Skip to main content
Log in

Cortical excitability changes following grasping exercise augmented with electrical stimulation

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Rehabilitation with augmented electrical stimulation can enhance functional recovery after stroke, and cortical plasticity may play a role in this process. The purpose of this study was to compare the effects of three training paradigms on cortical excitability in healthy subjects. Cortical excitability was evaluated by analysing the input–output relationship between transcranial magnetic stimulation intensity and motor evoked potentials (MEPs) from the flexor muscles of the fingers. The study was performed with 25 healthy volunteers who underwent 20-min simulated therapy sessions of: (1) functional electrical stimulation (FES) of the finger flexors and extensors, (2) voluntary movement (VOL) with sensory stimulation, and (3) therapeutic FES (TFES) where the electrical stimulation augmented voluntary activation. TFES training produced a significant increase in MEP magnitude throughout the stimulation range, suggesting an increase in cortical excitability. In contrast, neither the FES nor voluntary movement alone had such an effect. These results suggest that the combination of voluntary effort and FES has greater potential to induce plasticity in the motor cortex and that TFES might be a more effective approach in rehabilitation after stroke than FES or repetitive voluntary training alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersen B, Westlund B, Krarup C (2003) Failure of activation of spinal motoneurons after muscle fatigue in healthy subjects studied by transcranial magnetic stimulation. J Physiol 551:345–356

    Article  PubMed  CAS  Google Scholar 

  • Cantello R, Gianelli M, Civardi C, Mutani R (1992) Magnetic brain stimulation: the silent period after the motor evoked potential. Neurology 42:1951–1959

    PubMed  CAS  Google Scholar 

  • Castro-Alamancos M, Garcia-Segura L, Borrell J (1992) Transfer of function to a specific area of the cortex after induced recovery from brain damage. Eur J Neurosci 4:853–863

    Article  PubMed  Google Scholar 

  • Chae J, Yu D (1999) Neuromuscular stimulation for motor relearning in hemiplegia. Crit Rev Phys Med Rehabil Med 11:279–297

    Google Scholar 

  • Chen R (2000) Studies of human motor physiology with transcranial magnetic stimulation. Muscle Nerve Suppl 9:26–32

    Article  CAS  Google Scholar 

  • Classen J, Liepert J, Wise SP, Hellett M, Cohen LG (1998) Rapid plasticity of human cortical movement representation induced by practice. J Neurophysiol 79:1117–1123

    PubMed  CAS  Google Scholar 

  • Devanne H, Lavoie BA, Capaday C (1997) Input-output properties and gain changes in the human corticopinal pathway. Exp Brain Res 114:329–338

    Article  PubMed  CAS  Google Scholar 

  • Di Piero V, Chollet F, Mac Carthy P, Lenzi G, Frackowiak R (1992) Motor recovery after acute ischaemic stroke: a metabolic study. J Neurol Neurosurg Psychiatr 55:990–996

    PubMed  CAS  Google Scholar 

  • Ferster D (2004) Neuroscience. Blocking plasticity in the visual cortex. Science 303:1619–1621

    Article  PubMed  CAS  Google Scholar 

  • Fuhr P, Cohen LG, Roth BJ, Hallet M (1991) Latency of motor evoked potentials to focal transcranial stimulation varies as a function of scalp position stimulated. Electroencephalogr Clin Neurophysiol 81(2):81–89

    Article  PubMed  CAS  Google Scholar 

  • Gritsenko V, Prochazka A (2004) A functional electric stimulation-assisted exercise therapy system for hemiplegic hand function. Arch Phys Med Rehabil 85:881–885

    Article  PubMed  Google Scholar 

  • Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G (2000) Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol 10(5):361–374

    Article  PubMed  CAS  Google Scholar 

  • Ho KH, Nithi K, Mills KR (1998) Covariation between human intrinsic hand muscles of the silent periods and compound muscle action potentials evoked by magnetic brain stimulation: evidence for common inhibitory connections. Exp Brain Res 122:433–440

    Article  PubMed  CAS  Google Scholar 

  • Inghilleri M, Berardelli A, Cruccu G, Manfredi M (1993) Silent period evoked by transcranial stimulation of the human cortex and cervicomedullary junction. J Physiol 466:521–534

    PubMed  CAS  Google Scholar 

  • Jacobs KM, Donoghue JP (1991) Reshaping the cortical motor map by unmasking latent intracortical connections. Science 251(4996):944–947

