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ABSTRACT
Background and objective The injury of the cholinergic 
white matter pathway underlies cognition decline in 
patients with silent cerebrovascular disease (SCD) with 
white matter hyperintensities (WMH) of vascular origin. 
However, the evaluation of the cholinergic white matter 
pathway is complex with poor consistency. We established 
an intelligent algorithm to evaluate WMH in the cholinergic 
pathway.
Methods Patients with SCD with WMH of vascular origin 
were enrolled. The Cholinergic Pathways Hyperintensities 
Scale (CHIPS) was used to measure cholinergic white 
matter pathway impairment. The intelligent algorithm 
used a deep learning model based on convolutional 
neural networks to achieve WMH segmentation and CHIPS 
scoring. The diagnostic value of the intelligent algorithm 
for moderate- to- severe cholinergic pathway injury was 
calculated. The correlation between the WMH in the 
cholinergic pathway and cognitive function was analysed.
Results A number of 464 patients with SCD were 
enrolled in internal training and test set. The algorithm was 
validated using data from an external cohort comprising 
100 patients with SCD. The sensitivity, specificity and 
area under the curve of the intelligent algorithm to assess 
moderate and severe cholinergic white matter pathway 
injury were 91.7%, 87.3%, 0.903 (95% CI 0.861 to 0.952) 
and 86.5%, 81.3%, 0.868 (95% CI 0.819 to 0.921) for the 
internal test set and external validation set. for the. The 
general cognitive function, execution function and attention 
showed significant differences among the three groups of 
different CHIPS score (all p<0.05).
Discussion We have established the first intelligent 
algorithm to evaluate the cholinergic white matter pathway 
with good accuracy compared with the gold standard. It 
helps more easily assess the cognitive function in patients 
with SCD.

INTRODUCTION
Silent cerebrovascular disease (SCD) is an age- 
related disease with a high prevalence. About 
25% of people over 80 years old have more 
than one silent cerebral infarction.1 2 SCD is 
one of the most common causes of cognitive 
impairment, and it accounts for 36%–67% 
of vascular dementia.3 White matter hyper-
intensities (WMH) is one of the imaging 

manifestations of SCD.4 Previous studies have 
shown that the progression of WMH is closely 
related to the decline of cognitive function.5–7

Furthermore, specific neural pathways 
have different effects on cognitive function. 
The injury of the cholinergic pathway is an 
important mechanism of WMH affecting 
cognitive function. A diffusion neuroimage 
study found that the integrity of the cholin-
ergic white matter pathway is significantly 
reduced in all stages of Alzheimer’s disease.8 
Several studies suggested that impairment of 
the cholinergic pathway may also be associ-
ated with cognitive dysfunction in Lewy body 
disease and Parkinson’s disease dementia, 
although these three diseases have different 
pathological mechanisms.9–11 In order to 
facilitate the quantitative evaluation of the 
cholinergic white matter pathway, Bocti12 et 
al developed a new Visual Rating Scale: The 
Cholinergic Pathways Hyperintensities Scale 
(CHIPS) to assess WMH within cholinergic 

WHAT IS ALREADY KNOWN ON THIS TOPIC

 ⇒ Injury of the cholinergic pathway is one of the im-
portant causes of cognitive decline in patients with 
silent cerebrovascular disease (SCD). However, there 
is a lack of rapid and accurate methods to evaluate 
the cholinergic pathway.

WHAT THIS STUDY ADDS

 ⇒ We developed an intelligent algorithm that can seg-
ment white matter hyperintensities and evaluate 
cholinergic pathway injury. We validated its accuracy 
and applied it to assess cognitive function in patients 
with SCD.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

 ⇒ The intelligent algorithm we established helps to 
quickly and accurately assess cholinergic pathway 
injury and reduce labour costs. It provides a new 
method for imaging assessment of cognitive impair-
ment in patients with SCD.
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pathways. Several subsequent studies13–15 have found 
that CHIPS are correlated to cognitive function. Qiu13 et 
al found that time- based prospective memory, Montreal 
Cognitive Assessment (MoCA) score and CHIPS score 
were negatively correlated in patients with WMH, 
suggesting that WMH may be involved in retrospective 
memory by affecting the central cholinergic pathway.

