

Neglected Mendelian causes of stroke in adult Chinese patients who had an ischaemic stroke or transient ischaemic attack

Wei Li,^{1,2} Hao Li ^(b), ¹ Chaoxia Lu,¹ Jialu Zhao,¹ Huichun Xu ^(b), ³ Zhe Xu,¹ Braxton Mitchell,³ Yong Jiang ^(b), ¹ Hong-Qiu Gu ^(b), ¹ Qin Xu ^(b), ¹ Anxin Wang,¹ Xia Meng ^(b), ¹ Jinxi Lin,¹ Jing Jing,^{1,2} Zixiao Li,^{1,2} Wanlin Zhu,¹ Zhigang Liang ^(b),⁴ Mengxing Wang,¹ Yongjun Wang ^(b),^{2,5}

To cite: Li W, Li H, Lu C, *et al.* Neglected Mendelian causes of stroke in adult Chinese patients who had an ischaemic stroke or transient ischaemic attack. *Stroke & Vascular Neurology* 2023;**0**. doi:10.1136/ svn-2022-002158

Additional supplemental material is published online only. To view, please visit the journal online (http://dx.doi.org/10. 1136/svn-2022-002158).

Received 11 November 2022 Accepted 27 June 2023

© Author(s) (or their employer(s)) 2023. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

For numbered affiliations see end of article.

Correspondence to

Dr Yongjun Wang; yongjunwang@ncrcnd.org.cn ABSTRACT

Background and purpose Multiple factors play important roles in the occurrence and prognosis of stroke. However, the roles of monogenic variants in all-cause ischaemic stroke have not been systematically investigated. We aim to identify underdiagnosed monogenic stroke in an adult ischaemic stroke/transient ischaemic attack (TIA) cohort (the Third China National Stroke Registry, CNSR-III). Methods Targeted next-generation sequencing for 181 genes associated with stroke was conducted on DNA samples from 10428 patients recruited through CNSR-III. The genetic and clinical data from electronic health records (EHRs) were reviewed for completion of the diagnostic process. We assessed the percentages of individuals with pathogenic or likely pathogenic (P/LP) variants, and the diagnostic yield of pathogenic variants in known monogenic disease genes with associated phenotypes.

Results In total, 1953 individuals harboured at least one P/LP variant out of 10 428 patients. Then, 792 (7.6%) individuals (comprising 759 individuals harbouring one P/ LP variant in one gene, 29 individuals harbouring two or more P/LP variants in different genes and 4 individuals with two P/LP variants in ABCC6) were predicted to be at risk for one or more monogenic diseases based on the inheritance pattern. Finally, 230 of 792 individuals manifested a clinical phenotype in the EHR data to support the diagnosis of stroke with a monogenic cause. The most diagnosed Mendelian cause of stroke in the cohort was cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. There were no relationships between age or family history and the incidence of first symptomatic monogenic stroke in patients.

Conclusion The rate of monogenic cause of stroke was 2.2% after reviewing the clinical phenotype. Possible reasons that Mendelian causes of stroke may be missed in adult patients who had an ischaemic stroke/TIA include a late onset of stroke symptoms, combination with common vascular risks and the absence of a prominent family history.

INTRODUCTION

Deleterious mutations in a single gene can cause a Mendelian form of ischaemic stroke

WHAT IS ALREADY KNOWN ON THIS TOPIC

⇒ Strokes caused by single-gene mutations are an important type of stroke aetiology. However, the prevalence of strokes with Mendelian causes in all-cause ischaemic stroke is unknown.

WHAT THIS STUDY ADDS

- ⇒ We identified that 7.6% individuals harboured at least one pathogenic or likely pathogenic variant associated with one or multiple monogenic diseases in a Chinese all-cause ischaemic stroke cohort of 10 428 individuals.
- \Rightarrow After reviewing electronic health record data, the rate of a monogenic cause of stroke was 2.2%.

HOW THIS STUDY MIGHT AFFECT RESEARCH, PRACTICE, OR POLICY

⇒ Care should be taken to diagnose monogenic causes in all-cause ischaemic strokes, and an effective Mendelian stroke gene panel should be used to aid diagnosis.

(IS), either as a primary or a secondary manifestation.¹ Despite numerous genetic studies of IS,^{2–4} very few monogenic causes of strokes have been identified to date, and these have been found only in patients with a very early age of onset or with some types of small-vessel disease (SVD).⁵⁶ Few studies have attempted to systemically quantify the prevalence of monogenic stroke or to identify corresponding pathogenic variants in patients who had a stroke in the general population, especially in older individuals. The recent progress in genomic technology and the reduction of sequencing costs now make such an investigation feasible.⁷ Understanding the rare genetic variants associated with stroke is an essential step to identify the causes of stroke, decipher the underlying mechanisms, facilitate the identification of novel therapeutic targets and optimise prevention strategies.⁶ The current

1

Table 1 Characteristics of the included patients in CNSR-III

	•		
	NGS analysis cohort (n=10428)	CNSR-III cohort (n=15166)	Remaining cohort (n=4738)
Age at time of study entry , mean±SD	62.25±11.32	62.23±11.30	62.19±11.26
≤45 years	735 (7.05)	1074 (7.08)	339 (7.15)
>45 years	9693 (92.95)	14092 (92.92)	4399 (92.85)
Male, n (%)	7137 (68.44)	10364 (68.34)	3277 (68.11)
Ethnicity, Han, n (%)	10118 (97.03)	14726 (97.10)	4608 (97.26)
Current smoker, n (%)	3320 (31.84)	4752 (31.33)	1432 (30.22)
Heavy drinker, n (%)	1482 (14.21)	2126 (14.02)	644 (13.59)
BMI (≥25 kg/m²)	4464 (42.81)	6468 (42.65)	2004 (42.30)
Medical history, n (%)			
Ischaemic stroke	2349 (22.53)	3355 (22.12)	1006 (21.23)
Coronary heart diseases	1152 (11.05)	1608 (10.60)	456 (9.62)
Atrial fibrillation	737 (7.07)	1019 (6.72)	282 (5.95)
Hypertension	6540 (62.72)	9494 (62.60)	2954 (62.35)
Diabetes mellitus	2490 (23.88)	3510 (23.14)	1020 (21.53)
Dyslipidaemia	882 (8.46)	1191 (7.85)	309 (6.52)
Stroke type			
IS	9728(93.3)	14 146 (93.27)	4418 (93.25)
TIA	700 (6.7)	1020 (6.73)	320 (6.75)
Family history of Stroke	1395 (13.38)	2013 (13.27)	618 (13.04)
CCS			
Large artery atherosclerosis	2999 (28.76)	4364 (28.77)	1365 (28.81)
Cardioaortic embolism	718 (6.89)	971 (6.40)	253 (5.34)
Small arterial occlusion	2614 (25.07)	3747 (24.71)	1133 (23.91)
Other aetiologies	86 (0.82)	152 (1.00)	66 (1.39)
Undetermined aetiology	4011 (38.46)	5932 (39.11)	1921 (40.54)

Note: Heavy drinker: alcohol ≥20 g/day.

BMI, body mass index; CCS, Causative Classification System for Ischaemic Stroke; CNSR-III, the Third China National Stroke Registry; IS, ischaemic stroke; NGS, next-generation sequencing; TIA, transient ischaemic attack.

study was based on a cohort from the Third China National Stroke Registry (CNSR-III), which enrolled more than 10000 consecutive patients who had an IS or transient ischaemic attack (TIA). We sought to determine the prevalence of pathogenic variants associated with Mendelian causes of stroke and to estimate the extent of potentially missed genetic diagnoses in adult patients who had an IS.

METHODS

Study population and classification of Mendelian causes of stroke

The CNSR-III is a nationwide prospective registry for hospitalised patients who had IS/TIA between August 2015 and March 2018 in China. A total of 15166 stroke patients were enrolled. The detailed CNSR-III protocol has been published.⁸ Most CNSR-III participants were also included in a genetic sub-study (n=12603), for which targeted next-generation sequencing (NGS) was successfully conducted for 10613 patients (online supplemental eFigure 1).

Monogenic disorders with a stroke phenotype were classified into the following subgroups: large-artery disease, SVD, embolic stroke, a prothrombotic state and other diseases (including neurofibromatosis 1, polycystic kidney disease, Fabry disease and cerebral cavernous malformations), based on the references^{2 9} (online supplemental eTable1).

Clinical classification of IS was performed according to the Causative Classification System for Ischaemic Stroke (5-item CCS).¹⁰

NGS and data analysis

Briefly, DNA was isolated from peripheral leukocytes using a DNA Isolation Kit (Bioteke, AU1802, Beijing, China). DNA libraries were prepared using a KAPA Library Preparation Kit (Kapa Biosystems, KR0453, Wilmington, Massachusetts, USA) following the manufacturer's instructions. Genomic DNA capture, library construction and targeted NGS using a panel for Mendelian strokes were conducted as previously described.¹¹ Paired-end sequencing (150 bp) was performed on HiSeq X Ten or NovaSeq (Illumina, San Diego, California, USA). The

Figure 1 Identification and selection of pathogenic/likely pathogenic variants in the CNSR-III cohort. In total, 88604 observed variants in 181 genes were enrolled in this study. We used 345 pathogenic/likely pathogenic variants after filtering using the ClinVar database (left), and 776 novel pathogenic/likely pathogenic variants after annotation using the ACMG/AMP guidelines (right). ACMG, American College of Medical Genetics and Genomics; AMP, Association for Molecular Pathology; CNSR-III, the Third China National Stroke Registry; LB, likely benign.

sensitivity and specificity of the targeted sequencing were evaluated by comparing the results with the results of Sanger sequencing from a previous study by our group.¹¹ Variant calling and quality control are described in online supplemental file 1. For the current analysis, we focused only on 181 candidate genes associated with Mendelian stroke or stroke-related risk factors (online supplemental eTable 2). The pathogenicity was evaluated using InterVar software and customised scripts (V.2.0.1) according to the guidelines of the American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP).¹² The ClinVar database (ClinVar 20200622 version) was used to aid the evaluation.

Evaluation of the concordance between clinical phenotypes and the genetic classification of monogenic stroke

Through electronic health record (EHR) review and based on the availability of diagnostic criteria and the manifestation of relevant disease phenotypes, we classified the extent of the confidence of a diagnosis of monogenic stroke into several categories: undetermined (ie, without phenotypic expression of the relevant monogenic disease), possible (ie, with some features of the monogenic disease), definite (ie, met diagnostic criteria for the monogenic disease) or insufficient information. Based on the literature, some but not all monogenic diseases have well-established diagnostic criteria. For those without existing diagnostic criteria, we used the disease-related phenotypes listed on OMIM and published data to classify the diagnosis. Full details of the classification scheme for each phenotype can be found in the Phenotyping section of online supplemental file 1.

Statistical analysis

We used R software (V.3.6.1) to perform analysis. Multivariable logistic regression analysis was used to predict the relationships between age or family history and the incidence of monogenic stroke in patients without a history of stroke, controlling for hypertension, hyperlipidaemia, diabetes, coronary heart disease, atrial fibrillation, smoking history, drinking history and body mass index (BMI) \geq 25 kg/m².

Data availability

The data that support the findings of this study are available from the corresponding authors on reasonable request.

RESULTS

Description of NGS analysis cohort

After filtering out 147 contaminated samples and 38 duplicated samples from 10613 individuals, 10428 patients remained for NGS data analysis (online supplemental eFigure 1). The final set of 10428 samples had

6

Figure 2 Individuals diagnosed and potentially missed diagnoses. Flow chart (left) illustrating the number of individuals harbouring one or more P/LP variant, and the number of individuals predicted to develop one or more monogenic disease. Bar plot (right) illustrating the proportions of the groups at risk for one monogenic disease, showing their likelihood of a missed diagnosis. EHR, electronic health record; P/LP, pathogenic or likely pathogenic.

an average mean depth of coverage of 192, and 96.2% of targeted bases had a coverage depth of at least 20.

In this study cohort, patients who had an IS accounted for 93.3% (9728/10 428) and patients who had a TIA accounted for 6.7% (700/10 428). The ages ranged from 19 to 95 with a mean (SD) of 62.3 (11.3) years old. Of the patients, 93.0% were 45 years old or older, 7137 (68.4%) were men, 2349 (22.53%) had a history of IS and 1395 (13.38%) had a family history of stroke (table 1).

Pathogenic/likely pathogenic (P/LP) variants

In total, 88604 variants were found in the 181 candidate genes among the 10428 individuals. We implemented two pipelines to annotate the variants: one for variants annotated by ClinVar (11268 variants) and the other for 77336 variants that were not present in the ClinVar database. The first pipeline focused on P/LP variants classified in ClinVar (348 variants in 1031 individuals) followed by verification through manual review according to the ACMG/AMP guidelines, which filtered out three variants re-annotated as likely benign. The second pipeline used our own customised scripts based on ACMG/AMP principles to classify the remaining 77336 not present in the ClinVar database. The second pipeline included updating the PVS1, PS1, PP2 and BP1 gene lists based on identical procedures used in InterVar. This identified a total of 1121 variants, in 137 genes, presented in 1953 individuals, that were classified as P/LP and were further analysed for evaluation of their inheritance patterns and genotype-phenotype concordance (figure 1).

We further considered the inheritance pattern of the disease, excluding individuals with a heterozygous variant of an autosomal recessive disease. A total of 759 (online supplemental eTable 3) individuals harboured one P/LP variant in 80 genes and were predicted to be at risk for one monogenic disease (figure 2), while 29 individuals harboured more than two P/LP variants and were predicted to be at risk for multiple monogenic diseases (online supplemental eTable 4). In addition, four individuals harboured two P/LP

variants (without confirmation of paternity and maternity) in *ABCC6* (online supplemental eTable 5). The Mendelian causes of stroke identified in our cohort included 245 embolic stroke cases (32.3%), 184 large-artery disease cases (24.2%), 148 SVD cases (19.4%), 124 cases of a prothrombotic state (16.3%) and 58 other disease cases (7.6%) (total, 759 individuals; online supplemental eTable 6). Detailed aetiological classifications are shown in online supplemental eTable 3.

Diagnostic rate of individuals predicted to develop one monogenic disease

EHR data registered in the CNSR-III cohort were available for 747 of these 759 individuals with one P/LP variant at risk for one monogenic disease, to verify the genetic diagnosis (figure 2). Classification of the monogenic stroke and the corresponding genes involved are shown in figure 3. Among the 747 individuals, 157 individuals were classified as having insufficient information, as although EHR data were present in the registry, we anticipated that the phenotypes of their monogenic diseases would not be evaluated through EHR review. After reviewing clinical information for the remaining 590 individuals, we classified them into three groups according to the level of support from clinical evidence: definite genetic diagnosis (134 individuals), possible genetic diagnosis (80 individuals) and inconclusive/undetermined genetic diagnosis because of the absence of clinical phenotypes (376 individuals, figure 2). The positive diagnosis rates (definite+possible diagnosis) were 19.4% (42/216) for embolic stroke, 26.3% (47/179) for large-artery disease, 58.7% (84/143) for SVD, 93.3% (28/30) for a prothrombotic state and 59.1% (13/22) for other diseases. Overall, the positive diagnosis yield among patients with genetically diagnosed monogenic stroke showed the highest yield for monogenic prothrombotic state.

We also found four individuals with two P/LP variants in the *ABCC6* gene (online supplemental eTable

Figure 3 Genetic architecture of stroke. Each gene related to monogenic stroke identified in 759 individuals was classified into five subgroups: large-artery disease, small-vessel disease, embolic stroke, a prothrombotic state and other diseases (shown in the middle text circle). The proportions of affected genes are shown in the outermost circle.