    Article  PubMed  CAS  Google Scholar 

  • Jenkins WM, Merzenich MM (1987) Reorganisation of neocortical representations after brain injury: a neurophysiological model of the bases of recovery from stroke. In: Seil FJ, Herbert E, Carlson B (eds) Progress in brain research, vol 71. Elsevier, Amsterdam, p 249

    Google Scholar 

  • Khaslavskaia S, Sinkjaer T (2005) Motor cortex excitability following repetitive electrical stimulation of the common peroneal nerve depends on the voluntary drive. Exp Brain Res 162:497–502

    Article  PubMed  Google Scholar 

  • Khaslavskaia S, Ladouceur M, Sinkjaer T (2002) Increase in tibialis anterior motor cortex excitability following repetitive electrical stimulation of the common peroneal nerve. Exp Brain Res 145(3):309–315

    Article  PubMed  Google Scholar 

  • Kido Thompson A, Stein RB (2004) Short-term effects of functional electrical stimulation on motor-evoked potentials in ankle flexor and extensor muscles. Exp Brain Res 159:491–500

    Article  PubMed  Google Scholar 

  • Knash ME, Kido A, Gorassini M, Chan KM, Stein RB (2003) Electrical stimulation of the human common peroneal nerve elicits lasting facilitation of cortical motor-evoked potentials. Exp Brain Res 153:366–377

    Article  PubMed  Google Scholar 

  • McDonnell MN, Ridding MC (2006) Afferent stimulation facilitates performance on a novel motor task. Exp Brain Res 170:109–115

    Article  PubMed  CAS  Google Scholar 

  • Muellbacher W, Ziemann U, Boroojerdi B, Cohen L, Hallett M (2001) Role of the human motor cortex in rapid motor learning. Exp Brain Res 136:431–438

    Article  PubMed  CAS  Google Scholar 

  • Nudo RJ (2003) Functional and structural plasticity in motor cortex: implication for stroke recovery. Phys Med Rehabil Clin N Am 14(1 Suppl):857–876

    Google Scholar 

  • Nudo RJ (2007) Postinfarct cortical plasticity and behavioral recovery. Stroke 38(2 Suppl):840–845

    Article  PubMed  Google Scholar 

  • Oliviero A, Profice P, Tonali PA, Pilato F, Saturno E, Dileone M, Ranieri F, Di Lazzaro V (2006) Effects of ageing on motor cortex excitability. Neurosci Res 55:74–77

    Article  PubMed  CAS  Google Scholar 

  • Peckham PH, Knutson JS (2005) Functional electrical stimulation for neuromuscular applications. Annu Rev Biomed Eng 7:327–360

    Article  PubMed  CAS  Google Scholar 

  • Perez MA, Lungholt BKS, Nyborg K, Nielsen JB (2004) Motor skill training induces changes in the excitability of the leg cortical area in healthy humans. Exp Brain Res 159:197–205

    Article  PubMed  Google Scholar 

  • Pitcher JB, Miles TS (2002) Alterations in corticospinal excitability with imposed vs. voluntary fatigue in human hand muscles. J Appl Physiol 92:2132–2138

    Google Scholar 

  • Popovic MB, Popovic DB, Sinkjaer T, Stefanovic A, Schwirtlich L (2002) Restitution of reaching and grasping promoted by functional electrical therapy. Artif Organs 26(3):271–275

    Article  PubMed  Google Scholar 

  • Popovic MB, Popovic DB, Sinkjaer T, Stefanovic A, Schwirtlich L (2003) Clinical evaluation of functional electrical therapy in acute hemiplegic subjects. J Rehabil Res Dev 40:443–453

    Article  PubMed  Google Scholar 

  • Popovic DB, Popovic MB, Sinkjaer T, Stefanovic A, Schwirtlich L (2004) Therapy of paretic arm in hemiplegic subjects augmented with a neural prosthesis: a cross-over study. Can J Physiol Pharmacol 82:749–756

    Article  PubMed  CAS  Google Scholar 

  • Popovic MR, Thrasher TA, Adams ME, Takes V, Zivanovic V, Tonack MI (2006) Functional electrical therapy: retraining grasping in spinal cord injury. Spinal Cord 44(3):143–151