Therefore, quantitative analysis of WMH within cholin-
ergic pathways is very important for evaluating cognitive 
function. The calculation of the CHIPS is usually time- 
consuming due to its highly complicated nature. There-
fore, some algorithms of automatic WMH segmentation 
have been developed.16 Lesion Segmentation Toolbox17 
from the Statistical Parametric Mapping (SPM) was a 
commonly used tool. On this basis, some researches have 
improved the algorithm for WMH segmentation. Jiang 
et al presented a cluster- based pipeline for extracting 
WMH.18 However, the results of previous studies were 
not consistent to be used as the basis of the scoring algo-
rithm.19 As far as we know, there is no intelligent WMH 
segmentation algorithm addressing WMHs in the cholin-
ergic pathway. Therefore, we chose deep learning based 
on U- net of convolutional neural networks to extract 
complex features. The intelligent algorithm realised 
WMH segmentation and CHIPS scoring. Based on this 
algorithm, we analysed the relationship between the 
WMH within the cholinergic pathway and cognitive func-
tion in patients with SCD.

METHODS
Study population
This study continuously collected patients with SCD with 
WMH of vascular origin at the neurology department of 
XXX Hospital. The inclusion criteria were: (1) Aged 55 
years to 85 years. (2) MRI showed WMH of vascular origin 

(high signal on T2- Fluid attenuated inversion recovery 
(FLAIR) in the white matter area). Patients with stroke, 
demyelination disease, brain tumours, autoimmune 
encephalitis, Alzheimer’s disease and other imaging 
manifestations of SCD: new subcortical small infarction, 
lacunae, severe perivascular space and cerebral micro-
haemorrhage were excluded (figure 1).

Standard protocol approvals, registrations and patient 
consents

Cognitive measurement
Cognitive function was assessed with the following 
neuropsychological tests. (1) General cognitive function: 
Mini- Mental State Examination20 (MMSE): Included 
orientation, memory, attention, language and visuospa-
tial function. The score ranges from 0 to 30, with higher 
scores associated with better cognitive function. (2) 
MoCA:21 Included executive function, memory, atten-
tion, language and visuospatial function. The score 
ranges from 0 to 30, with higher scores associated with 
better cognitive function. (3) Trail Making Test22 (TMT): 
Patients were asked to connect 25 numbers as requested. 
Used to evaluate executive function. (4) Symbol Digit 
Modality Test23 (SDMT): Used to assess attention. The 
subjects were asked to convert symbols into numbers, 
and the more they did the better their cognitive function. 
(5) Auditory Verbal Learning Test:24 Used to evaluate 
memory function. The more words recalled the better 
the cognitive function. (6) Verbal Fluency Test:25 Subjects 
were asked to list as many animals as possible in 1 min. 
Used to evaluate language function.

MRI acquisition
In training and test sets, MRI scans were performed on 
two MRI machines with different parameters. The first 

Figure 1 Flow chart of the selection process of patients. (A) Internal set, include training and test set; (B) external validation 
set. DICOM, Digital Imaging and Communications in Medicine; SCD, silent cerebrovascular disease; WMH, white matter 
hyperintensities.
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was a 3.0T scanner (United Image). The scan protocol 
of T2 FLAIR was as follows: repetition time was 8000 ms, 
echo time was 104 ms, number of slices was 19, slice thick-
ness was 5 mm and spacing between slices was 6.5 mm. 
The second was a 1.5T scanner (General Electrics). The 
scan protocol of T2 FLAIR was as follows: repetition time 
was 8602 ms, echo time was 162.2 ms, number of slices 
was 16, slice thickness was 5 mm and slice gap was 3 mm.

In external validation sets, MRI was performed on 
Philips 3.0T MRI scanner. Scanning parameters of T2 
FLAIR were as follows: repetition time 8000 ms, echo 
time was 120 ms, number of slices was 21, slice thickness 
was 6 mm and spacing between slices was 7 mm.

