vasculopathy with cerebral leukodystrophy. Nat Genet 39:1068–1070

    Article  CAS  PubMed  Google Scholar 

  23. Ophoff RA, DeYoung J, Service SK et al (2001) Hereditary vascular retinopathy, cerebroretinal vasculopathy, and hereditary endotheliopathy with retinopathy, nephropathy, and stroke map to a single locus on chromosome 3p21.1–p21.3. Am J Hum Genet 69:447–453

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. DiFrancesco JC, Novara F, Zuffardi O et al (2014) TREX1 C-terminal frameshift mutations in the systemic variant of retinal vasculopathy with cerebral leukodystrophy. Neurol Sci. doi:10.1007/s10072-014-1944-9

    PubMed  Google Scholar 

  25. Kavanagh D, Spitzer D, Kothari PH et al (2008) New roles for the major human 3′-5′ exonuclease TREX1 in human disease. Cell Cycle 7:1718–1725

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Pelzer N, de Vries B, Boon EMJ et al (2013) Heterozygous TREX1 mutations in early-onset cerebrovascular disease. J Neurol 260:2188–2190

    Article  CAS  PubMed  Google Scholar 

  27. Vahedi K, Alamowitch S (2011) Clinical spectrum of type IV collagen (COL4A1) mutations: a novel genetic multisystem disease. Curr Opin Neurol 24:63–68

    Article  CAS  PubMed  Google Scholar 

  28. Lanfranconi S, Markus HS (2010) COL4A1 mutations as a monogenic cause of cerebral small vessel disease: a systematic review. Stroke 41:e513–e518

    Article  PubMed  Google Scholar 

  29. Gould DB, Phalan FC, van Mil SE et al (2006) Role of COL4A1 in small-vessel disease and hemorrhagic stroke. N Engl J Med 354:1489–1496

    Article  CAS  PubMed  Google Scholar 

  30. Vahedi K, Boukobza M, Massin P et al (2007) Clinical and brain MRI follow-up study of a family with COL4A1 mutation. Neurology 69:1564–1568

    Article  CAS  PubMed  Google Scholar 

  31. Alamowitch S, Plaisier E, Favrole P et al (2009) Cerebrovascular disease related to COL4A1 mutations in HANAC syndrome. Neurology 73:1873–1882

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Verbeek E, Meuwissen MEC, Verheijen FW et al (2012) COL4A2 mutation associated with familial porencephaly and small-vessel disease. Eur J Hum Genet 20:844–851

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Renard D, Miné M, Pipiras E et al (2014) Cerebral small-vessel disease associated with COL4A1 and COL4A2 gene duplications. Neurology 83:1029–1031

    Article  PubMed  Google Scholar 

  34. Garman SC, Garboczi DN (2004) The molecular defect leading to Fabry disease: structure of human alpha-galactosidase. J Mol Biol 337:319–335

    Article  CAS  PubMed  Google Scholar 

  35. Clarke JTR (2007) Narrative review: Fabry disease. Ann Intern Med 146:425–433

    Article  PubMed  Google Scholar 

  36. Orteu CH, Jansen T, Lidove O et al (2007) Fabry disease and the skin: data from FOS, the Fabry outcome survey. Br J Dermatol 157:331–337

    Article  CAS  PubMed  Google Scholar 

  37. Viana-Baptista M (2012) Stroke and Fabry disease. J Neurol 259:1019–1028

    Article  CAS  PubMed  Google Scholar 

  38. Crutchfield KE, Patronas NJ, Dambrosia JM et al (1998) Quantitative analysis of cerebral vasculopathy in patients with Fabry disease. Neurology 50:1746–1749

    Article  CAS  PubMed  Google Scholar 

  39. Rolfs A, Böttcher T, Zschiesche M et al (2005) Prevalence of Fabry disease in patients with cryptogenic stroke: a prospective study. Lancet 366:1794–1796