    Article  PubMed  CAS  Google Scholar 

  • Powell J, Pandyan D, Granat M, Cameron M, Stott DJ (1990) Electrical stimulation of wrist extensors in poststroke hemiplegia. Stroke 30:1384–1389

    Google Scholar 

  • Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1986) Numerical recipes. Cambridge University Press, Cambridge

    Google Scholar 

  • Ridding MC, Rothwell JC (1995) Reorganisation in human motor cortex. Can J Physiol Pharmacol 73(2):218–222

    PubMed  CAS  Google Scholar 

  • Ridding MC, Rothwell JC (1997) Stimulus/response curves as a method of measuring motor cortical excitability in man. Electroencephalogr Clin Neurophysiol 105:340–344

    Article  PubMed  CAS  Google Scholar 

  • Ridding MC, Rothwell JC (1999) Afferent input and cortical organisation: a study with magnetic stimulation. Exp Brain Res 126:536–544

    Article  PubMed  CAS  Google Scholar 

  • Ridding MC, Brouwer B, Miles TS, Pitcher JB, Thompson PD (2000) Changes in muscle responses to stimulation of the motor cortex induced by peripheral nerve stimulation in human subjects. Exp Brain Res 131:135–143

    Article  PubMed  CAS  Google Scholar 

  • Rossini PM, Pauri F (2000) Neuromagnetic integrated methods tracking human brain mechanisms of sensorimotor areas ‘plastic’ reorganisation. Brain Res Rev 33:131–154

    Article  PubMed  CAS  Google Scholar 

  • Rosenkranz K, Rothwell JC (2004) The effect of sensory input and attention on the sensorimotor organization of the hand area of the human motor cortex. J Physiol 561(Pt 1):307–320

    Google Scholar 

  • Sacco P, Newberry R, McFadden L, Brown T, McComas AJ (1998) Depression of human electromyographic activity by fatigue of synergistic muscle. Muscle Nerve 20:710–717

    Article  Google Scholar 

  • Seitz RJ, Bütefisch CM, Kleiser R, Hömberg V (2004) Reorganisation of cerebral circuits in human ischemic brain disease. Restor Neurol Neurosci 22(3–5):207–229

    PubMed  Google Scholar 

  • Siebner HR, Rothwell JC (2003) Transcranial magnetic stimulation: new insights into representational cortical plasticity. Exp Brain Res 148:1–16

    Article  PubMed  Google Scholar 

  • Smith CD, Umberger GH, Manning EL, Slevin JT, Wekstein DR, Schmitt FA, Markesbery WR, Zhang Z, Gerhardt GA, Kryscio RJ, Gash DM (1999) Critical decline in fine motor hand movements in human ageing. Neurology 53(7):1458–1461

    PubMed  CAS  Google Scholar 

  • Stetkarova I, Leis AA, Stokic DS, Delapasse JS, Tarkka IM (1994) Characteristics of the silent period after transcranial magnetic stimulation. Am J Phys Med Rehabil 73:98–102

    Article  PubMed  CAS  Google Scholar 

  • Taylor JL, Allen GM, Butler JE, Gandevia SC (1997) Effect of contraction strength on responses in biceps brachii and adductor pollicis to transcranial magnetic stimulation. Exp Brain Res 117:472–478

    Article  PubMed  CAS  Google Scholar 

  • Taylor JL, Butler JE, Gandevia SC (1999) Altered responses of human elbow flexors to peripheral-nerve and cortical stimulation during a sustained maximal voluntary contraction. Exp Brain Res 127:108–115

    Article  PubMed  CAS  Google Scholar 

  • Thrasher TA, Flett HM, Popovic MR (2006) Gait training regimen for incomplete spinal cord injury using functional electrical stimulation. Spinal Cord 44(6):351–367

    Article  Google Scholar 

  • Winslow J, Jacobs PL, Tepavac D (2003) Fatigue compensation during FES using surface EMG. J Electromyogr Kinesiol 13:555–568

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the participants of the study and the personnel of the Centre of Sensory-Motor Interaction, Aalborg University, for their help during the study. This study was supported by grants from the Danish National Research Foundation and Det Obelske Familiefond.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gergely I. Barsi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barsi, G.I., Popovic, D.B., Tarkka, I.M. et al. Cortical excitability changes following grasping exercise augmented with electrical stimulation. Exp Brain Res 191, 57–66 (2008). https://doi.org/10.1007/s00221-008-1495-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-008-1495-5

Keywords

Navigation