Cholinergic Pathways Hyperintensities Scale
CHIPS was a Visual Rating Scale evaluating cholinergic 
white matter pathways. Bocti et al12 developed it based 
on published immunohistochemical tracers of human 
cholinergic pathways, and superimposed it on structural 
MRI scans. Four axial images of the adjacent layers of 
the lateral ventricle and the third ventricle were taken by 
anatomical markers, and the cholinergic medial pathway 
(cingulate) and lateral pathway (capsule externa and 
centrum semiovale) were overlapped on CHIPS. The 
degree of WMH in each region was assessed according 
to the location of 10 regions (left and right cingulate, 
capsule externa anterior, capsule externa anterior, 
capsule externa posterior, centrum semiovale anterior 
and centrum semiovale posterior) (figure 2). The severity 
of WMH lesions was classified into three grades, 0 for 
normal, 1 point for involving less than 1/2 of one region 
and 2 points for involving more than 1/2 of one region. 
Due to the different distribution of cholinergic fibres in 
each layer, each layer has a different weighting coefficient, 
ranging from 1 to 4. Each hemisphere scores a maximum 

of 50 points. A total of 100 points on both sides. CHIPS≤4 
represents mild cholinergic white matter pathway injury, 
while 5≤CHIPS≤15 represents moderate and CHIPS≥16 
represents severe.

WMH intelligent algorithm
A deep learning model based on a convolutional neural 
network was used to segment and predict the WMH. With 
a ratio of 7:3, patients’ MRI data was randomly divided 
into training sets and test sets. The specific implemen-
tation steps of the algorithm are as follows. (1) Data 
cleaning: The collected brain image data were classified 
according to different categories; (2) data labelling: 
According to the cleaned data, the disease conditions 
in the brain image are labelled, so that the model can 
learn efficiently and accurately; (3) data preprocessing: 
Skull was removed using FMRIB Software Library (FSL) 
Brain Extraction Tool (BET)26 and skull- stripping images 
reoriented to the standard Montreal neurological insti-
tute (MNI) space with SPM; (4) model training: U- net27 
convolutional neural network is used to learn the data 
after the doctor’s labelling, and a relatively mature and 
usable preliminary model is obtained. We used classical 
two- dimensional U- net architecture with 19 layers with 
3×3 convolution kernels. The model is trained with Dice 
loss function. We implemented the networks in Python 
V.3.6 using Pytorch V.0.8.0. The model was trained on an 
NVIDIA Tesla V100, taking 2 min per epoch. We used the 
Adam optimiser with 10−4 learning rate. Data augmenta-
tion was applied with a torch tool box using translation 
(x/y- offset ∈(−10, 10)), rotation (θ ∈(−10, 10)). The total 
training epochs number was 300; (5) model testing: Take 
the learnt model to perform segmentation prediction of 
WMH on the test set; (6) model generalisation: Evaluate 

Figure 2 Cholinergic Pathways Hyperintensities Scale on T2- FLAIR MRI. (A) Low external capsule; (B) high external capsule; 
(C) corona radiata; (D) centrum semiovale; (E) coronal view of above slices (A–D). FLAIR, Fluid attenuated inversion recovery
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model generalisation performance using external valida-
tion sets.

The CHIPS scoring algorithm is based on CHIPS 
template. It is distributed in blocks in the standard space, 
occupying 20 areas. Each area has a different weight. 
WMH is matched to the standard space with the template. 
The specific scoring algorithm is as follows. (1) Register 
the individual spatial image and calculate the distribu-
tion of WMH in standard space. (2) The standard spatial 
template contains 20 regions, each spanning several 
layers. The volume of WMH in each layer of each region 
is calculated, and the region with the highest propor-
tion is selected as the result of this region. (3) Judge the 
results obtained in each area. If it is less than threshold 
A, it is counted as 0 points; if it is greater than threshold 
B and less than threshold C, it is counted as 1 point; if it 
is greater than threshold C, it is counted as 2 points. By 
learning the data scored by the doctors, set threshold A: 
0.003, threshold B: 0.03 and threshold C:0.25. The specific 
parameters of A, B and C were determined through the 
grid search optimisation method. The goal of optimisa-
tion is to maximise the accuracy of the final scoring. (4) 
Calculate the product of each zone’s fraction and zone 
coefficient, and sum (figure 3).