    Article  PubMed  Google Scholar 

  40. Baptista MV, Ferreira S, Pinho-E-Melo T et al (2010) Mutations of the GLA gene in young patients with stroke: the PORTYSTROKE study––screening genetic conditions in Portuguese young stroke patients. Stroke 41:431–436

    Article  CAS  PubMed  Google Scholar 

  41. Wilcox WR, Oliveira JP, Hopkin RJ et al (2008) Females with Fabry disease frequently have major organ involvement: lessons from the Fabry Registry. Mol Genet Metab 93:112–128

    Article  CAS  PubMed  Google Scholar 

  42. Linthorst GE, Vedder AC, Aerts JMFG, Hollak CEM (2005) Screening for Fabry disease using whole blood spots fails to identify one-third of female carriers. Clin Chim Acta 353:201–203

    Article  CAS  PubMed  Google Scholar 

  43. Schiffmann R, Kopp JB, Austin HA et al (2001) Enzyme replacement therapy in Fabry disease: a randomized controlled trial. JAMA 285:2743–2749

    Article  CAS  PubMed  Google Scholar 

  44. Siegenthaler JA, Choe Y, Patterson KP et al (2013) Foxc1 is required by pericytes during fetal brain angiogenesis. Biol Open 2:647–659

    Article  PubMed Central  PubMed  Google Scholar 

  45. Tümer Z, Bach-Holm D (2009) Axenfeld-Rieger syndrome and spectrum of PITX2 and FOXC1 mutations. Eur J Hum Genet 17:1527–1539

    Article  PubMed Central  PubMed  Google Scholar 

  46. Delahaye A, Khung-Savatovsky S, Aboura A et al (2012) Pre- and postnatal phenotype of 6p25 deletions involving the FOXC1 gene. Am J Med Genet A 158A:2430–2438

    Article  PubMed  Google Scholar 

  47. Cellini E, Disciglio V, Novara F et al (2012) Periventricular heterotopia with white matter abnormalities associated with 6p25 deletion. Am J Med Genet A 158A:1793–1797

    Article  PubMed  Google Scholar 

  48. French CR, Seshadri S, Destefano AL et al (2014) Mutation of FOXC1 and PITX2 induces cerebral small-vessel disease. J Clin Invest 124:4877–4881

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Revesz T, Holton JL, Lashley T et al (2009) Genetics and molecular pathogenesis of sporadic and hereditary cerebral amyloid angiopathies. Acta Neuropathol 118:115–130

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Di Fede G, Giaccone G, Tagliavini F (2013) Hereditary and sporadic beta-amyloidoses. Front Biosci (Landmark Ed) 18:1202–1226

    Article  Google Scholar 

  51. Biffi A, Greenberg SM (2011) Cerebral amyloid angiopathy: a systematic review. J Clin Neurol 7:1–9

    Article  PubMed Central  PubMed  Google Scholar 

  52. Linn J, Halpin A, Demaerel P et al (2010) Prevalence of superficial siderosis in patients with cerebral amyloid angiopathy. Neurology 74:1346–1350

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Greenberg SM, Vernooij MW, Cordonnier C et al (2009) Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol 8:165–174

    Article  PubMed Central  PubMed  Google Scholar 

  54. Bacskai BJ, Frosch MP, Freeman SH et al (2007) Molecular imaging with Pittsburgh Compound B confirmed at autopsy: a case report. Arch Neurol 64:431–434

    Article  PubMed  Google Scholar 

  55. Baron J-C, Farid K, Dolan E et al (2014) Diagnostic utility of amyloid PET in cerebral amyloid angiopathy-related symptomatic intracerebral hemorrhage. J Cereb Blood Flow Metab 34:753–758

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Rannikmäe K, Davies G, Thomson PA et al (2015) Common variation in COL4A1/COL4A2 is associated with sporadic cerebral small vessel disease. Neurology. doi:10.1212/WNL.0000000000001309