5), predicted to have pseudoxanthoma elasticum in an autosomal recessive inheritance pattern. We reviewed the EHR data from these four patients and found no evidence to support a clinical diagnosis of pseudoxanthoma elasticum.¹³

Diagnostic rate of individuals predicted to develop two or more monogenic diseases

Surprisingly, we identified 29 individuals who harboured two P/LP variants in multiple genes and were predicted to develop two or more relevant monogenic diseases based on the inheritance pattern (online supplemental eTable 4). Two of them (patients #CNSR302050 and #CNSR303839) harboured three variants, and one (patient #CNSR306857) harboured four variants. Of these 29 individuals, three showed definite or possible clinical evidence to support the presence of two monogenic diseases. Thirteen of them had definite or possible clinical evidence to support the presence of only one monogenic disease. The remaining 12 patients did not have sufficient clinical phenotypes to support a genetic diagnosis. This group showed a clinical concordance rate (55.2%, 16/29) (online supplemental eTable 4).

Summary of the diagnostic rate of all individuals with one or more P/LP variant

In total, 792 of 10428 individuals (7.6% of all patients) were identified as carrying at least one P/LP variant for monogenic disease, according to the ACMG/AMP guidelines or the ClinVar database. EHR data were available for 780 individuals, and 624 individuals had relevant phenotypic information for evaluation in the EHR data that corresponded to their genetic diagnoses of a monogenic disease. A total of 230 individuals (36.9%, 230/624) exhibited definite or possible clinical evidence to support their genetic diagnoses, including 227 individuals with one monogenic disease and three individuals with two monogenic diseases. In other words, 2.2% (230/10 428) of individuals from our cohort not only carried at least one P/LP variant related to monogenic stroke but also demonstrated definite or possible clinical phenotypic evidence to support a genetic diagnosis.

At the gene level, individuals with *NOTCH3* P/LP variants had the highest rate of positive genetic diagnosis (89.3%, 50/56). Mutations in exon 11 of *NOTCH3* accounted for 44.0% (22/50), with R544C and R587C as the most common (28.0% and 14.0%, respectively). Variants in exon 6–24 accounted for 88.0% (44/50). Surprisingly, we identified a *JAK2* variant (p.V617F) in 33 individuals, 29 of whom had corresponding phenotypes (ie, thrombocythemia or erythrocytosis). The third and fourth monogenic diseases with relatively high genetic diagnosis were familial hypercholesterolemia caused by heterozygous *LDLR* mutations (60%, 24/40) and *COL4A2* mutations (52.5%, 21/40).

The characteristics of 230 individuals with Mendelian causes of stroke

Patients in our cohort with Mendelian causes of stroke had a mean age of 61.8 years old, and 65.4% were men.

Figure 4 Characteristics of 227 individuals diagnosed with Mendelian causes of stroke. The bars represent the number of individuals diagnosed with Mendelian causes of stroke identified for each gene, which are coloured according to the classification of stroke aetiology. Three individuals with two monogenic diseases were ruled out. The percentages in the boxes indicate the distribution of risk factors, including hypertension, hyperlipidaemia, diabetes, coronary heart disease, atrial fibrillation, smoking history, drinking history and body mass index \geq 25.

Only 17 individuals of the 230 (7.4%, 17/230) had been diagnosed with an identified aetiology in EHR prior to genetic testing (online supplemental eTable 7), including eight cases of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) with NOTCH3 mutation, six cases of idiopathic thrombocytopenia with V617F mutation in the JAK2 gene and three cases of Moyamoya disease with a RNF213 R4810K mutation. The common risk factors for IS, such as hypertension, hyperlipidaemia, diabetes, coronary heart disease, atrial fibrillation, smoking history, drinking history and BMI ≥ 25 kg/m², were carried out by 86.5% (199/230) of individuals. Of them, 30% (69/230) of all patients with monogenic causes carried one risk factor, 30.4% (70/230) carried two risk factors and 26.1%(60/230) carried three or more risk factors (figure 4). Only 10.87% of individuals among these patients with Mendelian causes of stroke had a family history of stroke. According to the multivariable logistic regression model, after eliminating the confounding effect of common risk factors, there were no relationships between age (OR=0.99, 95% CI: 0.98 to 1.01, p=0.23) or family history (OR=0.66, 95% CI: 0.36 to 1.11, p=0.14) and the incidence of first symptomatic monogenic stroke in patients.

DISCUSSION

In this study, at least 2.2% of our cohort had definite or possible clinical evidence to support genetically diagnosed Mendelian causes of stroke/TIA, which is similar to other studies on complex diseases. For example, it was found that the diagnosis rate of monogenic disease was 1.7% in a cardiovascular disease cohort. 14

Several features among the individuals identified as having a Mendelian cause of stroke in our cohort presented complexity and obstacles for a correct diagnosis of monogenic stroke, including late-onset symptoms of stroke, coexisting common risk factors and a low prevalence of a positive family history. Most of the monogenic stroke individuals with a first symptomatic stroke in our cohort were relatively old with a mean age of 61, and most of the patients carried common risk factors similar to other stroke patients with non-Mendelian causes in our adult IS cohort. However, similar exceptions were already known for some monogenic diseases. For example, patients with CADASIL can have stroke events that occur after the age of 60 and can carry common cerebrovascular risk factors.^{15–18} Hypertension is present in 20% of patients with CADASIL, and hyperlipemia and smoking are present in 50% of patients with CADASIL.¹⁹ More than 90% of the patients with COL4A1/COL4A2 mutations in our cohort did not present with haemorrhage, either now or previously, or had only microbleeds with other characteristics of cerebral SVD, a result that somewhat contradicts prior literature indicating that COL4A1/COL4A2 mutations are a cause of haemorrhagic stroke.^{11 20} Similarly, among 16 cases of Moyamoya disease caused by RNF213 mutation, only three cases were clinically diagnosed as Moyamoya disease in EHR before genetic testing while the remaining cases were diagnosed as vascular stenosis,

either owing to coexisting common risk factors or only unilateral internal carotid artery involvement. However, a similar complex presentation has been reported in *COL4A1/COL4A2* microangiopathy,²¹⁻²⁴ Moyamoya disease²⁵ and CADASIL,^{17 26-28} whose patients can present with mild signs or symptoms, or even have a negative history of stroke and family history.

The NOTCH3 gene contains 33 exons encoding the Notch3 protein, which includes an extracellular domain that consists of 34 epidermal growth factor-like repeats (EGFr).²⁹ Most P/LP variants (89.29%, 50/56) of the NOTCH3 gene in our cohort were located in exon 6 to exon 22, encoding EGFr 7-34, which results in milder phenotypes than mutations located in the region encoding EGFr 1–6.^{29–32} Another example can be found in individuals with a V617F mutation in the *IAK2* gene, leading to essential thrombocythemia or polycythemia vera. These patients present with only an increased platelet count, which is easily confused with the increased platelet count secondary to stroke complications such as infection or anaemia. Additionally, aspirin is effective for the vascular symptoms caused by the V617F mutation in JAK2, which would also mask the clinical signs.^{33 34} Diagnosis will be missed if the mutations lead to the occurrence of risk factors that then cause IS. For example, heterozygous mutations in LDLR result in familial hypercholesterolemia that can then cause IS.^{35–37} Clinicians often ignore the differential diagnosis of hypercholesterolemia and do not differentiate between monogenetic and complex actiologies.

The genetic screening for Mendelian cause of stroke is critical for correct aetiological diagnosis in adult stroke patients. Almost all causes of stroke are included, such as large-artery atherosclerotic, cerebral SVD, cardioembolic, as well as coagulation disturbances, vascular malformations, metabolic disorders and large-artery non-atherosclerotic, so the panel is suitable for molecular diagnosis of all-cause IS. However, due to the significantly higher proportion of Mendelian stroke detected in patients with undetermined aetiology compared with other CCS types of stroke, and the highest genotypephenotype matching among Mendelian stroke patients with coagulation abnormalities and cerebral SVD types, these patients are the most beneficial population in the clinical setting.

This study had some limitations. We determined whether an individual with P/LP variants predicted to be at risk for monogenic disease had corresponding phenotypes by reviewing EHR data; however, not every phenotype would have been available in the EHR system from our registry, so most cases with systemic monogenic diseases, such as congenital heart diseases and pseudoxanthoma elasticum, were classified as having insufficient clinical information. We also used an automated interpretation tool (InterVar), based on the ACMG/AMP guidelines, to evaluate the pathogenicity of the variants by updating the gene list. Our pipeline only used 18 categories of ACMG/ AMP criteria to classify the variants, while additional information such as familial segregation, family history and de novo status could not be obtained in this cohort for further analysis. Some variants of unknown significance (VUS) may therefore be pathogenic with inclusion of those additional criteria and may have been missed. In addition, some of the variants currently classified in ClinVar as VUS may actually be P/LP in future acquired data. Thus, the prevalence of monogenic stroke in this cohort may have been underestimated. Furthermore, copy number variants were not analysed. In addition, our current study used targeted NGS and would have missed genes associated with other Mendelian causes. For this reason, we performed further whole genome sequencing on these samples and the data analysis is currently ongoing.³⁸ We will explore the feasibility of following up with those monogenic stroke patients with insufficient or inconclusive clinical evidence, to either confirm or deny the genetic diagnosis of Mendelian causes through longterm medical observation.

In summary, 7.6% individuals carried at least one P/ LP variant associated with monogenic disease with stroke. Moreover, 2.2% patients in the CNSR-III cohort had clinical evidence from EHR data to support their diagnosis of monogenic causes. The Mendelian causes of stroke are neglected in adult IS cohorts, mainly because of the late onset of symptomatic stroke, combined common vascular risks and no prominent family history.

Author affiliations

¹China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China

²Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China

³Division of Endocrinology, Diabetes and Nutrition, Department of Medicine,

University of Maryland School of Medicine, Baltimore, Maryland, USA

⁴Department of Neurology, Qindao University Medical College Affiliated Yantai

Yuhuangding Hospital, Yantai, Shandong, China

⁵Clinical Center for Precision Medicine in Stroke, Capital Medical University, Beijing, China

Twitter Hong-Qiu Gu @hqgu

Acknowledgements The authors thank clinicians, stroke patients who were enrolled in CNSR-III and Beijing Genomics institution.

Contributors YW take responsibility for the overall content as the guarantor. YW accepts full responsibility for the work and the conduct of the study, had access to the data, and controlled the decision to publish. YW and WL had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Concept and design: YW, WL, HL Acquisition, analysis, or interpretation of data: WL, HL, CL, JZ, ZX, HG, QX, AW, ZL, MW Drafting of the manuscript: YW, WL, HL, CL, JZ, ZX, HS, BM Critical revision of the manuscript for important intellectual content: YW, WL, HL, CL, JZ, HX, BM Statistical analysis: JZ, HX, ZX, QX, MW Administrative, technical, or material support: YJ, HG, AW, XM, JL, JJ, ZL, WZ, Beijing Genomics institution Supervision: WL, HL, CL, JZ.

Funding This study is supported by grants from the Capital's Funds for Health Improvement and Research (2020-1-2041), Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences (2019-I2M-5-029), National Natural Science Foundation of China (81870905, U20A20358).

Competing interests None declared.

Patient consent for publication Not applicable.

Ethics approval This study involves human participants and was approved by IRB of Beijing Tiantan Hospital Affiliated to Capital Medical University (KY2015-001-01), and

all other research centres in accordance with the Declaration of Helsinki. Participants gave informed consent to participate in the study before taking part. **Provenance and peer review** Not commissioned; externally peer reviewed. **Data availability statement** The data that support the findings of this study are available from the corresponding author, YW, upon reasonable request.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs

Hao Li http://orcid.org/0000-0002-8591-4105 Huichun Xu http://orcid.org/0000-0001-8118-9607 Yong Jiang http://orcid.org/0000-0001-7700-6054 Hong-Qiu Gu http://orcid.org/0000-0002-1608-1856 Qin Xu http://orcid.org/0000-0002-8039-709X Xia Meng http://orcid.org/0000-0002-4918-0845 Zhigang Liang http://orcid.org/0000-0002-6358-415X Yongjun Wang http://orcid.org/0000-0002-9976-2341

REFERENCES

- 1 Baird AE. Genetics and genomics of stroke: novel approaches. *J Am Coll Cardiol* 2010;56:245–53.
- 2 Ilinca A, Samuelsson S, Piccinelli P, et al. A stroke gene panel for whole-exome sequencing. *Eur J Hum Genet* 2019;27:317–24.
- 3 Bordes C, Sargurupremraj M, Mishra A, et al. Genetics of common cerebral small vessel disease. *Nat Rev Neurol* 2022;18:84–101.
- 4 Sargurupremraj M, Suzuki H, Jian X, et al. Cerebral small vessel disease genomics and its implications across the lifespan. Nat Commun 2020;11:6285.
- 5 Guey S, Lesnik Oberstein SAJ, Tournier-Lasserve E, et al. Hereditary cerebral small vessel diseases and stroke: a guide for diagnosis and management. Stroke 2021;52:3025–32.
- 6 Debette S, Markus HS. Stroke genetics: discovery, insight into mechanisms, and clinical perspectives. *Circ Res* 2022;130:1095–111.
- 7 Meng L, Pammi M, Saronwala A, et al. Use of exome sequencing for infants in intensive care units: ascertainment of severe singlegene disorders and effect on medical management. JAMA Pediatr 2017;171:e173438.
- 8 Wang Y, Jing J, Meng X, *et al.* The third China national stroke registry (CNSR-III) for patients with acute ischaemic stroke or transient ischaemic attack: design, rationale and baseline patient characteristics. *Stroke Vasc Neurol* 2019;4:158–64.
- 9 Dichgans M, Pulit SL, Rosand J. Stroke Genetics: discovery, biology, and clinical applications. *Lancet Neurol* 2019;18:587–99.
- 10 Ay H, Benner T, Arsava EM, et al. A computerized algorithm for etiologic classification of ischemic stroke: the causative classification of stroke system. Stroke 2007;38:2979–84.
- 11 Fang F, Xu Z, Suo Y, et al. Gene panel for mendelian strokes. Stroke Vasc Neurol 2020;5:416–21.
- 12 Richards S, Aziz N, Bale S, *et al.* Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American college of medical genetics and genomics and the association for molecular pathology. *Genet Med* 2015;17:405–24.
- 13 Roach ES, Islam MP. Pseudoxanthoma Elasticum. Handb Clin Neurol 2015;132:215–21.
- 14 Abdulrahim JW, Kwee LC, Alenezi F, et al. Identification of undetected monogenic cardiovascular disorders. J Am Coll Cardiol 2020;76:797–808.