The intelligent algorithm can be acquired from Google 
Drive (https://drive.google.com/file/d/1oz-DQssQPY_ 
axlAB8tqN71sds67UC7pZ/view?usp=share_link).

WMH manual assessment
Two neurologists calculated CHIPS scores and performed 
manual segmentation of WMH on the FLAIR images using 
3D Slicer (V.4.8). If there was a disagreement between the 
two neurologists, it was resolved by including the third 
neurologist. The segmentation of WMH and a score of 
CHIPS by these three doctors were regarded as the gold 
standard. Neurologists were blind to the segmentation 
of each other and intelligent algorithms. Meanwhile, in 
order to verify the instability of manual CHIPS scores, we 

invited seven additional neurology residents to calculate 
CHIPS scores.

Statistical analysis
The normality was tested with the Shapiro- Wilk test. 
Continuous data with a normal distribution are expressed 
as the mean±SD. Data with non- normal distribution are 
presented as medians with IQRs. The correlation between 
CHIPS scores measured by doctors and intelligent algo-
rithm was described with Spearman’s correlation coeffi-
cient and evaluated by Bland- Altman analysis. Sensitivity, 
specificity and the area under the receiver operating char-
acteristic curve (AUC) were used to evaluate the diag-
nostic accuracy. The comparisons among three groups 
were done by one- way analysis of variance then followed 
by post hoc Bonferroni test. Independent sample t- tests 
were used in the analysis between two groups. Statistical 
analyses were performed with SPSS software, V.19.0 (IBM 
Corporation, Armonk, New York, USA). P value<0.05 was 
considered statistically significant.

Data availability
We take full responsibility for the data, the analyses and 
interpretation and the conduct of the research. We have 
full access to all of the data. We have the right to publish 
any and all data, separate and apart from the guidance of 
any sponsor.

RESULT
Demographic and clinical characteristics
For training and test sets, a total of 626 patients with SCD 
were enrolled in this study from 1 January 2018 to October 
2019. Among them, 111 patients were excluded due to 
accompanying diseases and 51 patients were excluded 
due to the unaccomplished cognitive test. Finally, 464 
patients were included in the statistical analysis. With a 
ratio of 7:3, patients’ MRI data was randomly divided into 

Figure 3 The pipeline of Intelligent algorithm. (A) Input T2- FLAIR image; (B) image preprocessing: remove skull and reoriented 
to standard MNI space; (C) model training: using classical 2D U- net architecture with 19 layers with 3×3 convolution kernels; 
(D) the result of WMH segmentation; (E) CHIPS templates in standard space. Divided into low external capsule, high external 
capsule, corona radiata and centrum semiovale. (F) Match the segmented WMH back to the standard space, and combining 
the CHIPS template. The grid search optimisation method was used to get the CHIPS score. CHIPS, Cholinergic Pathways 
Hyperintensities Scale. FLAIR, Fluid attenuated inversion recovery. MNI, Montreal neurological institute. WMH, white matter 
hyperintensity; 2D, two- dimensional.
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training sets and test sets. Training sets contained 325 
patients, while test sets contained 139 patients. A total 
of 157 patients with SCD were enrolled for the external 
validation set. According to the including and exclusion 
criteria, 100 patients were included in the statistical anal-
ysis. The demographic characteristics and risk factors 
of small cerebral vascular disease of training, test and 
external sets are shown in table 1.

The establishment and verification of intelligent algorithm
Due to the complex calculations of CHIPS, the differ-
ences between evaluators were always large. We invited 
seven resident neurologists to score the CHIPS. The 
Kendall’s W coefficient of the CHIPS score of 7 residents 
was 0.555 (p<0.001), indicating poor consistency. Hence, 
it is necessary to establish the intelligent algorithm to 
reduce the differences of manual evaluation.