    PubMed Central  Google Scholar 

  57. Schmidt H, Zeginigg M, Wiltgen M et al (2011) Genetic variants of the NOTCH3 gene in the elderly and magnetic resonance imaging correlates of age-related cerebral small vessel disease. Brain 134:3384–3397

    Article  PubMed Central  PubMed  Google Scholar 

  58. Oka C, Tsujimoto R, Kajikawa M et al (2004) HtrA1 serine protease inhibits signaling mediated by Tgfbeta family proteins. Development 131:1041–1053

    Article  CAS  PubMed  Google Scholar 

  59. Shiga A, Nozaki H, Yokoseki A et al (2011) Cerebral small-vessel disease protein HTRA1 controls the amount of TGF-1 via cleavage of proTGF- 1. Hum Mol Genet 20:1800–1810

    Article  CAS  PubMed  Google Scholar 

  60. Ruiz-Ortega M, Rodríguez-Vita J, Sanchez-Lopez E et al (2007) TGF-beta signaling in vascular fibrosis. Cardiovasc Res 74:196–206

    Article  CAS  PubMed  Google Scholar 

  61. Gunda B, Mine M, Kovács T et al (2014) COL4A2 mutation causing adult onset recurrent intracerebral hemorrhage and leukoencephalopathy. J Neurol 261:500–503

    Article  PubMed  Google Scholar 

  62. Farrall AJ, Wardlaw JM (2009) Blood-brain barrier: ageing and microvascular disease––systematic review and meta-analysis. Neurobiol Aging 30:337–352

    Article  CAS  PubMed  Google Scholar 

  63. Kopan R, Ilagan MXG (2009) The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137:216–233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Joutel A, Vahedi K, Corpechot C et al (1997) Strong clustering and stereotyped nature of Notch3 mutations in CADASIL patients. Lancet 350:1511–1515

    Article  CAS  PubMed  Google Scholar 

  65. Rutten JW, Boon EMJ, Liem MK et al (2013) Hypomorphic NOTCH3 alleles do not cause CADASIL in humans. Hum Mutat 34:1486–1489

    Article  CAS  PubMed  Google Scholar 

  66. Ruchoux MM, Domenga V, Brulin P et al (2003) Transgenic mice expressing mutant Notch3 develop vascular alterations characteristic of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Am J Pathol 162:329–342

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Joutel A, Andreux F, Gaulis S et al (2000) The ectodomain of the Notch3 receptor accumulates within the cerebrovasculature of CADASIL patients. J Clin Invest 105:597–605

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Duering M, Karpinska A, Rosner S et al (2011) Co-aggregate formation of CADASIL-mutant NOTCH3: a single-particle analysis. Hum Mol Genet 20:3256–3265

    Article  CAS  PubMed  Google Scholar 

  69. Arboleda-Velasquez JF, Manent J, Lee JH et al (2011) Hypomorphic Notch 3 alleles link Notch signaling to ischemic cerebral small-vessel disease. Proc Natl Acad Sci 108:E128–E135

    Article  PubMed Central  PubMed  Google Scholar 

  70. Monet-Leprêtre M, Haddad I, Baron-Menguy C et al (2013) Abnormal recruitment of extracellular matrix proteins by excess Notch3 ECD: a new pathomechanism in CADASIL. Brain 136:1830–1845

    Article  PubMed Central  PubMed  Google Scholar 

  71. Jucker M, Walker LC (2013) Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 501:45–51

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Kast J, Hanecker P, Beaufort N et al (2014) Sequestration of latent TGF-β binding protein 1 into CADASIL-related Notch3-ECD deposits. Acta Neuropathol Commun 2:96

    Article  PubMed Central  PubMed  Google Scholar 

  73. Ng SB, Buckingham KJ, Lee C et al (2010) Exome sequencing identifies the cause of a mendelian disorder. Nat Genet 42:30–35