- 15 Chen S, Ni W, Yin X-Z, et al. Clinical features and mutation spectrum in Chinese patients with CADASIL: a multicenter retrospective study. CNS Neurosci Ther 2017;23:707–16.
- 16 Hack RJ, Rutten JW, Person TN, et al. Cysteine-altering notch3 variants are a risk factor for stroke in the elderly population. Stroke 2020;51:3562–9.
- 17 Maccuso M, Arnold M, Bersano A, et al. Monogenic cerebral small-vessel diseases: diagnosis and therapy. consensus recommendations of the European academy of neurology. Eur J Neurol 2020;27:909–27.
- 18 Liao Y-C, Hu Y-C, Chung C-P, et al. Intracerebral hemorrhage in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy: prevalence, clinical and neuroimaging features and risk factors. *Stroke* 2021;52:985–93.
- Singhal S, Bevan S, Barrick T, et al. The influence of genetic and cardiovascular risk factors on the CADASIL phenotype. *Brain* 2004;127:2031–8.
- 20 Groopman EE, Povysil G, Goldstein DB, et al. Rare genetic causes of complex kidney and urological diseases. *Nat Rev Nephrol* 2020;16:641–56.
- 21 Rutten JW, Hack RJ, Duering M, et al. Broad phenotype of cysteinealtering notch3 variants in UK biobank: CADASIL to nonpenetrance. *Neurology* 2020;95:e1835–43.
- 22 Zagaglia S, Selch C, Nisevic JR, et al. Neurologic phenotypes associated with COL4A1/2 mutations: expanding the spectrum of disease. *Neurology* 2018;91:e2078–88.
- 23 Rannikmäe K, Sivakumaran V, Millar H, et al. COL4A2 is associated with lacunar ischemic stroke and deep ICH: meta-analyses among 21,500 cases and 40,600 controls. *Neurology* 2017;89:1829–39.
- 24 Maurice P, Guilbaud L, Garel J, et al. Prevalence of COL4A1 and COL4A2 mutations in severe fetal multifocal hemorrhagic and/or ischemic cerebral lesions. Ultrasound Obstet Gynecol 2021;57:783–9.
- 25 Bang OY, Chung J-W, Kim DH, et al. Moyamoya disease and Spectrums of RNF213 vasculopathy. *Transl Stroke Res* 2020;11:580–9.
- 26 Chabriat H, Joutel A, Tournier-Lasserve E, et al. CADASIL: yesterday, today, tomorrow. Eur J Neurol 2020;27:1588–95.
- 27 Mizuno T, Mizuta I, Watanabe-Hosomi A, et al. Clinical and genetic aspects of CADASIL. Front Aging Neurosci 2020;12:91.
- 28 Hack RJ, Gravesteijn G, Cerfontaine MN, et al. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy family members with a pathogenic notch3 variant can have a normal brain magnetic resonance imaging and skin biopsy beyond age 50 years. *Stroke* 2022;53:1964–74.
- 29 Hu Y, Sun Q, Zhou Y, et al. Notch3 variants and genotype-phenotype features in Chinese CADASIL patients. Front Genet 2021;12:705284.
- 30 Rutten JW, Van Eijsden BJ, Duering M, *et al.* The effect of notch3 pathogenic variant position on CADASIL disease severity: notch3 EGFr 1-6 pathogenic variant are associated with a more severe phenotype and lower survival compared with EGFr 7-34 pathogenic variant. *Genet Med* 2019;21:676–82.
- 31 Paraskevas GP, Stefanou MI, Constantinides VC, et al. CADASIL in greece: mutational spectrum and clinical characteristics based on a systematic review and pooled analysis of published cases. Eur J Neurol 2022;29:810–9.
- 32 Gravesteijn G, Hack RJ, Mulder AA, et al. Notch3 variant position is associated with notch3 aggregation load in CADASIL vasculature. *Neuropathol Appl Neurobiol* 2022;48:e12751.
- 33 Muendlein A, Kinz E, Gasser K, et al. Occurrence of the JAK2 V617F mutation in patients with peripheral arterial disease. Am J Hematol 2015;90:E17–21.
- 34 Gotlib J. Treatment and clinical endpoints in polycythemia vera: seeking the best obtainable version of the truth. *Blood* 2022;139:2871–81.
- 35 Leren TP, Bogsrud MP. Molecular genetic testing for autosomal dominant hypercholesterolemia in 29,449 norwegian index patients and 14,230 relatives during the years 1993-2020. *Atherosclerosis* 2021;322:61–6.
- 36 Hori M, Ohta N, Takahashi A, et al. Impact of LDLR and PCSK9 pathogenic variants in Japanese heterozygous familial hypercholesterolemia patients. Atherosclerosis 2019;289:101–8.
- 37 Do R, Stitziel NO, Won H-H, et al. Exome sequencing identifies rare LDLR and apoa5 alleles conferring risk for myocardial infarction. *Nature* 2015;518:102–6.
- 38 Cheng S, Xu Z, Liu Y, *et al.* Whole genome sequencing of 10K patients with acute ischaemic stroke or transient ischaemic attack: design, methods and baseline patient characteristics. *Stroke Vasc Neurol* 2021;6:291–7.

Supplemental Files

Section 1 eMethods

Sections 2 eFigures and eTables

eFigure 1. Flow chart illustrating the patients screening process

eTable 1. The classification of the stroke etiology for each gene

eTable 2. List of the 181 genes associated with Mendelian-stroke in custom-designed panel

eTable 3. Diagnoses of 759 individuals with 1 P/LP variant at risk for one monogenic diseases

eTable 4. Diagnoses of 29 individuals harbored more than 2 P/LP variants in different genes

eTable 5. Four individuals with 2 P/LP variants in the ABCC6 gene

eTable 6. Characteristics of the Patients with one MGD in C3 cohort

eTable 7. The characteristics of individuals who had been diagnosed monogenic stroke before gene testing

eMethods

NGS data analysis

Updating PVS1, PS1, PP2, and BP1 lists for InterVar

Since the publishing of InterVar software in 2017, a great deal of newly-found pathogenic mutations has been discovered. To incorporate these progresses, we updated the PVS1, PS1, PP2, and BP1 lists of InterVar using recently released ClinVar database (ClinVar 20200622 version). All of the updating process was conducted using the same pipeline of InterVar or under the guidelines of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology.^[1,2]

PVS1 gene list

Genes in PVS1 list harbored loss-of-function (LOF) mutations that were reported to be pathogenic. First, we extracted all of the pathogenic/likely pathogenic (PLP) and LOF mutations from ClinVar. The genetic variants in ClinVar 20200622 version were regarded to be PLP and LOF mutations if: 1) the variant was recorded by MedGen; 2) its minor allele frequency (MAF) < 5%; 3) it was not predicted or reported to be "benign", "likely benign", or "uncertain significance" in ClinVar; 4) the record of the mutation in ClinVar should not contain the string "conflicting"; 5) the mutations resulted in stopgain, stoploss, frameshift, destruction of canonical ± 1 or 2 splice sites (dbscSNV ≥ 0.6), loss of initiation codon, or deletion of single or multiple exons. The mutations that fulfill all of the above 5 criteria were regarded to be PLP and LOF mutations. We found 3312 genes that harbored these mutations, and these genes were included in updated PVS1 gene list.

Second, another part of PVS1 gene list were obtained by retrieving the LOF-mutation-intolerant genes from genomAD. A total of 3075 Genes with pLI \geq 0.9 were identified and included in PVS1 gene list. After integration and removing duplications for the 3312 and 3075 genes, a total of 5646 genes were resolved. This list was regarded to be the updated PVS1 gene list, and 150 out of the 181 genes were present in this list.

PS1 mutation list

PS1 list contained nonsynonymous mutations that were reported to be pathogenic. Therefore, we first extracted all of the PLP mutations from ClinVar. The genetic variants in ClinVar 20200622 version were regarded to be nonsynonymous PLP mutations if: 1) the variant was recorded by MedGen; 2) its minor allele frequency (MAF) < 5%; 3) it was not predicted or reported to be "benign", "likely benign", or "uncertain significance" in ClinVar; 4) the record of the mutation in ClinVar should not contain the string "conflicting"; 5) the mutations resulted in nonsynonymous mutation. We found 35767 genetic variants that fulfill all of the above 5 criteria, and they were allocated in the updated PS1 list.

PP2 gene list

In a certain gene, if >80% of the pathogenic variants were missense while <10% of missense variants were benign in ClinVar, the gene would be assigned to the PP2 gene list. Accordingly, the PP2 gene list was obtained through 2 steps. First, for each gene that was recorded by ClinVar, we counted the number of PLP variants and calculated the percentage of nonsynonymous mutations among the PLP variants. The genetic variants in ClinVar 20200622 version were regarded to be PLP mutations if: 1) the variant was recorded by MedGen; 2) its minor allele frequency (MAF) < 5%; 3) it was not predicted or reported to be "benign", "likely benign", or "uncertain significance" in ClinVar; 4) the record of the mutation in ClinVar should not contain the string "conflicting". The mutations that fulfill all of the above 4 criteria were regarded to be PLP mutations. Additionally, nonsynonymous PLP mutations should further fulfill a

2

5th criterion that the PLP variants would result in nonsynonymous mutations. Then the percentage of pathogenic variants that were missense was obtained for each gene.

In the second step, we counted the number of nonsynonymou variants and calculated the percentage of benign/likely benign (BLB) mutations in each gene. Genetic variants were applied in this calculation if: 1) the variant was recorded by MedGen; 2) its minor allele frequency (MAF) < 5%; 3) the mutations were nonsynonymous substitutions. For BLB variants, another 2 criteria should be fulfilled that: 4) the record of the mutation in ClinVar should not contain the string "conflicting"; 5) it was not predicted or reported to be "pathogenic", "likely pathogenic", or "uncertain significance" in ClinVar record. Then the percentage of nonsynonymous variants that were BLB was obtained for each gene.

Afterwards, based on the above 2 percentages, we 490 genes that fulfilled the criteria of PP2 genes, these genes made up the updated PP2 gene list. A total of 22 genes in the 181 candidate genes were present in the updated PP2 gene list.

BP1 gene list

In a certain gene, if >80% of the pathogenic variants were truncating mutation, the gene would be contained in BP1 gene list. Therefore, for each gene that was recorded by ClinVar, we counted the number of PLP variants and calculated the percentage of truncating mutations. The genetic variants in ClinVar 20200622 version were regarded to be PLP mutations if: 1) the variant was recorded by MedGen; 2) its minor allele frequency (MAF) < 5%; 3) it was not predicted or reported to be "benign", "likely benign", or "uncertain significance" in ClinVar; 4) the record of the mutation in ClinVar should not contain the string "conflicting". The mutations that fulfill all of the above 4 criteria were regarded to be PLP mutations.

Afterwards, we calculated the percentage of PLP mutations that resulted in stopgain, stoploss, frameshift, destruction of canonical ± 1 or 2 splice sites (dbscSNV ≥ 0.6), loss of initiation codon, or deletion of single or multiple exons, and the genes with this percentage>80% was rated as BP1 genes. In summary, we found 604 BP1 genes and 9 out of the 181 genes were contained in the updated BP1 gene list.

Phenotyping:

All individuals that harbored pathogenic/likely pathogenic variants that had an expected phenotype based off of the inheritance pattern of the disease, and were not given a clinical diagnosis were classified into the following four categories (Unlikely, Possible, Probable, Definite) based off of the criteria listed below after Electronic Health Record (EHR) review.

Dilated Cardiomyopathy (DCM):

Dilated cardiomyopathy is clinically diagnosed based on echocardiography. Its diagnostic criteria are as follows:^[3] 1. The end-diastolic inner diameter of the left ventricle is greater than 5.5 cm in men and 5.0 cm in women. 2. The ejection fraction is less than 45%, or the left ventricular shortening rate is less than 25%. It is more scientific that the end-diastolic inner diameter of the left ventricle per square meter is greater than 2.7cm. Before diagnosing dilated cardiomyopathy, it is necessary to rule out heart enlargement caused by hypertension, coronary heart disease (CAD), valvular heart disease, congenital heart disease, alcoholic cardiomyopathy, etc.

Definite: N/A

Possible: The end-diastolic inner diameter of the left ventricle, greater than 5.5cm in men and 5.0cm in women

Or the ejection fraction is less than 45%;

Or the left ventricular shortening rate is less than 25%;

Or have heart failure in past history;

Or sudden cardiac death in family history;

Unlikely: Normal cardiac imaging (echocardiography or cardiac MRI) with EF>50% OR cardiomyopathy (EF<45%) with significant CAD*

*Significant CAD was defined as ≥75% stenosis in the left main, proximal left anterior descending coronary arteries, or ≥2 epicardial coronary arteries or history of myocardial infarction Hypertrophic cardiomyopathy (HCM)

HCM is typically defined by the presence of unexplained left ventricular hypertrophy (LVH) with a maximum wall thickness ≥ 15 mm in adults or a z-score >3 in children.^[4-6] If there is a family history of HCM, or if genetic testing confirms that a relative has inherited the family's pathogenic sarcomere variant, a maximum LV wall thickness ≥ 13 mm supports diagnosis. Such LVH occurs in a non-dilated ventricle in the absence of other cardiac or systemic disease capable of producing the observed magnitude of increased LV wall thickness, such as pressure overload or storage/infiltrative disorders.

- Definite: Septal wall thickness ≥ 1.5 cm on echocardiography with no hypertension, coronary heart disease (CAD), valvular heart disease, congenital heart disease, alcoholic cardiomyopathy.
- Possible: Septal wall thickness ≥ 1.3 cm on echocardiography or <1.3 cm and EF<45% in the absence of an ischemic etiology*
- Unlikely: Septal wall thickness < 1.3 cm on echocardiography and EF>50%

An additional requirement for classification was the presence of at least one echocardiography study *Ischemic etiology was defined as \geq 75% stenosis in the left main OR proximal left anterior descending coronary arteries OR \geq 2 epicardial coronary arteries or a history of myocardial infarction <u>Fabry Disease</u>

Suggestive Findings

Fabry disease should be suspected in males and females with the following clinical features: Periodic crises of severe pain in the extremities (acroparesthesia) Vascular cutaneous lesions (angiokeratomas) Sweating abnormalities (anhidrosis, hypohidrosis, and rarely hyperhidrosis) Characteristic corneal and lenticular opacities Unexplained stroke Unexplained left ventricular hypertrophy Renal insufficiency of unknown etiology including unexplained proteinuria or microalbuminuria

The diagnosis of Fabry disease is established in **a male proband** by:

Identification of deficient alpha-galactosidase A (α -Gal A) enzyme activity in plasma, isolated leukocytes, and/or cultured cells. The test is a fluorometric assay and uses the substrate 4-methylumbelliferyl- α -D-galactopyranoside.

Males with classic Fabry disease have <1% α-Gal A enzyme activity.

Males with atypical Fabry disease have residual enzyme activity >1% of normal.

Identification of a hemizygous pathogenic variant in GLA by molecular genetic testing

Female proband. The diagnosis of Fabry disease is established in a female proband by identification of

a heterozygous pathogenic variant in GLA by molecular genetic testing.

- Definite: N/A
- Possible: unexplained left ventricular hypertrophy with a hemizygous pathogenic variant in GLA in Males or a heterozygous pathogenic variant in females.
- Unlikely: No above clinical features with a pathogenic variant in GLA.
- Unexplained left ventricular hypertrophy

Familial Transthyretin (TTR) Amyloidosis:

Because there is no formal diagnostic criteria for Familial *TTR* amyloidosis, individuals were classified based on the number of neurologic and/or cardiac signs/symptoms that were documented in the EHR of the respective individual. Individuals that harbored pathogenic/likely pathogenic mutations associated with Familial *TTR* amyloidosis were classified into the four categories based off of the following criteria:^[7]

- Definite: N/A
- Probable: One Cardiac and one Neurologic Manifestation
- Possible: One Cardiac or one Neurologic Manifestation
- Unlikely: Normal Cardiac Imaging and no documented Neurologic signs/symptoms

A cardiac manifestation is defined as documentation of at least one of the following:

- Left ventricular hypertrophy in the absence of an alternative cause
- Heart Failure with preserved ejection fraction
- Restrictive cardiomyopathy
- Conduction disease: Atrioventricular block on electrocardiogram (EKG)
- Presence of a pericardial effusion on echocardiography in the absence of an alternative cause

A neurologic manifestation is defined as documentation of at least one of the following:

- Sensory disturbances of unknown etiology
- Neuropathic pain
- Autonomic disturbances

Atrial fibrillation (AF)

Body surface electrocardiogram (ECG) or 24-hour Holter electrocardiogram shows irregular shape and size of f wave instead of P wave, frequency 350-600 beats/min, QRS complex form is standard form or with ventricular differential conduction and wide deformity, ventricular rate is absolute irregular

- Definite: ECG or 24 Holter showed AF signs and had AF history or AD family history.
- Possible: ECG or 24 Holter showed AF signs or other type of arrhythmia
- Unlikely: ECG or 24 Holter showed normal and no arrhythmia history.