Intelligent CHIPS scores were significantly correlated 
with CHIPS scores measured by senior neurologists in both 
training set (r=0.941, 95% CI 0.933 to 0.958, p<0.0001) 
and test set (r=0.910, 95% CI 0.880 to 0.932, p<0.0001), as 
well as in external validation set (r=0.846, 95% CI 0.785 to 
0.901, p<0.0001). In the training set, Bland- Altman anal-
ysis revealed a bias of −3.527 (95% CI −13.06 to 20.41) 
for the CHIPS score of intelligent algorithms and senior 
neurologists, while in the test set, bias was 4.631 (95% CI 
−15.56 to 25.58). The bias of the external validation set 
was −4.170 (95% CI −12.17 to 20.51) (figure 4).

In the test set, the sensitivity and specificity of the intel-
ligent algorithm were 91.7%, 87.3%, AUC=0.903, (95% 
CI 0.861 to 0.952) for the assessment of moderate and 
severe cholinergic white matter pathway injury. While in 

the external validation set, the sensitivity and specificity of 
the intelligent algorithm were 86.5%, 81.3%, AUC=0.868 
(95% CI 0.819 to 0.921). The confusion matrix is present 
in figure 5.

The intelligent algorithms also showed stability in 
magnetic resonance with different parameters. Intelli-
gent CHIPS score had a good correlation with manual 
CHIPS score on both 3.0T MR (r=0.945, p<0.0001) and 
1.5T MR (r=0.896, p<0.0001). The intelligent algorithms 
took 4.33±2.06 s to complete CHIPS score of a patient, 
while the clinician took 123.50±88.68 s. Intelligent algo-
rithms significantly reduced time (p<0.0001).

Association between cholinergic white matter pathways and 
cognitive functions
The patients of training and test sets were categorised into 
three groups based on the CHIPS score of intelligent algo-
rithms, mild (group 1), moderate (group 2) and severe 
(group 3). The comparison of cognitive function among 
three groups is shown in table 2. There was no significant 
difference in age or gender among groups (both p>0.05) 
MMSE (p=0.019), MoCA (p=0.015), TMT (p=0.029) and 
SDMT (p=0.016) had significant differences among the 
three groups of different CHIPS scores. The scores of 
intelligent CHIPS were negatively correlated with MMSE, 
MOCA and SDMT scores (r=−0.330, p<0.0001; r=−0.309, 
p<0.0001, r=−0.290, p<0.0001) (figure 6). The correla-
tion between cognitive function and CHIPS of different 
regions was shown in online supplemental figure 1. 
MMSE and MoCA were negatively correlated with WMH 
in cingulate and posterior of capsule externa. SDMT 
was negatively correlated with WMH in the cingulate, 

Table 1 Clinical characteristics of patients

Clinical characteristics
Training set
(n=325)

Test set
(n=139)

External validation set 
(n=100)

Age (mean, IQR) 65.2 (7.3) 62.9 (8.1) 67.0 (9.0)

Sex (male, %) 156 (48.0) 74 (53.2) 40 (41.0)

Vascular risk factors

  Hypertension* (n, %) 181 (58.6) 71 (51.1) 46 (46.0)

  Diabetes *(n, %) 65 (20.0) 14 (11.5) 12 (12.0)

  Hyperlipidaemia* (n, %) 53 (16.3) 37 (26.7) 19 (19.0)

  Carotid plaque †(n, %) 129 (39.7) 69 (49.6) 40 (40.0)

  Smoke (n, %) 105 (32.3) 41 (29.5) 28 (28.0)

White matter hyperintensity

  Fazekas score 2.7 (1.9) 2.6 (1.7) 2.1 (1.1)

  WMH volume (mm3) 2247.6 (2850.9) 2024.2 (2914.3) 1831.5 (2247.4)

  CHIPS score (manual) 15.4 (24.0) 14.0 (25.3) 12.8 (17.3)

  CHIPS score (intelligent algorithm) 16.1 (32.0) 15.0 (27.8) 13.1 (20.2)

*Depend on self- reported.
†Diagnosis by carotid artery ultrasound.
‡
§
CHIPSC, Cholinergic Pathways Hyperintensities Scale ; WMH, white matter hyperintensities.
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posterior of capsule externa and centrum semiovale, 
while TMT was correlated with WMH in cingulate.