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Boycott KM, Vanstone MR, Bulman DE, MacKenzie AE (2013) Rare-disease genetics in the era of next-generation sequencing: discovery to translation. Nat Rev Genet 14:681–691

    Article  CAS  PubMed  Google Scholar 

  75. Low WC, Junna M, Börjesson-Hanson A et al (2007) Hereditary multi-infarct dementia of the Swedish type is a novel disorder different from NOTCH3 causing CADASIL. Brain 130:357–367

    Article  CAS  PubMed  Google Scholar 

  76. Nannucci S, Pescini F, Bertaccini B et al (2015) Clinical, familial, and neuroimaging features of CADASIL-like patients. Acta Neurol Scand 131:30–36

    Article  CAS  PubMed  Google Scholar 

  77. Foo J-N, Liu J-J, Tan E-K (2012) Whole-genome and whole-exome sequencing in neurological diseases. Nat Rev Neurol 8:508–517

    Article  CAS  PubMed  Google Scholar 

  78. Vrijenhoek T, Kraaijeveld K, Elferink M et al (2015) Next-generation sequencing-based genome diagnostics across clinical genetics centers: implementation choices and their effects. Eur J Hum Genet. doi:10.1038/ejhg.2014.279

    Google Scholar 

  79. Genomics England Ltd Genomics England|100,000 genomes project. http://www.genomicsengland.co.uk/. Accessed 3 May 2015

  80. Bamshad MJ, Ng SB, Bigham AW et al (2011) Exome sequencing as a tool for Mendelian disease gene discovery. Nat Rev Genet 12:745–755

    Article  CAS  PubMed  Google Scholar 

  81. Guerreiro R, Brás J, Hardy J, Singleton A (2014) Next generation sequencing techniques in neurological diseases: redefining clinical and molecular associations. Hum Mol Genet 44:1–7

    Google Scholar 

Download references

Acknowledgments

Rhea Tan is supported by the Agency for Science, Technology and Research Singapore. Hugh Markus is supported by an NIHR Senior Investigator award. His work is supported by the Cambridge Universities Trust NIHR Comprehensive Biomedical Research Centre.

Conflicts of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical standard

The manuscript does not contain clinical studies or patient data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rhea Y. Y. Tan.

Box 1: Features that heighten clinical suspicion of a monogenic cause of SVD. Note many of these are indicators but not diagnostic. For example, CADASIL can occur in patients with risk factors which may indeed exacerbate the phenotype

Box 1: Features that heighten clinical suspicion of a monogenic cause of SVD. Note many of these are indicators but not diagnostic. For example, CADASIL can occur in patients with risk factors which may indeed exacerbate the phenotype

Clinical presentation

  • Onset of stroke at an early age.

  • Syndromic disease: history of other clinical features which fit with recognised monogenic stroke syndrome:

    • Other neurological history such as complicated migraines, seizures, early-onset cognitive impairment, psychiatric disturbances.

    • Non-neurological features such as skeletal, facial, ocular abnormalities.

Risk factors and other causes of white matter disease

  • The absence of identifiable risk factors such as diabetes, hypertension or smoking.

  • The absence of any other cause of stroke.

Family history

  • A family history of early-onset stroke or dementia, especially if this is occurring in a Mendelian pattern of inheritance.

Presence of atypical features of imaging, such as

  • Evidence of SVD beyond what is expected for age and risk factors.

  • Atypical distribution of white matter hyperintensities on T2/FLAIR MRI in anterior temporal poles and external capsule as seen in CADASIL.

  • Extensive microbleeds particularly in COL4A1/2 mutations.

  • Pseudotumours as seen in RVCL.

  • Vascular malformations such as aneurysms (COL4A1), dolichoectasia (Fabry Disease).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, R.Y.Y., Markus, H.S. Monogenic causes of stroke: now and the future. J Neurol 262, 2601–2616 (2015). https://doi.org/10.1007/s00415-015-7794-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00415-015-7794-4

Keywords

Navigation