Familial Hypercholesterolemia:

Individuals that harbored a pathogenic/likely pathogenic variant associated with familial hypercholesterolemia who were heterozygous for mutations in the LDLR gene were categorized according to the Simon-Broome criteria as follows:

- Definite: Serum LDL-C*≥190 mg/dL or Total Cholesterol (TC)*≥280 mg/dL
- Possible: After the LDL-C and TC values were corrected, Serum LDL-C*≥190 mg/dL or Total Cholesterol (TC)*≥280 mg/dL.
- Unlikely: Serum LDL-C*<190 mg/dL or Total Cholesterol*<280 mg/dL

*If the patient was on a statin, the LDL-C and TC values were corrected using LDL/0.7 and TC/0.8, respectively.

Marfan Syndrome:

Individuals that harbored pathogenic/likely pathogenic mutations associated with Marfan Syndrome were classified into the four categories based off of the Revised Ghent Nosology:^[8]

- Definite: N/A
- Possible: Systemic Score between 4-6 and a causal FBN1 mutation
- Unlikely: Normal Imaging with no mention of Ectopia Lentis or Systemic Score signs/symptoms

*Aortic Criterion: History of Aortic Dissection or an Aorta Z-score≥2. Z-scores calculated using the patient's aortic diameter, as measured by echocardiography, using the following Z-score calculator: https://www.marfan.org/dx/zscore.

Supravalvular Aortic Stenosis (SVAS):

Individuals that harbored pathogenic/likely pathogenic variants associated with restrictive cardiomyopathy were classified into the four categories as follows:

- Definite: After aortic valve prosthetic valve replacement surgery
- Possible: Moderate Aortic Stenosis gradient with Normal Aortic Valve on echocardiography
- Unlikely: Normal Imaging

Thoracic aortic aneurysms and aortic dissections (TAAD):

A thoracic aortic aneurysm is a permanent, localized dilatation of the thoracic aorta. Thoracic aortic aneurysms may involve different thoracic aortic segments. To evaluate for a thoracic aortic aneurysm, the aortic diameter is measured (perpendicular to the axis of blood flow) by echocardiography, CT, or MRI at reproducible anatomic locations.

- Definite: After aortic valve prosthetic valve replacement surgery,
- Possible: Moderate Aortic Stenosis gradient with Normal Aortic Valve on echocardiography
- Unlikely: Normal Imaging

Neurofibromatosis 1(NF1)

Suggestive Findings

Neurofibromatosis 1 (NF1) should be suspected in individuals who have any of the following findings:

• Six or more café au lait macules >5 mm in greatest diameter in prepubertal individuals and >15 mm in greatest diameter in postpubertal individuals

- Two or more neurofibromas of any type or one plexiform neurofibroma
- Freckling in the axillary or inguinal regions
- Optic glioma
- Two or more Lisch nodules (iris hamartomas)
- A distinctive osseous lesion such as sphenoid dysplasia or tibial pseudarthrosis

• A first-degree relative (parent, sib, or offspring) with NF1 as defined by the above criteria

Establishing the Diagnosis

The diagnosis of NF1 is established in a proband who meets the diagnostic criteria for neurofibromatosis 1 (NF1) developed by the National Institutes of Health [NIH 1988]. The NIH diagnostic criteria for NF1 are met in an individual who has two or more of the features listed in Suggestive Findings.^[9]

- Definite: NA;
- Possible: Individuals with a pathogenic variants in the NF1 gene;
- Unlikely: NA

Polycythemia vera

Major criteria

1. Hemoglobin >16.5 g/dL in men or > 16 g/dL in women; or hematocrit >49% in men or > 48% in women or increased red blood cell mass

2. Presence of JAK2 mutation

Minor criterion

1.Bone marrow trilineage proliferation

2.Subnormal serum erythropoietin level

3. EEC growth

Bone marrow biopsy might not be needed in the presence of hemoglobin >18.5 g/dL (hematocrit 55.5%) in men or > 16.5 g/dL (hematocrit 49.5%) in women.

- Definite: both two major criteria + one minor criterion or the first major + two minor criteria;
- Possible: two major criteria;
- Unlikely: Nomal hemoglobin level

Essential thrombocythemia (ET)

Major criteria^[10]

1. Platelets \geq 450 x 10⁹ /L

- 2. Bone marrow megakaryocyte proliferation and loose clusters
- 3. Not meeting WHO criteria for other myeloid neoplasms

4. JAK2/CALR/MPL mutated

- Definite: all four major criteria
- Possible: two major criteria;
- Unlikely: Nomal Platelets level

Polycystic kidney disease (PKD1 and PKD2)^[11]

Definite:

The diagnosis of ADPKD is established in a proband with ANY of the following: Age-specific ultrasound criteria and an affected first-degree relative with ADPKD Age-specific MRI criteria and an affected first-degree relative with ADPKD Identification of a heterozygous pathogenic variant in one of the genes listed in Table 3

Ultrasound Criteria for Diagnosis of ADPKD in Individuals at 50% Risk for ADPKD Based on Family History

Age	PKD1	PKD2	Unknown ADPKD Genotype
15-30 yrs	≥3 cysts ¹	≥3 cysts ¹	≥3 cysts ¹
	PPV = 100%	PPV = 100%	PPV = 100%
	SEN = 94.3%	SEN = 69.5%	SEN = 81.7%
30-39 yrs	≥3 cysts ¹	≥3 cysts ¹	≥3 cysts ¹
	PPV = 100%	PPV = 100%	PPV = 100%
	SEN = 96.6%	SEN = 94.9%	SEN = 95.5%
40-59 yrs	≥2 cysts in each kidney	≥2 cysts in each kidney	≥2 cysts in each kidney
	PPV = 100%	PPV = 100%	PPV = 100%
	SEN = 92.6%	SEN = 88.8%	SEN = 90%

Possible:

Multiple bilateral renal cysts and the absence of manifestations suggestive of a different renal cystic disease

Cysts in other organs, especially the liver, but also seminal vesicles, pancreas, and arachnoid membrane

Enlargement of the kidneys or liver on physical examination

Hypertension in an individual younger than age 35 years

An intracranial aneurysm

A family history of ADPKD

Unlikely: NA

Cerebral cavernous malformations-1(KRIT1)

- Intracranial thin-walled sinusoidal vessel (cavernous) malformations
- Seizures
- Headache
- Intracranial hemorrhage
- Focal neurologic deficits
- Intracranial calcifications
- Angiographically 'silent'
- MRI is best imaging modality to detect lesions
 - Definite: MRI showed intracranial thin-walled sinusoidal vessel (cavernous)
 - Possible: NA
 - Unlikely: Normal Imaging

Ehlers-Danlos syndrome (EDS)

Individuals that harbored pathogenic/likely pathogenic variants associated with Ehler-Danlos Syndrome (COL5A1,COL5A2, COL1A1, or COL1A2) were classified into the three categories as follows based off of the 2017 international classification of the Ehlers–Danlos syndromes^[12]

- Definite: NA
- Possible: a proband with the minimal clinical diagnostic criteria (intracranial aneurysms and arteriovenous fistulae, may occur in the rare individual) and identification of a heterozygous pathogenic variant in COL1A1 or COL1A2
- Unlikely: None of the above clinical manifestations

Cerebral amyloid angiopathy, GSN-related

- Cranial neuropathy, esp. facial paresis
- Bulbar palsy
- Peripheral polyneuropathy, esp. vibration and touch loss
- Amyloid cardiomyopathy
- Renal failure
- Cutis laxa
- -Corneal lattice dystrophy
- Definite: NA
- Possible: Diagnosed with CAA by imaging
- Unlikely: None of the above clinical manifestations

Thrombophilia due to thrombin defect duo to F2 defect

- Definite: NA
- Possible: Thrombosis, recurrent, cognitive function loss
- Unlikely: None of the above clinical manifestations

Hyperchylomicronemia, late-onset APOA5

- Definite: NA
- Possible: Decreased LDL and HDL, increased TG, stroke
- Unlikely: None of the above clinical manifestations

HTRA1-autosomal dominant disease

HTRA1 heterozygous mutations may lead to a late-onset syndrome characterized by gait disturbances, mood depression, cognitive impairment, stroke, migraine as well as WMHs on MRI.

- Definite: NA
- Possible: HTRA1 heterozygous mutations and a late-onset stroke as well as WMHs
- Unlikely: Just a HTRA1 heterozygous mutations with none of the above clinical manifestations.

Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL)^[13]

Clinical criteria

#1 Age at onset (clinical symptoms #2 or white matter lesions) \leq 55 years old.

#2 At least two of the following clinical findings:

- a. Either of subcortical dementia, long tract signs, or pseudobulbar palsy.
- b. Stroke-like episode with a focal neurological deficit.
- c. Mood disorder.

d. Migraine.

#3 Autosomal dominant inheritance.

#4 White matter lesions involving the anterior temporal pole by MRI or CT.

#5 Exclusion of leukodystrophy (Adrenoleukodystrophy, metachromatic

leukodystrophy, etc.).

Genetic criteria

NOTCH3 mutations localize in exons 2-24 and result in the gain or loss of

Cysteine-sparing variants should be carefully evaluated by skin biopsy and segregation studies Pathological criteria The pathological hallmark of CADASIL is granular osmiophilic material (GOM) detected by electron microscopy. Immunostaining of NOTCH3 extracellular domain is also useful. Definite: CADASIL is definite when the individual fulfills (1) White matter lesions by MRI or CT. (2) Clinical criteria #5 (3) Genetic criteria and/or pathological criteria Possible: CADASIL is possible when the individual has abnormal white matter lesions (Fazekas grade ≥ 2) and fulfills either of (1) \leq 55 years old (2) At least one of the symptoms in clinical criteria #2 Unlikely:

cysteine residues in the epidermal growth factor-like repeat domain.

No phenotype

<u>Retinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations (RVCL-S)</u> Major features

#1 Vascular retinopathy typically manifesting as decreased visual acuity and/or visual field defects

#2 Focal neurologic signs can include but are not limited to hemiparesis, facial weakness, aphasia, and hemianopsia.

#3 Global brain dysfunction may manifest as progressive cognitive impairment.

#4 Brain MRI abnormalities are restricted to the white matter

(1)Focal, non-enhancing T2-hyperintense lesions scattered throughout the periventricular and deep white matter (at an age when nonspecific age-related white matter hyperintensities are infrequent)

(2)Punctate T2-hyperintense white matter lesions with nodular enhancement

(3)Hyperintense mass lesions on T2 and hypointense lesions on T1-weighted images, enhanced with gadolinium contrast, and often surrounded by extensive edema. Hemorrhages are rarely reported. Occasionally, restricted diffusion, most often centrally, is observed and is referred to as a "pseudotumor." #5 Family history of middle-age onset of disease manifestations consistent with an autosomal dominant inheritance pattern.

#6 Exclusion of leukodystrophy AND brain tumor.

Supportive features

Calcifications on brain CT scan, typically not present in healthy controls

Nonspecific MRI white matter lesions that occur more frequently than expected given the age of the individual

Microvascular liver disease, manifested by modest elevations of alkaline phosphatase and gammaglutamyltransferase

Microvascular kidney disease, typically manifested by a mild-to-moderate increase in serum creatinine or by proteinuria

Pathology

Histologic abnormalities have been demonstrated in all organs involved in RVCL-S, including the following.

(1)Retina: scattered microinfarcts, thickened hyalinized retinal arterial walls, focal areas of disruption of the ganglion cell layer and inner nuclear layer.

(2)Brain: Multiple – often confluent – foci of ischemic necrosis of white matter, Vasculopathy (vessel wall thickening and luminal stenosis; telangiectasias), a modest chronic inflammatory cell infiltrate in some individuals, focal calcifications and reactive astrocytosis, myelin loss.

(3)Kidney: renal arteriolosclerosis, focal or diffuse glomerulosclerosis

(4)Liver:Nodular regenerative hyperplasia, micro- and macrovesicular steatosis, periportal inflammation, bridging and portal fibrosis.

Definite:

RVCLS is definite when the individual fulfills

(1) fulfills either of Major features

(2) Clinical criteria #6

(3) Genetic criteria and/or pathological criteria

Possible:

RVSLS is possible when the individual has either of Major features or fulfills more than three of Supportive features

Unlikely:

No phenotype

Brain small vessel disease with or without ocular anomalies (COL4A1)

Major features

(1)Porencephaly

(2)Brain small-vessel disease with or without ocular anomalies

(3)HANAC (hereditary angiopathy with nephropathy, aneurysms, and muscle cramps) syndrome

(4)Tortuosity of retinal arteries

(5)Nonsyndromic autosomal dominant congenital cataract

Definite:

(1) fulfills either of Major features and

(2) Genetic criteria and/or pathological criteria

Possbile:

Col4a1is possible when the individual has either of Major features

Unlikely:

No phenotype

Brain small vessel disease 2 (COL4A2)

Major features

(1)Porencephaly

(2)Brain small-vessel disease with intracranial hemorrhage

(3)cerebellar and optic atrophy, cataracts, intracranial aneurysms, nephropathy, and myopathy .

Definite:

(1) fulfills either of Major features and

(2) Genetic criteriaPossbile:Col4a1is possible when the individual has either of Major featuresUnlikely:No phenotype

MOYAMOYA (RNF213)

Diagnostic Criteria

(1) Cerebral angiography is considered essential for the diagnosis, and must show at least the follow-ing findings:

(i) Stenosis or occlusion of the terminal portion of the intracranial internal carotid artery or proximal portions of the anterior and/or the middle cerebral artery.

ii) Abnormal vascular networks in the vicinity of the occlusive or stenotic lesions in the arterial phase.(iii) Bilaterality of findings (i) and (ii).

(2)However, when magnetic resonance imaging(MRI) and magnetic resonance angiographic (MRA) findings meet all of the following criteria, cerebral angiography can be omitted. See the "Guidelines for Diagnostic Imaging by MRI and MRA"

(i) MRA shows stenosis or occlusion of the terminal portion of the intracranial internal carotid artery or proximal portions of the anterior and/or the middle cerebral artery.

(ii) MRA shows abnormal vascular networks in the basal ganglia.

Note: When 2 or more visible flow voids are present in the basal ganglia on MRI, at least unilaterally, they can be deemed as representing an abnormal vascular network.

(iii) Bilaterality of findings (i) and (ii).

(3) Moyamoya disease is an illness of unknown etiology. The differential diagnosis of this disease includes similar cerebrovascular lesions associated with the following underlying diseases, which should, therefore, be excluded: (i) atherosclerosis, (ii) autoimmune disease, (iii) meningitis, (iv) brain tumors, (v) Down's syndrome, (vi) von Recklinghausen's disease, (vii) head injury, (viii) cerebrovascular lesions after head irradiation, and (ix) others.

Pathological findings that can be used as references for the diagnosis

Thickening of the arterial intima, mainly in the terminal portion of the internal carotid arteries, and narrowing or blockage of the lumen caused by this change, usually bilateral. Occasionally, lipid deposits are also present in the thickened intima.

Arteries such as the anterior, middle, and posterior cerebral arteries forming the circle of Willis occasionally show varying degrees of stenosis or occlusion associated with fibrocellular thickening of the intima, and thinning of the media.

Numerous small vascular channels (perforating and anastomotic barnches)can be seen around the circle of Willis.

Pia mater may also show reticular conglomerates of small vessels.

Diagnostic assessment:

Definite:

All criteria listed in(1)or(2) and in(3)should be met.