For the external validation set, the scores of intelligent 
CHIPS also show a significant correlation with MMSE, 
and MOCA (r=−0.278, p=0.013; r=−0.341, p=0.008).

DISCUSSION
To the best of our knowledge, it is the first study that estab-
lishes the intelligent algorithm specific to the evaluation 
of the cholinergic white matter pathway. We verified that 
there is good agreement between the intelligent algo-
rithm and senior neurologists. The algorithm accurately 
and quickly completed WMH segmentation and CHIPS 
scoring. Meanwhile, the intelligent algorithm can be 
adapted to different magnetic resonance machines with 

different scanning parameters. Using this algorithm, we 
investigated the correlation between cholinergic pathway 
damage and cognitive function, especially attention and 
executive function, in patients with SCD.

SCD leads to insidious cognitive decline. As an imaging 
manifestation of SCD, WMH has been proven to be asso-
ciated with cognitive function by many studies. Further-
more, the quantitative evaluation of these imaging 
manifestation has been paid more and more attention, 
and precise imaging helps to understand the mechanism 
of disease.28 29 WMH in special neural pathways can lead 
to cognitive decline. Cholinergic pathways are thought 
to be important in cognitive function.30 CHIPS is consid-
ered to be a good method for assessing the injury of the 
cholinergic pathway, but the evaluation is complex and 

Figure 4 Linear regression analysis and Bland- Altman analysis of CHIPS score measured by a doctor and intelligent algorithm. 
(A) Training set, (B) test set, (C) external validation set. CHIPS, Cholinergic Pathways Hyperintensities Scale.

Figure 5 Confusion matrix of intelligent algorithm detecting moderate and severe cholinergic white matter pathway injury. (A) 
Training set, (B) test set, (C) external validation set.
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time consuming. We established an intelligent CHIPS 
scoring algorithms, and it had good consistency with 
manual scoring. Moreover, it significantly reduced the 
evaluating time and variance in manual assessments, and 
showed stability in magnetic resonance with different 
parameters. Several previous studies used different kinds 
of tools, such as statistical parametric mapping (SPM),31 
k- Nearest Neighbor32 and neural networks,33 to predict 
the segmentation results of WMH and brain region divi-
sion. Our algorithm is based on U- net architecture. In 
order for the detection of both large lesions and small 
lesions, we ensembled multiple model predictions. We 
replaced the convolutional kernels in the initial two layers 
with those of varying sizes to extract features more effi-
ciently from different receptive domains.

Our study had more detailed conclusions that intel-
ligent CHIPS were correlated with scores of MMSE, 
MoCA, TMT and SDMT. We suggested that WMH in the 
cholinergic pathway mainly correlated with attention and 
executive function. Some previous studies have found a 
correlation between CHIPS and cognitive function.34 35 
Nemy36 et al found that the integrity of the cholinergic 
pathway has a greater effect on memory and attention 
than the WMH load and volume of white matter in the 
patient with small vessel disease. Swartz37 et al evaluated 
the impact of WMH involving cholinergic pathways in 
patients with vascular and mixed dementia. Executive 
function and visual- spatial attention were more severely 
impaired in patients with moderate and severe impair-
ment than in patients with mild impairment of the 

Table 2 Comparison of cognitive function among different groups of CHIPS score

Variables

Group 1 Group 2 Group 3

P valueCHIPS≤4 (n=213) 5≤CHIPS≤15 (n=113) CHIPS≥16 (n=138)

Sex (M/%） 101/47.4 51/45.1 78/56.5 0.318

Age 64.1±4.8 65.8±4.5 64.7±5.1 0.615

CHIPS score 0.7±0.8 9.9±3.4* 34.7±19.2*† <0.0001

Total WMH volume 527.4±1738.6 1327.5±2871.5* 4005.1±4121.2*† <0.0001

WMH volume in cholinergic pathway 93.3±336.1 178.5±509.2* 751.8±1005.6*† <0.0001

MMSE 26.1±3.7 25.3±3.9* 24.2±4.1*† 0.019

MoCA 21.8±5.7 19.8±5.2 18.9±4.9*† 0.015

Executive function (TMT) 0.10 (−0.51 to 0.70) −0.02 (−0.80 to 0.65) −0.09 (−0.85 to 0.52)*† 0.029

