ONLINE SUPPLEMENTARY DOCUMENT

Measures of intracranial compartments in acute intracerebral haemorrhage: data from the Rapid Intervention with Glyceryl Trinitrate in Hypertensive Stroke-2 Trial (RIGHT-2) **Supplemental Table I.** Comparison of intracranial volume and intracerebral haemorrhage volume measures on CT scans (n=133). Data are mean (standard deviation), difference (Δ) in volume.

Measure		Difference (Δ)	p value
Intracranial			
volume (ICV)			
(cm ³)			
SAS	1419.64 (197.07)	62.21	p<0.0001
XYZ/2	1357.42 (219.97)		
Haemorrhage			
volume			
(ICHV) (cm ³)			
SAS	46.07 (41.98)	0.07	0.94
ABC/2	45.99 (42.72)		

Supplemental Table II. Inter-observer comparison, ICC (n=10) for two observers of intracranial volume by semi-automated segmentation (cm³), cerebral parenchymal volume (cm³), cerebrospinal fluid volume (cm³), intracranial area (cm²), intercaudate distance (mm) and sylvian fissure ratio (mm). Data are mean (standard deviation) and mean difference (Δ).

			Difference	ICC
Observer	1	2	(=)	
Measure				
Intracranial	1340.80	1341.00	-0.20	0.99
volume	(114.90)	(126.59)	(21.55)	
Cerebral	1153.40	1168.39	-14.99	0.92
parenchymal	(143.84)	(121.92)	(45.01)	
volume				
Cerebrospinal	187.39	172.60	14.79	0.92
fluid volume	(180.45)	(148.65)	(40.90)	
Intercaudate	15.66	22.95 (9.88)	-7.49	0.69
distance	(4.40)		(5.48)	
Sylvian	0.05	0.05 (0.02)	*	0.72
fissure ratio	(0.01)			

Supplemental Table III. Intra-observer comparison, ICC for two observers (n=10), of intracranial volume by semiautomated segmentation (cm³), cerebral parenchymal volume (cm³), cerebrospinal fluid volume (cm³), intracranial area (cm²), intercaudate distance (mm) and sylvian fissure ratio (mm).

			Difference (Δ)	ICC			Difference (Δ)	ICC
Observer	1				2			
Measure	1	2			1	2		
Intracranial volume	1379.80 (124.90)	1391.17 (143.98)	-12.17 (18.08)	0.95	1393.50 (153.18)	1394.20 (156.78)	-0.70 (12.34)	0.99
Cerebral parenchymal volume	1269 (189.91)	1251 (171.28)	18.00 (18.73)	0.92	1212.79 (177.65)	1244.51 (175.70)	31.72 (46.65)	0.98
Cerebrospinal fluid volume	181.39 (80.41)	183.65 (84.29)	-2.06 (3.38)	0.92	180.71 (83.15)	149.69 (71.25)	31.02 (49.48)	0.88
Intercaudate distance	18.29 (3.73)	17.26 (2.19)	1.03 (1.53)	0.83	17.96 (4.78)	18.31 (5.54)	-0.35 (2.26)	0.95
Sylvian fissure ratio	0.06 (0.01)	0.05 (0.04)	0.01	0.73	0.06 (0.02)	0.06 (0.02)	0.00	0.92

Supplemental Table IV. Intra and inter-observer comparisons (ICC) of visual assessment of small vessel disease using the Van Swieten score and severity of hydrocephalus using the cistern score.

	ICC		
Observer	1	2	1 vs 2
van Swieten score	0.83	0.95	0.98
Cistern score	0.96	1.00	0.94

Supplemental Figure I. Bland-Altman plot for assessment of variation in estimating intracranial volume between XYZ/2 and semi-automated segmentation methods (n=133) ($r^2 = 0.78$, p<0.0001). The continuous and dotted lines represent the regression lines. The slope of the best-fit regression line was 0.12 (p=0.042). Mean intracranial volume was 1419.64 (197.07) mL by SAS and 1357.42 (219.97) mL by XYZ/2 with a mean difference of 62.21 mL; p<0.001

Supplemental Figure II. The Bland-Altman plot for assessment of variation in estimating intracerebral haemorrhage volume between ABC/2 and semi-automatic segmentation ($r^2 = 0.97$, p<0.0001). The continuous and dotted lines represent the regression lines. The slope of the best-fit regression line was 0.018 (p=0.42). Mean intracerebral haemorrhage volume was 46.07 (41.98) mL by SAS and 45.99 (42.72) mL with mean difference of 0.07 mL; p=0.94.

Supplemental Figure III. Regression line between ABC/XYZ (%) and ICH volume as a percentage of intracranial volume using semi-automated segmentation (SAS). The slope of the best-fit regression line was 0.98 and the intercept 0.20 (p<0.0001).

REFERENCES

- 1. Krishnan K, Mukhtar SF, Lingard J, et al. Performance characteristics of methods for quantifying spontaneous intracerebral haemorrhage: Data from the efficacy of nitric oxide in stroke (enos) trial. *JNNP*. 2015;86:1258-1266
- 2. Beslow LA, Ichord RN, Kasner SE, et al. Abc/xyz estimates intracerebral haemorrhage volume as a predictor of total brain volume in children. *Stroke*. 2010;41:691-694
- 3. Wanifuchi H, Shimizu T, Maruyama T. Age-related changes in the proportion of intracranial cerebrospinal fluid space measured using volumetric computerised scanning. *J Neurosurg*. 2002;97:607-610
- 4. van Swieten, Hijdra A, van Gijn J. Grading white matter scales on ct and mri: A simple scale. *Journal of Neurology, Neurosurgery and Psychiatry*. 1990;53:1080-1083
- 5. Diringer MN, Edwards DF, Zazulia AR. Hydrocephalus: A previously unrecognised predictor of poor outcome from supratentoral intracerebral haemorrhage. *Stroke*. 1998;29:1352-1357
- 6. Kwon SM, Choi K-S, Yi H-J, et al. Impact of brain atrophy on 90-day functional outcome after moderate-volume basal ganglia haemorrhage. *Sci Rep.* 2018;8:4819