Possbile:

All criteria are fulfilled except item(1)(iii) and/or item(2)(iii) among the criteria of (1)or(2) and (3). Unlikely:

No phenotype

eReference

1. Li Q, Wang K. InterVar: Clinical Interpretation of Genetic Variants by the 2015 ACMG-AMP Guidelines. *Am J Hum Genet* 2017;100(2):267-80. doi: 10.1016/j.ajhg.2017.01.004 [published Online First: 2017/01/31]

2. Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. *Genet Med* 2015;17(5):405-24. doi: 10.1038/gim.2015.30 [published Online First: 2015/03/06]

3. Japp AG, Gulati A, Cook SA, et al. The Diagnosis and Evaluation of Dilated Cardiomyopathy. *J Am Coll Cardiol* 2016;67(25):2996-3010. doi: 10.1016/j.jacc.2016.03.590 [published Online First: 2016/06/25]

4. Gersh BJ, Maron BJ, Bonow RO, et al. 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. *J Am Coll Cardiol* 2011;58(25):2703-38. doi: 10.1016/j.jacc.2011.10.825 [published Online First: 2011/11/15]

5. Authors/Task Force m, Elliott PM, Anastasakis A, et al. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: the Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). *Eur Heart J* 2014;35(39):2733-79. doi: 10.1093/eurheartj/ehu284 [published Online First: 2014/09/01]

6. Maron BJ, Towbin JA, Thiene G, et al. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. *Circulation* 2006;113(14):1807-16. doi: 10.1161/CIRCULATIONAHA.106.174287 [published Online First: 2006/03/29]

7. Ando Y, Coelho T, Berk JL, et al. Guideline of transthyretin-related hereditary amyloidosis for clinicians. *Orphanet J Rare Dis* 2013;8:31. doi: 10.1186/1750-1172-8-31 [published Online First: 2013/02/22]

8. Loeys BL, Dietz HC, Braverman AC, et al. The revised Ghent nosology for the Marfan syndrome. *J Med Genet* 2010;47(7):476-85. doi: 10.1136/jmg.2009.072785 [published Online First: 2010/07/02]

9. Neurofibromatosis. Conference statement. National Institutes of Health Consensus Development Conference. *Arch Neurol* 1988;45(5):575-8. [published Online First: 1988/05/01]

10. Tefferi A, Thiele J, Orazi A, et al. Proposals and rationale for revision of the World Health Organization diagnostic criteria for polycythemia vera, essential thrombocythemia, and primary myelofibrosis: recommendations from an ad hoc international expert panel. *Blood* 2007;110(4):1092-7. doi: 10.1182/blood-2007-04-083501 [published Online First: 2007/05/10]

11. Bergmann C, Guay-Woodford LM, Harris PC, et al. Polycystic kidney disease. *Nat Rev Dis Primers* 2018;4(1):50. doi: 10.1038/s41572-018-0047-y [published Online First: 2018/12/14]

12. Malfait F, Francomano C, Byers P, et al. The 2017 international classification of the Ehlers-Danlos syndromes. *Am J Med Genet C Semin Med Genet* 2017;175(1):8-26. doi: 10.1002/ajmg.c.31552

13

[published Online First: 2017/03/18]

13. Mizuta I, Watanabe-Hosomi A, Koizumi T, et al. New diagnostic criteria for cerebral autosomal dominant arteriopathy with subcortical infarcts and leukocencephalopathy in Japan. *J Neurol Sci* 2017;381:62-67. doi: 10.1016/j.jns.2017.08.009 [published Online First: 2017/10/11]

eFigure 1. Flow chart illustrating the patients screening process

Gene	Phenotype	Etiology of stroke
RBM20	Hereditary cardiomyopathies	Embolic stroke
ACTC1	Hereditary cardiomyopathies	Embolic stroke
LMNA	Hereditary cardiomyopathies	Embolic stroke
MYBPC3	Hereditary cardiomyopathies	Embolic stroke
ACTN2	Hereditary cardiomyopathies	Embolic stroke
PRKAG2	Hereditary cardiomyopathies	Embolic stroke
BAG3	Hereditary cardiomyopathies	Embolic stroke
DSG2	Hereditary cardiomyopathies	Embolic stroke
KCNA5	Hereditary cardiac dysrhythm	Embolic stroke
KCNJ5	Hereditary cardiac dysrhythm	Embolic stroke
SCN4B	Hereditary cardiac dysrhythm	Embolic stroke
KCNQ1	Hereditary cardiac dysrhythm	Embolic stroke
GJA5	Hereditary cardiac dysrhythm	Embolic stroke
SCN5A	Hereditary cardiac dysrhythm	Embolic stroke
KCNJ2	Hereditary cardiac dysrhythm	Embolic stroke
KCNH2	Hereditary cardiac dysrhythm	Embolic stroke
KCNE2	Hereditary cardiac dysrhythm	Embolic stroke
SCN3B	Hereditary cardiac dysrhythm	Embolic stroke
NPPA	Hereditary cardiac dysrhythm	Embolic stroke
SCN2B	Hereditary cardiac dysrhythm	Embolic stroke
SCN1B	Hereditary cardiac dysrhythm	Embolic stroke
PRKAR1A	Carney complex, type 1	Embolic stroke
KRAS	Noonan syndrome 3	Embolic stroke
TLL1	Atrial septal defect	Embolic stroke
GJA1	Atrioventricular septal defect 3	Embolic stroke
GATA4	Tetralogy of Fallot	Embolic stroke
NKX2-5	Tetralogy of Fallot	Embolic stroke
ZFPM2	Tetralogy of Fallot	Embolic stroke
GDF1	Congenital heart defects,	Embolic stroke
	multiple types, 6	
TTN	Hereditary cardiomyopathies	Embolic stroke
MFAP5	Aortic aneurysm, familial	Large artery disease
	thoracic 9	
MYLK	Aortic aneurysm, familial	Large artery disease
	thoracic 7	
PRKG1	Aortic aneurysm, familial	Large artery disease
	thoracic 8	
MYH11	Aortic aneurysm, familial	Large artery disease
	thoracic 4	

eTable 1 The classification of the stroke etiology for each gene

Gene	Phenotype	Etiology of stroke
ACTA2	Aortic aneurysm, familial	Large artery disease
FBN1	Marfan syndrome	Large artery disease
FLN	Supravalvar aortic stenosis	Large artery disease
COL5A1	Ehlers-Danlos syndrome, classic	Large artery disease
COLIAI	type	Large artery disease
COL1A1	Combined osteogenesis	Large artery disease
	imperfecta and Ehlers-Danlos	
	syndrome 1	
COL1A2	Combined osteogenesis	Large artery disease
	imperfecta and Ehlers-Danlos	
	syndrome 2	
CETP	Hyperalphalipoproteinemia	Large artery disease
RNF213	Moyamoya disease	Large artery disease
LDLR	Hypercholesterolemia, familial,	Large artery disease
	1	
APOA5	Hyperchylomicronemia, late-	Large artery disease
	onset	
F2	Thrombophilia due to thrombin	Prothrombotic state
	defect	
JAK2	Thrombocythemia 3	Prothrombotic state
VWF	von Willebrand disease, type I	Prothrombotic state
GPIBA	von Willebrand disease, platelet-	Prothrombotic state
	type	
ETV6	Thrombocytopenia 5	Prothrombotic state
SERPINDI	Cofactor II deficiency	Prothrombotic state
SERPINC1	Thrombophilia due to antithrombin III deficiency	Prothrombotic state
PROS1	Thrombophilia due to protein S deficiency	Prothrombotic state
PROC	Thrombophilia due to protein C	Prothrombotic state
STIM1	Stormonizer sur drome	Drothrombatic state
NOTCH2		Small yessel disease
	UTPA1 autocomol dominant	Small vessel disease
ΠΙΚΑΙ	disease	Shian vesser disease
COL4A2	Brain small vessel disease 2	Small vessel disease
COL4A1	Brain small vessel disease with	Small vessel disease
	or without ocular	
	anomalies/PADMAL	
TREX1	Vasculopathy, retinal, with	Small vessel disease
	cerebral leukoencephalopathy	
	and systemic	
	manifestations/RVCL-S	
GSN	Amyloidosis, Finnish type	Small vessel disease
TTR	Amyloidosis, hereditary,	Small vessel disease
	transthyretin-related	
PRNP	Cerebral amyloid angiopathy, PRNP-related	Small vessel disease
PSEN1	Alzheimer's disease	Small vessel disease
GLA	Fabry Disease	Other disease
	-	(small and large artery disease)
NF1	Neurofibromatosis 1	Other disease
		(small and large artery disease)
ABCC6	Pseudoxanthoma elasticum	Other disease

Gene	Phenotype	Etiology of stroke
		(small and large artery disease)
PKD1	Polycystic kidney disease 1	Other disease
		(Cerebrovascular
		malformations)
PKD2	Polycystic kidney disease 2	Other disease
		(Cerebrovascular
		malformations)
KRIT1	Cerebral cavernous	Other disease
	malformations-1	(Cerebrovascular
		malformations)
ACVRL1	Telangiectasia, hereditary	Other disease
	hemorrhagic, type 2	(Cerebrovascular
		malformations)
ENG	Telangiectasia, hereditary	Other disease
	hemorrhagic, type 1	(Cerebrovascular
		malformations)
FLCN	Birt-Hogg-Dube syndrome	Other disease
		(Unknown mechanism)
DYRK1B	Abdominal obesity-metabolic	Other disease
	syndrome 3	(Unknown mechanism)
PDE4D	Acrodysostosis 2, with or	Other disease
	without hormone resistance	(Unknown mechanism)
APOA1	Amyloidosis, 3 or more types	Other disease
		(Unknown mechanism)
VHL	Pheochromocytoma	Other disease
		(Unknown mechanism)
RET	Medullary thyroid carcinoma or	Other disease
	Pheochromocytoma	(Unknown mechanism)
BMPR2	Pulmonary hypertension,	Other disease
	primary	(Unknown mechanism)
CBL	Noonan syndrome-like disorder	Other disease
	with or without juvenile	(Unknown mechanism)
	myelomonocytic leukemia	
KIF1B	Pheochromocytoma	Other disease
		(Unknown mechanism)
TGIF1	Holoprosencephaly 4	Other disease
		(Unknown mechanism)

Gene	Location	OMIM ID	Inheri- tance	Associated Mendelian Disorder				
ABCA1	9q31.1	600046	AR	Tangier disease				
ABCC6	16p13.11	603234	AR	Arterial calcification, generalized, of infancy, 2; Pseudoxanthoma elasticum				
ACTA2	10q23.31	102620	AD	Moyamoya disease 5; Aortic aneurysm, familial thoracic 6; Multisystemic smooth muscle dysfunction syndrome				
ACTC1	15q14	102540	AD	Atrial septal defect 5; Cardiomyopathy, dilated, 1R; Cardiomyopathy, hypertrophic, 11; Left ventricular noncompaction 4				
ACTN2	1q43	102573	AD	Cardiomyopathy, dilated, 1AA, with or without LVNC; Cardiomyopathy, hypertrophic, 23, with or without LVNC; Myopathy, congenital with structured cores and Z-line abnormalities; Myopathy, distal, 6, adult onset				
ACVRL1	12q13.13	601284	AD	Telangiectasia, hereditary hemorrhagic, type 2				
ANK2	4q25-q26	106410	AD	Cardiac arrhythmia, ankyrin-B-related; Long QT syndrome 4				
APOA1	11q23.3	107680	AD	Amyloidosis, 3 or more types				
APOA5	11q23.3	606368	AD	Hyperchylomicronemia, late-onset				
APP	21q21.3	104760	AD	Alzheimer disease 1, familial; Cerebral amyloid angiopathy, Dutch, Italian, Iowa, Flemish, Arctic variants				
ATP7A	Xq21.1	300011	XLR	Menkes disease; Occipital horn syndrome; Spinal muscular atrophy, distal, X-linked 3				
B4GALT1	9p21.1	137060	AR	Congenital disorder of glycosylation, type IId				
BAG3	10q26.11	603883	AD	Cardiomyopathy, dilated, 1HH				
BMPR2	2q33.1- q33.2	600799	AD	Pulmonary hypertension, familial primary, 1, with or without HHT; Pulmonary hypertension, primary, fenfluramine or dexfenfluramine- associated; Pulmonary venoocclusive disease 1				
BRCC3	Xq28	300617	XLR	Moyamoya 4 X-link				
CBL	11q23.3	165360	AD	juvenile myelomonocytic leukemia and Noonan syndrome-like disorder				
CBS	21q22.3	613381	AR	Homocystinuria, B6-responsive and nonresponsive types; Thrombosis, hyperhomocysteinemic				
CCER2	19q13.2	617634	AD	Moyamoya disease, susceptibility to				
CCM2	7p13	607929	AD	Cerebral cavernous malformations 2				
CDKN1C	11p15.4	600856	AD	Beckwith-Wiedemann syndrome; IMAGE syndrome				
CECR1/ ADA2	22q11.1	615688	AR	Vasculitis, autoinflammation, immunodeficiency, and hematologic defects syndrome				
CEP19	3q29	615586	AR	Morbid Obesity And Spermatogenic Failure				
CETP	16q13	118470	AD	Hyperalphalipoproteinemia; High density lipoprotein cholesterol level QTL 10				
COL1A1	17q21.33	120150	AD	Combined osteogenesis imperfecta and Ehlers- Danlos syndrome 1				

eTable 2 List of the 181 genes associated with Mendelian-stroke in customdesigned panel

Inheri-

OMIM

Gene	Location	OMIM ID	Inheri- tance	Associated Mendelian Disorder			
COL1A2	7q21.3	120160	AD	Combined osteogenesis imperfecta and Ehlers- Danlos syndrome 2			
COL3A1	2q32.2	120180	AD,	Ehlers-Danlos syndrome, vascular type;			
			AR	Polymicrogyria with or without vascular-type EDS			
COL4A1	13q34	120130	AD	Angiopathy, hereditary, with nephropathy, aneurysms, and muscle cramps: Brain small			
				vessel disease with or without ocular anomalies;			
				Anterior segment dysgenesis with cerebral			
				involvement; Porencephaly 1; Retinal artery tortuosity			
COL4A2	13q34	120090	AD	Brain small vessel disease 2			
COL5A1	9q34.3	120215	AD	Ehlers-Danlos syndrome, classic type, 1; Fibromuscular dysplasia, multifocal			
CPT2	1p32.3	600650	AR	CPT II deficiency			
CST3	20p11.21	604312	AD	Cerebral amyloid angiopathy			
CTC1	17p13.1	613129	AR	Cerebroretinal Microangiopathy With			
CTSA	20g13.12	613111	AR	Galactosialidosis			
CYP27A1	2q35	606530	AR	Cerebrotendinous xanthomatosis			
DES	2035	125660	AD	Cardiomyopathy, dilated, 11:Scapuloperoneal			
DES	2400	125000		syndrome, neurogenic, Kaeser type			
DOCK8	9p24.3	611432	AR	Hyper-IgE recurrent infection syndrome,			
				autosomal recessive			
DSG2	18q12.1	125671	AD	Arrhythmogenic right ventricular dysplasia, familial, 10			
DYRK1B	19q13.2	604556	AD	Abdominal obesity-metabolic syndrome 3			
ELN	7q11.23	130160	AD	Cutis laxa, autosomal dominant; Supravalvar aortic stenosis			
ENG	9q34.11	131195	AD	Hereditary hemorrhagic telangiectasia, type 1			
ENPP1	6q23.2	173335	AD,	Arterial calcification, generalized, of infancy,			
			AR	1;Cole disease			
EPHX2	8p21.2- p21.1	132811	AD, AR	Hypercholesterolemia, familial, due to LDLR defect, modifier of			
ETV6	12p13.2	600618	AD	Thrombocytopenia 5			
F10	13q34	613872	AR	Factor X Deficiency			
F13A1	6p25.1	134570	AR	Factor XIII Subunit A Deficiency			
F13B	1q31.3	134580	AR	Factor XIII Subunit B Deficiency			
F2	11p11.2	176930	AD, AR	Dysprothrombinemia; Hypoprothrombinemia; Thrombophilia due to thrombin defect;			
F3	1p21.3	134390	NA	NA			
F5	1q24.2	612309	AD,	Factor V deficiency; Thrombophilia due to			
			AR	activated protein C resistance; Thrombophilia, susceptibility to, due to factor V Leiden			
F7	13q34	613878	AR	Factor VII Deficiency			
F8	Xq28	300841	XLR	Hemophilia A			
FBN1	15q21.1	134797	AD	Marfan syndrome			
FGA	4q31.3	134820	AD, AR	Congenital Afibrinogenemia; Amyloidosis, familial visceral			
FGB	4q31.3	134830	AR	Congenital Afibrinogenemia			
FGG	4q32.1	134850	AR	Congenital Afibrinogenemia			
FLCN	17p11.2	607273	AD	Birt-Hogg-Dube syndrome; Pneumothorax,			
				primary spontaneous			