Short- term memory (AVLT) 0.22 (−0.64 to 1.03) −0.03 (−0.79 to 0.86) −0.08 (−0.76 to 0.50) 0.539

Long- term memory (AVLT) −0.11 (−0.51 to 0.69) 0.06 (−0.68 to 0.81) −0.23 (−0.65 to 0.61) 0.616

Attention (SDMT) −0.09 (−0.56 to 0.47) −0.15 (−0.74 to 0.34)* −0.17 (−0.94 to 0.05)*† 0.016

Language (VFT) 0.70 (−0.81 to 0.45) −0.01 (−0.72 to 0.44) 0.01 (−0.81 to 0.69) 0.332

Definition of abbreviations: One- way analysis of variance was used in analyses for the parameters among three groups and an independent 
sample t- test was used in analysis between two groups. P<0.05 is bolded.
Score of TMT, AVLT, SDMT and VFT were present as standard z- score (median, quartile).
*P value<0.05 versus Group I.
†P value<0.05 versus Group II.
AVLT, Auditory Verbal Learning Test; CHIPS, Cholinergic Pathways Hyperintensities Scale; MMSE, Mini- Mental State Examination; MoCA, 
Montreal Cognitive Assessment; SDMT, Symbol Digit Modality Test; TMT, Trail Making Test; VFT, Verbal Fluency Test; WMH, white matter 
hyperintensities.

Figure 6 Linear regression analysis of the cognitive scale and CHIPS score measured by an intelligent algorithm. (A) MMSE, 
(B) MoCA, (C) SDMT. CHIPS, Cholinergic Pathways Hyperintensities Scale; MMSE, Mini- Mental State Examination; MoCA, 
Montreal Cognitive Assessment; SDMT, Symbol Digit Modality Test.
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cholinergic pathway, although overall cognition and 
memory impairment were comparable. The correlation 
between cognitive function and WMH in the cholinergic 
pathway was shown not only in vascular disease, but also 
in other disease cause dementia, such as Alzheimer’s 
disease,14 Parkinson’s disease38 and diffuse Lewy body 
disease.9

Intelligent algorithms can finely delineate brain regions 
in cholinergic pathway. We found that the cingulate gyrus 
of the cholinergic pathway of closely related to cognitive 
function, including general cognitive function, attention 
and executive function. We inferred that the cingulate 
gyrus might be an important region of cognition. Some 
previous studies had similar evidence. In a community 
cohort of 819 people over the age of 65, WMH volume in 
the cingulate gyrus was found to be significantly correlated 
with Modified Boston Naming Test performance.39 Wertz 
et al40 evaluated the work in science, technology, engi-
neering and mathematics of 178 healthy volunteers (aged 
16–32 years old) and found that white matter integrity of 
the cingulate gyrus was associated with creative cognition.

Previous studies have suggested a possible mechanism 
that injury of the cholinergic pathway affected cogni-
tive function. An acetylcholinesterase positron emission 
tomography (PET) study41 assessed cortical acetylcho-
linesterase activity in patients with age- associated WMH. 
They found that periventricular WMH was significantly 
associated with lower cortical acetylcholinesterase activity, 
which supported the disruption of cholinergic fibres by 
WMH. Lim42 et al included 80 patients with a mean age 
of 78.4±6.5 years and a median MMSE score of 17. It was 
found that the CHIPS score was positively correlated with 
putamen and globus pallidus volume. WMH in the cholin-
ergic pathway was negatively correlated with the thickness 
of the temporal cortex and orbitofrontal cortex. WMH 
in the cholinergic pathway may lead to the volume and 
structure changes of cortical and subcortical structures 
inactivated by cholinergic neurons.

CHIPS score can reflect the relationship between WMH 
and cognitive function in patients with SCD, but due to 
complicated calculation, it usually takes much time and 
varies greatly among evaluators. The application of intel-
ligent CHIPS algorithm can greatly reduce labour costs 
and promote the application of CHIPS in clinical practice.
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