Gene	Location	OMIM ID	Inheri- tance	Associated Mendelian Disorder		
GATA4	8p23.1	600576	AD	Atrial Septal Defect 2; Tetralogy of Fallot		
GATA6	18q11.2	601656	AD	Atrial Septal Defect 9; Tetralogy of Fallot		
GATAD1	7q21.2	614518	AR	Cardiomyopathy, dilated, 2B		
GDF1	19p13.11	602880	AD	Congenital heart defects, multiple types, 6		
GDF2	10q11.22	605120	AD	Hereditary hemorrhagic telangiectasia, type 5		
GGCX	2p11.2	137167	AR	Vitamin K-Dependent Clotting Factors, Combined Deficiency of, 1		
GJA1	6q22.31	121014	AD	Atrioventricular septal defect 3		
GJA5	1q21.2	121013	AD	Atrial fibrillation, familial, 11		
GLA	Xq22.1	300644	XL	Fabry disease; Fabry disease, cardiac variant		
GP1BA	17p13.2	606672	AD, AR	Bernard-Soulier syndrome, type A2; von Willebrand disease, platelet-type		
GP6	19q13.42	605546	AR	Bleeding Disorder Platelet Type 11		
GSN	9q33.2	137350	AD	Amyloidosis, Finnish type		
GUCY1A3	4q32.1	139396	AR	Moyamoya 6 with achalasia		
HBB	11p15.4	141900	AR	Sickle cell anemia		
HTRA1	10q26.13	602194	AD, AR	Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL); Cerebral arteriopathy, autosomal dominant, with subcortical infarcts and leukoencephalopathy, type 2		
ITGA2	5q11.2	192974	NA	platelet disorder		
ITGA2B	17q21.31	607759	AD, AR	Bleeding Disorder Platelet Type 16;Glanzmann thrombasthenia 1		
ITGB3	17q21.32	173470	AD, AR	Bleeding disorder, platelet-type, 24, autosomal dominant; Glanzmann thrombasthenia 2		
ITM2B	13q14.2	603904	AD	Retinal dystrophy with inner retinal dysfunction and ganglion cell abnormalities; Dementia		
ITPKC	19q13.2	606476		Kawasaki disease, associated		
JAG1	20p12.2	601920	AD	Tetralogy of Fallot; Alagille syndrome 1		
JAK2	9p24.1	147796	AD	Thrombocythemia 3		
KCNA5	12p13.32	176267	AD	Familial Atrial Fibrillation 7		
KCNE1	21q22.12	176261	AD, AR	Long QT syndrome 5; Jervell and Lange-Nielsen syndrome 2		
KCNE2	21q22.11	603796	AD	Familial Atrial Fibrillation 4; Long QT syndrome 6		
KCNH2	7q36.1	152427	AD	Long QT syndrome 2; Short QT syndrome 1		
KCNJ2	17q24.3	600681	AD	Familial Atrial Fibrillation 9; Short QT syndrome 3; Andersen syndrome		
KCNJ5	11q24.3	600734	AD	Long QT syndrome 13; Hyperaldosteronism, familial, type III		
KCNQ1	11p15.5- p15.4	607542	AD	Atrial fibrillation, familial 3; Long QT syndrome 1; Short QT syndrome 2		
KIF1B	1p36.22	605995	AD	Pheochromocytoma; Charcot-Marie-Tooth disease, type 2A1		
KRAS	12p12.1	190070	AD	Arteriovenous malformation of the brain, somatic; Cardiofaciocutaneous syndrome 2; Noonan syndrome 3; RAS-associated autoimmune leukoproliferative disorder		
KRIT1	7q21.2	604214	AD	Cerebral cavernous malformations 1		
LAMP2	Xq24	309060	XLD	Danon disease		
LDLR	19p13.2	606945	AD, AR	Hypercholesterolemia, familial		

Gene	Location	OMIM ID	Inheri- tance	Associated Mendelian Disorder
LIPC	15q21.3	151670	AR	High density lipoprotein cholesterol level QTL 12; Hepatic lipase deficiency
LMBRD1	6q13	612625	AR	Methylmalonic aciduria and homocystinuria, cblF type
LMNA	1q22	150330	AD, AR	Charcot-Marie-Tooth disease, type 2B1; Cardiomyopathy, dilated, 1A
LPL	8p21.3	609708	AD, AR	Hepatic Lipase Deficiency; Combined hyperlipidemia, familial; High density lipoprotein cholesterol level OTL 11
MFAP5	12p13.31	601103	AD	Aortic aneurysm, familial thoracic 9
MMACHC	1p34.1	609831	AR	Methylmalonic aciduria and homocystinuria, cblC type
MPL	1p34.2	159530	AD, AR	Thrombocythemia 2; Thrombocytopenia, congenital amegakaryocytic
MTCP1	Xq28	300116	XLR	Moyamoya disease
MTHFR	1p36.22	607093	AR	Homocystinuria due to MTHFR deficiency
MTR	1q43	156570	AR	Homocystinuria-megaloblastic anemia, cblG complementation type
MTRR	5p15.31	602568	AR	Homocystinuria-megaloblastic anemia, cbl E type
MTTP	4q23	157147	AD, AR	Abdominal obesity-metabolic syndrome 1; Abetalipoproteinemia
MMUT	6p12.3	609058	AR	Methylmalonic aciduria, mut (0) type
MYBPC3	11p11.2	600958	AD	Cardiomyopathy, hypertrophic, 4; Cardiomyopathy, dilated, 1MM; Left ventricular noncompaction 10
MYH11	16p13.11	160745	AD	Aortic aneurysm, familial thoracic 4
МҮН9	22q12.3	160775	AD	Macrothrombocytopenia and granulocyte inclusions with or without nephritis or sensorineural hearing loss; Deafness, autosomal dominant 17
MYLK	3q21.1	600922	AD	Aortic aneurysm, familial thoracic 7
NF1	17q11.2	613113	AD	Neurofibromatosis, type 1
NKX2-5	5q35.1	600584	AD	Atrial Septal Defect 7, with or without AV Conduction Defects; Tetralogy of Fallot
NOS3	7q36.1	163729	AD	Alzheimer disease, type 1
NOTCH3	19p13.12	600276	AD	Cerebral arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL1)
NPPA	1p36.22	108780	AD	Familial Atrial Fibrillation 6
NUP155	5p13.2	606694	AR	Familial Atrial Fibrillation 15
P2RY12	3q25.1	600515	AR	Bleeding Disorder Platelet Type 8
PCNT	21q22.3	605925	AR	Microcephalic osteodysplastic primordial dwarfism, type II
PDCD10	3q26.1	609118	AD	Cerebral cavernous malformations 3
PDE4D	5q11.2- q12.1	600129	AD	Acrodysostosis 2, with or without hormone resistance
PGM1	1p31.3	171900	AR	Congenital disorder of glycosylation, type It
PHACTR1	6p24.1	608723	AD	Spontaneous Bilateral Cervical Internal Carotid and Vertebral Artery Dissection
PIGA	Xp22.2	311770	XLR	Multiple congenital anomalies-hypotonia- seizures syndrome 2
PITX2	4q25	601542	AD	Axenfeld-Rieger syndrome, type 1
PKD1	16p13.3	601313	AD	Polycystic kidney disease 1

22

Gene	Location	OMIM	Inheri-	Associated Mendelian Disorder
DVD2	4-22.1	ID 172010	tance	Delvavatia kidnav diagona 2
PKD2	4q22.1	1/3910	AD	Polycystic kidney disease 2
PLA2G/	6p12.3	601690	AR	Platelet-Activating Factor Acetylhydrolase Deficiency
PLAU	10q22.2	191840	AD	Quebec Platelet Disorder
PLOD3	7q22.1	603066	AR	Lysyl hydroxylase 3 deficiency
PNP	14q11.2	164050	AR	Immunodeficiency due to purine nucleoside phosphorylase deficiency
POLD1	19q13.33	174761	AD	Mandibular Hypoplasia, Deafness, Progeroid Features, And Lipodystrophy syndrome
PRKAG2	7q36.1	602743	AD	Cardiomyopathy, hypertrophic 6;Glycogen storage disease of heart, lethal congenital; Wolff- Parkinson-White syndrome
PRKAR1A	17q24.2	188830	AD	Carney complex, type 1
PRKG1	10q11.2- q21.1	176894	AD	Aortic aneurysm, familial thoracic 8
PRNP	20p13	176640	AD	Cerebral amyloid angiopathy, PRNP-related
PROC	2q14.3	612283	AD, AR	Thrombophilia due to protein C deficiency
PROS1	3q11.1	176880	AD, AR	Thrombophilia due to protein S deficiency
PROZ	13q34	176895	NA	deep venous thrombolic disease, associated
PSEN1	14q24.2	104311	AD	Cardiomyopathy, dilated, 1U;Alzheimer disease, type 3
PSEN2	1q42.13	600759	AD	Cardiomyopathy, dilated, 1V;Alzheimer disease- 4
RASA1	5q14.3	139150	AD	Capillary malformation-arteriovenous malformation
RBM20	10q25.2	613171	AD	Cardiomyopathy, dilated, 1DD
RET	10q11.21	164761	AD	Pheochromocytoma
RNF213	17q25.3	613768	AD, AR	Moyamoya disease 2, susceptibility to
RYR1	19q13.2	180901	AD, AR	Central core disease
RYR2	1q43	180902	AD	Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy 2; Ventricular arrythmias due to cardiac ryanodine receptor calcium release deficiency syndrome; Ventricular tachycardia, catecholaminergic polymorphic, 1
SCN1B	19q13.11	600235	AD	Atrial fibrillation, familial, 13
SCN2B	11q23.3	601327	AD	Atrial fibrillation, familial, 14
SCN3B	11q24.1	608214	AD	Atrial fibrillation, familial, 16;Brugada syndrome 7
SCN4B	11q23.3	608256	AD	Atrial fibrillation, familial,17; Long QT syndrome 10
SCN5A	3p22.2	600163	AD	Atrial fibrillation, familial, 10; Brugada syndrome 1; Cardiomyopathy, dilated, 1E
SERPINC1	1q25.1	107300	AD, AR	Thrombophilia due to antithrombin III deficiency
SERPIND1	22q11.21	142360	AD	Thrombophilia due to heparin cofactor II deficiency
SHOC2	10q25.2	602775	AD	Noonan-like syndrome and moyamoya disease
SLC19A2	1q24.2	603941	AR	Thiamine-Responsive Megaloblastic Anemia Syndrome

Gene	Location	OMIM ID	Inheri-	Associated Mendelian Disorder		
SLC2A10	20q13.12	606145	AR	Arterial tortuosity syndrome		
SMAD3	15q22.33	603109	AD	Loeys-Dietz syndrome, type 3		
SMAD4	18q21.2	600993	AD	Juvenile polyposis/hereditary hemorrhagic		
	1			telangiectasia syndrome		
SMARCAL1	2q35	606622	AR	Schimke immunoosseous dysplasia		
STIM1	11p15.4	605921	AD, AR	;Immunodeficiency 10		
TALDO1	11p15.5	602063	AR	Transaldolase deficiency		
TAZ	Xq28	300394	XLR	3-Methylglutaconic aciduria, type II (Barth syndrome)		
TBX1	22q11.21	602054	AD	Tetralogy of Fallot		
TBX20	7p14.2	606061	AD	Atrial septal defect 4		
TBXA2R	19p13.3	188070	AD	Bleeding disorder, platelet-type, 13, susceptibility to		
TCAP	17q12	604488	AD	Cardiomyopathy, hypertrophic, 25		
TCN1	11q12.1	189905	NA	NA		
TGFB2	1q41	190220	AD	Loeys-Dietz syndrome, type 4		
TGFB3	14q24.3	190230	AD	Arrhythmogenic right ventricular dysplasia 1;Loeys-Dietz syndrome 5		
TGFBR1	9q22.33	190181	AD	Loeys-Dietz syndrome, type 1A; Loeys-Dietz syndrome, type 2A		
TGFBR2	3p24.1	190182	AD	Loeys-Dietz syndrome 2		
TGIF1	18p11.31	602630	AD	Holoprosencephaly 4		
THBD	20p11.21	188040	AD	Thrombophilia Due To Thrombomodulin Defect		
TLL1	4q32.3	606742	AD	Atrial septal defect 6		
TMEM173	5q31.2	612374	AD	STING-associated vasculopathy, infantile-onset		
TREX1	3p21.31	606609	AD	Vasculopathy, retinal, with cerebral leukodystrophy		
TTN	2q31.2	188840	AD	Cardiomyopathy, dilated, 1G		
TTR	18q12.1	176300	AD	Amyloidosis, hereditary, transthyretin-related		
VHL	3p25.3	608537	AD	von Hippel-Lindau syndrome		
VKORC1	16p11.2	608547	AD	Vitamin K-Dependent Clotting Factors, Combined Deficiency of, 2; Warfarin resistance		
VWF	12p13.31	613160	AD, AR	Von Willebrand Disease		
YY1AP1	1q22	607860	AR	Grange syndrome		
ZFPM2	8q23.1	603693	AD	Tetralogy of Fallot		

Code_n	Ge nde r	Age	Gene	Phenotype	Etiology of stroke	Mutation	Clinva r	ACM G	Defin ite	Possi ble	Undete rmined	Insufficien t Informati on
CNSR30 0069	F	58	ACTC1	Hereditary cardiomyopathies	Embolic stroke	NM_005159:exon3:c.T 213A:p.Y71X	NA	Р			Y	
CNSR30 2746	F	71	ACTC1	Hereditary cardiomyopathies	Embolic stroke	NM_005159:exon7:c.G 1093A:p.D365N	NA	LP			Y	
CNSR30 1704	М	55	ACTN2	Hereditary cardiomyopathies	Embolic stroke	NM_001103:exon16:c. G1919A:p.R640H	LP	VUS			Y	
CNSR30 5213	М	63	ACTN2	Hereditary cardiomyopathies	Embolic stroke	NM_001103:exon16:c. G1919A:p.R640H	LP	VUS				Y
CNSR30 8476	F	64	ACTN2	Hereditary cardiomyopathies	Embolic stroke	NM_001103:exon14:c. C1618T:p.Q540X	NA	Р			Y	
CNSR30 3363	М	63	BAG3	Hereditary cardiomyopathies	Embolic stroke	NM_004281:exon2:c.1 81-1G>A	NA	Р			Y	
CNSR30 9438	М	52	DSG2	Hereditary cardiomyopathies	Embolic stroke	NM_001943:exon10:c. G1311A:p.W437X	NA	Р			Y	
CNSR30 0880	М	51	GATA4	Tetralogy of Fallot	Embolic stroke	NM_002052.5(GATA4):c.997+103G>T	Р	VUS			Y	
CNSR30 2453	М	84	GATA4	Tetralogy of Fallot	Embolic stroke	NM_002052:exon6:c.G 1075A:p.E359K	Р	VUS			Y	
CNSR30 2668	F	80	GATA4	Tetralogy of Fallot	Embolic stroke	NM_002052:exon6:c.G 1075A:p.E359K	Р	VUS			Y	
CNSR30 2724	F	53	GATA4	Tetralogy of Fallot	Embolic stroke	NM_002052:c.997+10 3G>T	Р	VUS			Y	
CNSR30 2956	М	53	GATA4	Tetralogy of Fallot	Embolic stroke	NM_002052:exon7:c.C 1325T:p.A442V	Р	VUS			Y	

eTable 3 Diagnoses of 759 individuals with 1 P/LP variant at risk for one monogenic diseases

Code_n	Ge	Age	Gene	Phenotype	Etiology of	Mutation	Clinvar	ACMG	Defin	Possi	Undete	Insufficient
	nde				stroke				ite	ble	rmined	Information
CNSR30	M	53	GATA4	Tetralogy of Fallot	Embolic	NM_002052:exon5:	Р	VUS			Y	
3353		55	Grinn	ieuuogy of Fullot	stroke	c.C946G:p.Q316E	1				1	
CNSR30	М	41	GATA4	Tetralogy of Fallot	Embolic	NM 002052:exon6:	Р	VUS			Y	
3946					stroke	c.G1075A:p.E359K						
CNSR30	М	60	GATA4	Tetralogy of Fallot	Embolic	NM_002052:c.997	Р	VUS			Y	
5783					stroke	+103G>T						
CNSR30	Μ	77	GATA4	Tetralogy of Fallot	Embolic	NM_002052:c.997	Р	VUS			Y	
6009					stroke	+103G>T						
CNSR30	Μ	70	GATA4	Tetralogy of Fallot	Embolic	NM_002052:exon7:	Р	VUS			Y	
9014					stroke	c.C1325T:p.A442V						
CNSR30	Μ	74	GATA4	Tetralogy of Fallot	Embolic	NM_002052:exon7:	Р	VUS			Y	
9505					stroke	c.C1325T:p.A442V						
CNSR30	Μ	51	GATA4	Tetralogy of Fallot	Embolic	NM_002052:exon3:	NA	LP			Y	
9956					stroke	c.777delC:p.R260fs						
CNSR30	Μ	46	GATA4	Tetralogy of Fallot	Embolic	NM_002052:c.997	Р	VUS			Y	
9997					stroke	+103G>T						
CNSR30	М	47	GDF1	Congenital heart	Embolic	NM_001492:exon7:	NA	LP			Y	
4597				defects, multiple	stroke	c.159delC:p.P53fs						
CNGD20		71	CDE1	types, 6	F 1 1'	NR 001402 7	214	TD			37	
CNSR30	М	/1	GDF1	Congenital heart	Embolic	NM_001492:exon/:	NA	LP			Ŷ	
6192				defects, multiple	stroke	c.289dupG:p. V9/Is						
CNSP20	Б	72	CDE1	Conconital heart	Embolio	NM 001402.avon7.	NA	D	ł – – –		v	
7760	г	12	ODFT	defects multiple	stroleo	1001492.0017.	INA	Г			I	
//00				types 6	SUOKE	C.C.2021.p.Q88A						
CNSR30	F	72	GIA1	Atrioventricular	Embolic	NM_000165:exon2:	NA	LP			v	
0610	1	12	0,711	sental defect 3	stroke	c A305T n K102M	1471	101			1	
CNSR30	F	45	GJA1	Atrioventricular	Embolic	NM 000165:exon2:	NA	LP			Y	
4700	-			septal defect 3	stroke	c.A305T:p.K102M					-	
CNSR30	F	77	GJA1	Atrioventricular	Embolic	NM 000165:exon2:	NA	LP	1		Y	
5166				septal defect 3	stroke	c.G913C:p.A305P						

26

Code_n	Ge	Age	Gene	Phenotype	Etiology of	Mutation	Clinvar	ACMG	Defin	Possi	Undete	Insufficient
	nde				stroke				ite	ble	rmined	Information
	r											
CNSR30	Μ	66	GJA1	Atrioventricular	Embolic	NM_000165:exon2:	NA	LP			Y	
5429				septal defect 3	stroke	c.A305T:p.K102M						
CNSR30	Μ	83	GJA1	Atrioventricular	Embolic	NM_000165:exon2:	NA	LP			Y	
6575				septal defect 3	stroke	c.A305T:p.K102M						
CNSR31	Μ	76	GJA1	Atrioventricular	Embolic	NM_000165:exon2:	NA	LP			Y	
0100				septal defect 3	stroke	c.A524G:p.Y175C						
CNSR30	М	60	GJA5	Hereditary cardiac	Embolic	NM_005266:exon2:	NA	LP			Y	
0869				dysrhythm	stroke	c.T269C:p.L90P						
CNSR30	F	66	GJA5	Hereditary cardiac	Embolic	NM_005266:exon2:	NA	LP			Y	
3120				dysrhythm	stroke	c.T269C:p.L90P						
CNSR30	М	74	GJA5	Hereditary cardiac	Embolic	NM 005266:exon2:	NA	LP		Y		
3449				dysrhythm	stroke	c.G1055T:p.R352M						
CNSR30	М	66	GJA5	Hereditary cardiac	Embolic	NM_005266:exon2:	NA	LP		Y		
5175				dysrhythm	stroke	c.T686C:p.L229P						
CNSR30	F	62	GJA5	Hereditary cardiac	Embolic	NM_005266:exon2:	NA	LP		Y		
6594				dysrhythm	stroke	c.G317C:p.R106P						
CNSR30	F	61	GJA5	Hereditary cardiac	Embolic	NM_005266:exon2:	NA	LP			Y	
9131				dysrhythm	stroke	c.G1028A:p.R343H						
CNSR30	М	64	GJA5	Hereditary cardiac	Embolic	NM_005266:exon2:	NA	LP		Y		
9756				dysrhythm	stroke	c.C316T:p.R106C						
CNSR31	F	89	GJA5	Hereditary cardiac	Embolic	NM_005266:exon2:	NA	LP		Y		
0261				dysrhythm	stroke	c.T581C:p.V194A						
CNSR30	М	64	KCNA5	Hereditary cardiac	Embolic	NM_002234:exon1:	Р	VUS			Y	
0158				dysrhythm	stroke	c.C1727T:p.A576V						
CNSR30	F	43	KCNA5	Hereditary cardiac	Embolic	NM 002234:exon1:	Р	VUS			Y	
0624				dysrhythm	stroke	c.C1727T:p.A576V						
CNSR30	М	47	KCNA5	Hereditary cardiac	Embolic	NM_002234:exon1:	Р	VUS			Y	
1595				dysrhythm	stroke	c.C1727T:p.A576V						
CNSR30	М	45	KCNA5	Hereditary cardiac	Embolic	NM_002234:exon1:	Р	VUS			Y	
1642	1			dysrhythm	stroke	c.C1727T:p.A576V						

Code_n	Ge	Age	Gene	Phenotype	Etiology of	Mutation	Clinvar	ACMG	Defin	Possi	Undete	Insufficient
	nde	_			stroke				ite	ble	rmined	Information
	r											
CNSR30	М	70	KCNA5	Hereditary cardiac	Embolic	NM 002234:exon1:	Р	VUS		Y		
2182				dysrhythm	stroke	c.G1828A:p.E610K						
CNSR30	М	56	KCNA5	Hereditary cardiac	Embolic	NM 002234:exon1:	Р	VUS			Y	
2320				dysrhythm	stroke	c.C1727T:p.A576V						
CNSR30	F	79	KCNA5	Hereditary cardiac	Embolic	NM 002234:exon1:	Р	VUS	Y			
2364				dysrhythm	stroke	c.C1727T:p.A576V						
CNSR30	М	45	KCNA5	Hereditary cardiac	Embolic	NM 002234:exon1:	Р	VUS			Y	
4681				dysrhythm	stroke	c.G1828A:p.E610K						
CNSR30	М	54	KCNA5	Hereditary cardiac	Embolic	NM 002234:exon1:	Р	VUS			Y	
5072				dysrhythm	stroke	c.C1727T:p.A576V						
CNSR30	М	60	KCNA5	Hereditary cardiac	Embolic	NM 002234:exon1:	Р	VUS	Y			
5124				dysrhythm	stroke	c.C1727T:p.A576V						
CNSR30	М	59	KCNA5	Hereditary cardiac	Embolic	NM_002234:exon1:	Р	VUS			Y	
7143				dysrhythm	stroke	c.C1727T:p.A576V						
CNSR30	М	75	KCNA5	Hereditary cardiac	Embolic	NM_002234:exon1:	Р	VUS			Y	
7545				dysrhythm	stroke	c.C1727T:p.A576V						
CNSR30	Μ	66	KCNA5	Hereditary cardiac	Embolic	NM_002234:exon1:	Р	VUS			Y	
8123				dysrhythm	stroke	c.C1727T:p.A576V						
CNSR30	Μ	72	KCNA5	Hereditary cardiac	Embolic	NM_002234:exon1:	Р	VUS			Y	
8261				dysrhythm	stroke	c.G1828A:p.E610K						
CNSR30	Μ	47	KCNE2	Hereditary cardiac	Embolic	NM_172201:exon2:	LP	VUS			Y	
3689				dysrhythm	stroke	c.G205A:p.V69M						
CNSR30	Μ	66	KCNE2	Hereditary cardiac	Embolic	NM_172201:exon2:	LP	VUS		Y		
4562				dysrhythm	stroke	c.G205A:p.V69M						
CNSR30	F	53	KCNE2	Hereditary cardiac	Embolic	NM_172201:exon2:	LP	VUS		Y		
5932				dysrhythm	stroke	c.G205A:p.V69M						
CNSR30	Μ	61	KCNH2	Hereditary cardiac	Embolic	NM_000238:exon7:	LP	VUS			Y	
3137				dysrhythm	stroke	c.G1888A:p.V630I						
CNSR30	Μ	53	KCNH2	Hereditary cardiac	Embolic	NM_000238:exon2:	NA	LP			Y	
3306				dysrhythm	stroke	c.G121A:p.V41I						
Code_n	Ge	Age	Gene	Phenotype	Etiology of	Mutation	Clinvar	ACMG	Defin	Possi	Undete	Insufficient
--------	-----	-----	-------	--------------------	-------------	-------------------	---------	------	-------	-------	--------	--------------
	nde				stroke				ite	ble	rmined	Information
	r											
CNSR30	F	68	KCNH2	Hereditary cardiac	Embolic	NM_000238:exon6:	LP	VUS			Y	
5582				dysrhythm	stroke	c.C1352T:p.P451L						
CNSR30	Μ	57	KCNH2	Hereditary cardiac	Embolic	NM_000238:exon2:	NA	Р			Y	
6897				dysrhythm	stroke	c.G271T:p.E91X						
CNSR30	F	70	KCNJ2	Hereditary cardiac	Embolic	NM_000891:exon2:	NA	LP			Y	
2460				dysrhythm	stroke	c.A971G:p.H324R						
CNSR30	Μ	52	KCNJ2	Hereditary cardiac	Embolic	NM_000891:exon2:	NA	LP			Y	
5866				dysrhythm	stroke	c.A593G:p.N198S						
CNSR30	Μ	44	KCNJ5	Hereditary cardiac	Embolic	NM_000890:exon2:	NA	LP			Y	
0301				dysrhythm	stroke	c.G862A:p.E288K						
CNSR30	М	58	KCNJ5	Hereditary cardiac	Embolic	NM_000890:exon2:	NA	LP			Y	
6658				dysrhythm	stroke	c.G532A:p.V178I						
CNSR30	М	33	KCNJ5	Hereditary cardiac	Embolic	NM_000890:exon3:	NA	LP			Y	
7982				dysrhythm	stroke	c.G1039T:p.D347Y						
CNSR30	F	81	KCNJ5	Hereditary cardiac	Embolic	NM_000890:exon2:	NA	LP			Y	
8486				dysrhythm	stroke	c.G632A:p.R211Q						
CNSR30	М	71	KCNQ1	Hereditary cardiac	Embolic	NM_000218:exon5:	Р	VUS	Y			
0462				dysrhythm	stroke	c.C758G:p.S253C						
CNSR30	F	71	KCNQ1	Hereditary cardiac	Embolic	NM_000218:exon3:	LP	VUS			Y	
0983				dysrhythm	stroke	c.C589T:p.P197S						
CNSR30	М	42	KCNQ1	Hereditary cardiac	Embolic	NM_000218:exon6:	NA	Р		Y		
1428				dysrhythm	stroke	c.G911A:p.W304X						
CNSR30	F	48	KCNQ1	Hereditary cardiac	Embolic	NM_000218:exon7:	Р	VUS			Y	
3201				dysrhythm	stroke	c.C965T:p.T322M						
CNSR30	М	58	KCNQ1	Hereditary cardiac	Embolic	NM_000218:exon1	NA	LP			Y	
3313				dysrhythm	stroke	1:c.1489dupC:p.L4						
						96fs						
CNSR30	F	54	KCNQ1	Hereditary cardiac	Embolic	NM_000218:exon1	Р	LP		Y		
3540				dysrhythm	stroke	5:c.C1780T:p.R594						
				1		Х		1				

Code_n	Ge nde	Age	Gene	Phenotype	Etiology of stroke	Mutation	Clinvar	ACMG	Defin ite	Possi ble	Undete rmined	Insufficient Information
	r				Stroke				ne	510	1 mmeu	
CNSR30	М	68	KCNQ1	Hereditary cardiac	Embolic	NM_000218:exon1	P/LP	VUS		Y		
3754				dysrhythm	stroke	3:c.G1664A:p.R555						
						Н						
CNSR30	F	53	KCNQ1	Hereditary cardiac	Embolic	NM_000218:exon7:	Р	Р			Y	
4030				dysrhythm	stroke	c.C961T:p.Q321X						
CNSR30	М	71	KCNQ1	Hereditary cardiac	Embolic	NM_000218:exon1	NA	Р			Y	
4199				dysrhythm	stroke	3:c.C1630T:p.Q544						
						Х						
CNSR30	Μ	83	KCNQ1	Hereditary cardiac	Embolic	NM_000218:exon3:	P/LP	VUS			Y	
4883				dysrhythm	stroke	c.C520T:p.R174C						
CNSR30	F	59	KCNQ1	Hereditary cardiac	Embolic	NM_000218:exon1	P/LP	VUS			Y	
5135				dysrhythm	stroke	6:c.1887dupC:p.G6						
						29fs						
CNSR30	М	58	KCNQ1	Hereditary cardiac	Embolic	NM_000218:exon9:	NA	LP			Y	
5142				dysrhythm	stroke	c.1148dupC:p.A383						
						fs						
CNSR30	F	78	KCNQ1	Hereditary cardiac	Embolic	NM_000218:exon1	NA	Р			Y	
5149				dysrhythm	stroke	3:c.C1639T:p.Q547						
						Х						
CNSR30	М	58	KCNQ1	Hereditary cardiac	Embolic	NM_000218:exon2:	NA	Р			Y	
6632				dysrhythm	stroke	c.G436T:p.E146X						
CNSR30	F	60	KCNQ1	Hereditary cardiac	Embolic	NM_000218:exon4:	P/LP	VUS	Y			
6754				dysrhythm	stroke	c.C674T:p.S225L						
CNSR30	М	71	KCNQ1	Hereditary cardiac	Embolic	NM_000218:exon1	Р	LP	Y			
8491				dysrhythm	stroke	1:c.1445delC:p.T48						
						2fs						
CNSR30	F	61	KCNQ1	Hereditary cardiac	Embolic	NM_181798:exon1:	NA	LP			Y	
8806				dysrhythm	stroke	c.5dupA:p.D2fs						
CNSR30	Μ	51	KRAS	Noonan syndrome 3	Embolic	NM_033360:exon5:	NA	LP			Y	
0909				1	stroke	c.G463C:p.A155P		1				

Code_n	Ge	Age	Gene	Phenotype	Etiology of	Mutation	Clinvar	ACMG	Defin	Possi	Undete	Insufficient
	nde				stroke				ite	ble	rmined	Information
	r											
CNSR30	Μ	69	KRAS	Noonan syndrome 3	Embolic	NM_033360:exon5:	NA	LP			Y	
1758					stroke	c.T476C:p.L159S						
CNSR30	F	62	KRAS	Noonan syndrome 3	Embolic	NM_033360:exon5:	NA	LP			Y	
3935					stroke	c.T467C:p.F156S						
CNSR30	Μ	47	KRAS	Noonan syndrome 3	Embolic	NM_033360:exon5:	NA	LP			Y	
7860					stroke	c.T467C:p.F156S						
CNSR30	М	66	LMNA	Hereditary	Embolic	NM 170707:exon6:	P/LP	VUS		Y		
0439				cardiomyopathies	stroke	c.G949A:p.E317K						
CNSR30	F	30	LMNA	Hereditary	Embolic	NM 170707:exon6:	Р	VUS			Y	
3884				cardiomyopathies	stroke	c.G1157A:p.R386K						
CNSR30	F	69	LMNA	Hereditary	Embolic	NM 170707:exon1	Р	VUS			Y	
6920				cardiomyopathies	stroke	1:c.G1745A:p.R582						
						Н						
CNSR30	М	57	MYBP	Hereditary	Embolic	NM 000256:exon3	NA	Р			Y	
0696			C3	cardiomyopathies	stroke	2:c.3628-2A>G						
CNSR30	М	59	MYBP	Hereditary	Embolic	NM_000256:exon1	P/LP	LP		Y		
1225			C3	cardiomyopathies	stroke	3:c.1153_1168del:p						
						.V385fs						
CNSR30	М	51	MYBP	Hereditary	Embolic	NM_000256:exon2:	NA	Р		Y		
1773			C3	cardiomyopathies	stroke	c.G109T:p.G37X						
CNSR30	М	68	MYBP	Hereditary	Embolic	NM 000256.3(MY	Р	Р			Y	
1808			C3	cardiomyopathies	stroke	BPC3):c.821+1G>						
						Α						
CNSR30	М	61	MYBP	Hereditary	Embolic	NM 000256:exon3	Р	LP		Y		
3691			C3	cardiomyopathies	stroke	1:c.3624delC:p.K12						
						09fs						
CNSR30	Μ	19	MYBP	Hereditary	Embolic	NM_000256:exon2	NA	Р		Y		
4072			C3	cardiomyopathies	stroke	2:c.2308+1G>C						
CNSR30	Μ	81	MYBP	Hereditary	Embolic	NM_000256:exon1	Р	LP	Y			
6521			C3	cardiomyopathies	stroke	5:c.1377delC:p.P45						
						9fs						

Code_n	Ge nde r	Age	Gene	Phenotype	Etiology of stroke	Mutation	Clinvar	ACMG	Defin ite	Possi ble	Undete rmined	Insufficient Information
CNSR30 7147	М	84	MYBP C3	Hereditary cardiomyopathies	Embolic stroke	NM_000256:exon1 5:c.1377delC:p.P45 9fs	Р	LP		Y		
CNSR30 8693	М	72	MYBP C3	Hereditary cardiomyopathies	Embolic stroke	NM_000256:exon1 5:c.C1387T:p.Q463 X	Р	Р		Y		
CNSR30 9002	F	80	MYBP C3	Hereditary cardiomyopathies	Embolic stroke	NM_000256:exon1 3:c.1153_1168del:p .V385fs	P/LP	LP	Y			
CNSR31 0109	М	89	MYBP C3	Hereditary cardiomyopathies	Embolic stroke	NM_000256:exon1 4:c.G1256A:p.R419 H	LP	VUS			Y	
CNSR31 0251	М	58	MYBP C3	Hereditary cardiomyopathies	Embolic stroke	NM_000256:exon1 3:c.G1187A:p.W39 6X	NA	Р		Y		
CNSR31 0405	М	46	MYBP C3	Hereditary cardiomyopathies	Embolic stroke	NM_000256:exon1 4:c.G1256A:p.R419 H	LP	VUS			Y	
CNSR30 0926	F	48	NKX2- 5	Tetralogy of Fallot	Embolic stroke	NM_001166176:ex on2:c.386delT:p.L1 29X	NA	LP			Y	
CNSR30 1214	М	67	NKX2- 5	Tetralogy of Fallot	Embolic stroke	NM_001166176:ex on2:c.386delT:p.L1 29X	NA	LP			Y	
CNSR30 2885	F	62	NKX2- 5	Tetralogy of Fallot	Embolic stroke	NM_001166176:ex on2:c.386delT:p.L1 29X	NA	LP			Y	
CNSR30 3343	М	68	NKX2- 5	Tetralogy of Fallot	Embolic stroke	NM_001166176:ex on2:c.C349T:p.R11 7X	NA	LP			Y	

Code_n	Ge	Age	Gene	Phenotype	Etiology of	Mutation	Clinvar	ACMG	Defin	Possi	Undete	Insufficient
	nae				stroke				ne	ble	rmined	Information
CNSR30 3636	F	68	NKX2- 5	Tetralogy of Fallot	Embolic stroke	NM_001166176:ex on2:c.386delT:p.L1 29X	NA	LP			Y	
CNSR30 4524	М	54	NKX2- 5	Tetralogy of Fallot	Embolic stroke	NM_001166176:ex on2:c.386delT:p.L1 29X	NA	LP			Y	
CNSR30 9531	F	48	NKX2- 5	Tetralogy of Fallot	Embolic stroke	NM_001166176:ex on2:c.386delT:p.L1 29X	NA	LP			Y	
CNSR31 0093	F	44	NKX2- 5	Tetralogy of Fallot	Embolic stroke	NM_001166176:ex on2:c.386delT:p.L1 29X	NA	LP			Y	
CNSR31 0271	F	75	NKX2- 5	Tetralogy of Fallot	Embolic stroke	NM_001166176:ex on2:c.386delT:p.L1 29X	NA	LP			Y	
CNSR30 4051	F	34	NPPA	Hereditary cardiac dysrhythm	Embolic stroke	NM_006172:exon2: c.C319T:p.R107X	NA	LP			Y	
CNSR30 4789	F	81	NPPA	Hereditary cardiac dysrhythm	Embolic stroke	NM_006172:exon2: c.C181T:p.Q61X	NA	Р			Y	
CNSR30 3354	М	45	PRKA G2	Hereditary cardiomyopathies	Embolic stroke	NM_016203:exon7: c.914delC:p.P305fs	NA	LP			Y	
CNSR30 4520	F	60	PRKA G2	Hereditary cardiomyopathies	Embolic stroke	NM_016203:exon4: c.G547A:p.E183K	Р	VUS		Y		
CNSR30 8259	М	57	PRKA G2	Hereditary cardiomyopathies	Embolic stroke	NM_024429:exon7: c.445_446delinsAA :p.P149N	NA	LP			Y	
CNSR30 9141	М	60	PRKA G2	Hereditary cardiomyopathies	Embolic stroke	NM_016203:exon7: c.G922C:p.E308Q	NA	LP			Y	
CNSR30 9562	F	84	PRKA G2	Hereditary cardiomyopathies	Embolic stroke	NM_016203:exon1 3:c.A1402C:p.K468 Q	NA	LP			Y	

Code_n	Ge	Age	Gene	Phenotype	Etiology of	Mutation	Clinvar	ACMG	Defin	Possi	Undete	Insufficient
	nde				stroke				ite	ble	rmined	Information
	r						_					
CNSR30	F	52	PRKA	Hereditary	Embolic	NM_016203:exon4:	Р	VUS			Y	
9699			G2	cardiomyopathies	stroke	c.G54/A:p.E183K						
CNSR30	Μ	49	PRKAR	Carney complex, type	Embolic	NM_212472.2(PR	Р	VUS			Y	
4696			lA	1	stroke	KAR1A):c.709-						
						7_709-2del						
CNSR30	Μ	38	RBM20	Hereditary	Embolic	NM_001134363:ex	NA	LP			Y	
0155				cardiomyopathies	stroke	on2:c.471delA:p.A						
						157/ts						
CNSR30	Μ	51	RBM20	Hereditary	Embolic	NM_001134363:ex	NA	LP		Y		
1927				cardiomyopathies	stroke	on2:c.699_702del:p						
						.K233fs		_				
CNSR30	М	51	RBM20	Hereditary	Embolic	NM_001134363:ex	NA	Р			Y	
6544				cardiomyopathies	stroke	on6:c.1668+1G>T						
CNSR31	Μ	50	RBM20	Hereditary	Embolic	NM_001134363:ex	NA	LP			Y	
0082				cardiomyopathies	stroke	on10:c.2615_2616i						
						nsAG:p.E872fs						
CNSR30	F	77	SCN1B	Hereditary cardiac	Embolic	NM_001037.5(SC	LP	VUS			Y	
6204				dysrhythm	stroke	N1B):c.590+1G>A						
CNSR30	F	68	SCN2B	Hereditary cardiac	Embolic	NM_004588:exon2:	NA	LP	Y			
4738				dysrhythm	stroke	c.G172A:p.V58M						
CNSR30	Μ	84	SCN2B	Hereditary cardiac	Embolic	NM_004588:exon2:	NA	LP	Y			
5339				dysrhythm	stroke	c.C142G:p.L48V						
CNSR30	Μ	61	SCN2B	Hereditary cardiac	Embolic	NM_004588:exon2:	NA	LP		Y		
6524				dysrhythm	stroke	c.G172A:p.V58M						
CNSR30	Μ	61	SCN3B	Hereditary cardiac	Embolic	NM_018400:exon3:	NA	LP			Y	
3696				dysrhythm	stroke	c.A326G:p.N109S						
CNSR30	Μ	62	SCN4B	Hereditary cardiac	Embolic	NM_174934:exon2:	NA	LP			Y	
0328				dysrhythm	stroke	c.C140A:p.T47K						
CNSR30	Μ	72	SCN4B	Hereditary cardiac	Embolic	NM_174934:exon5:	NA	LP		Y		
1522				dysrhythm	stroke	c.G602A:p.C201Y						

Code_n	Ge	Age	Gene	Phenotype	Etiology of	Mutation	Clinvar	ACMG	Defin	Possi	Undete	Insufficient
	nde				stroke				ite	ble	rmined	Information
	r											
CNSR30	F	57	SCN4B	Hereditary cardiac	Embolic	NM_174934:exon3:	NA	LP			Y	
2551				dysrhythm	stroke	c.G373A:p.D125N						
CNSR30	М	71	SCN4B	Hereditary cardiac	Embolic	NM_174934:exon4:	NA	LP	Y			
3785				dysrhythm	stroke	c.G514A:p.G172R						
CNSR30	F	70	SCN4B	Hereditary cardiac	Embolic	NM_174934:exon5:	NA	LP			Y	
5818				dysrhythm	stroke	c.G607C:p.V203L						
CNSR30	F	82	SCN4B	Hereditary cardiac	Embolic	NM_174934:exon2:	NA	LP		Y		
6117				dysrhythm	stroke	c.C76T:p.P26S						
CNSR30	Μ	54	SCN4B	Hereditary cardiac	Embolic	NM_174934:exon4:	NA	LP			Y	
9161				dysrhythm	stroke	c.T565G:p.F189V						
CNSR30	М	65	SCN4B	Hereditary cardiac	Embolic	NM_174934:exon4:	NA	LP			Y	
9232				dysrhythm	stroke	c.T509C:p.V170A						
CNSR30	М	61	SCN5A	Hereditary cardiac	Embolic	NM_198056:exon7:	Р	VUS			Y	
2210				dysrhythm	stroke	c.G845A:p.R282H						
CNSR30	М	66	SCN5A	Hereditary cardiac	Embolic	NM 198056:exon2	NA	LP			Y	
4301				dysrhythm	stroke	4:c.4246delG:p.A1						
						416fs						
CNSR30	F	53	SCN5A	Hereditary cardiac	Embolic	NM 198056:exon1	P/LP	VUS		Y		
5555				dysrhythm	stroke	6:c.C2440T:p.R814						
						W						
CNSR30	М	77	SCN5A	Hereditary cardiac	Embolic	NM 198056:exon2	Р	VUS			Y	
5563				dysrhythm	stroke	8:c.G4931A:p.R164						
						4H						
CNSR30	М	40	SCN5A	Hereditary cardiac	Embolic	NM 198056:exon2	Р	VUS			Y	
9188				dysrhythm	stroke	8:c.G4931A:p.R164						
						4H						
CNSR30	F	49	TLL1	Atrial septal defect	Embolic	NM 012464:exon1	NA	LP			Y	
0443					stroke	9:c.2566delC:p.P85						
						6fs						

Code_n	Ge nde	Age	Gene	Phenotype	Etiology of stroke	Mutation	Clinvar	ACMG	Defin ite	Possi ble	Undete rmined	Insufficient Information
	r											
CNSR30 0397	F	68	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on326:c.C76717T:p .R25573X	LP	Р			Y	
CNSR30 0902	М	51	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_133379:exon4 6:c.T13254G:p.Y44 18X	NA	LP			Y	
CNSR30 0950	F	66	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on326:c.69869_698 70insAAGA:p.D23 290fs	NA	LP			Y	
CNSR30 1273	F	77	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on50:c.C14864G:p. S4955X	NA	Р			Y	
CNSR30 1296	М	56	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on304:c.C62299T:p .Q20767X	NA	Р			Y	
CNSR30 1340	М	66	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on46:c.G10819T:p. E3607X	NA	LP			Y	
CNSR30 1524	М	65	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_133379:exon4 6:c.C11806T:p.R39 36X	NA	LP			Y	
CNSR30 1692	F	81	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_133379:exon4 6:c.T13254G:p.Y44 18X	NA	LP			Y	
CNSR30 1708	М	51	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on322:c.C68449T:p .R22817X	P/LP	LP			Y	
CNSR30 1710	М	60	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on283:c.54989delC :p.T18330fs	NA	LP			Y	

Code_n	Ge nde	Age	Gene	Phenotype	Etiology of stroke	Mutation	Clinvar	ACMG	Defin ite	Possi ble	Undete rmined	Insufficient Information
	r											
CNSR30 1726	М	71	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on358:c.C104947T: p.Q34983X	LP	Р			Y	
CNSR30 1743	F	65	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on61:c.G17856A:p. W5952X	NA	Р			Y	
CNSR30 1816	F	61	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on240:c.44335delG :p.E14779fs	NA	LP			Y	
CNSR30 1883	М	38	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on266:c.49991delC :p.T16664fs	NA	LP			Y	
CNSR30 1922	М	80	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on62:c.C18055T:p. Q6019X	NA	Р			Y	
CNSR30 2004	F	73	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on92:c.26483- 1G>A	NA	Р			Y	
CNSR30 2024	F	59	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on361:c.107377+1 G>C	NA	Р			Y	
CNSR30 2155	М	55	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on103:c.G29590T:p .E9864X	NA	Р			Y	
CNSR30 2306	М	47	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_133379:exon4 6:c.13482delC:p.A4 494fs	NA	LP			Y	
CNSR30 2383	М	54	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on46:c.G10819T:p. E3607X	NA	LP			Y	

Code_n	Ge nde	Age	Gene	Phenotype	Etiology of stroke	Mutation	Clinvar	ACMG	Defin ite	Possi ble	Undete rmined	Insufficient Information
	r											
CNSR30 2462	F	59	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_133379:exon4 6:c.C14113T:p.R47 05X	NA	LP			Y	
CNSR30 2468	М	53	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on143:c.33826+2T >A	NA	Р		Y		
CNSR30 2498	F	63	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on314:c.T66159G:p .Y22053X	NA	LP			Y	
CNSR30 2527	F	28	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on338:c.G92001A: p.W30667X	NA	Р			Y	
CNSR30 2655	F	43	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on92:c.26483- 1G>A	NA	Р			Y	
CNSR30 2687	F	62	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_133379:exon4 6:c.T13254G:p.Y44 18X	NA	LP			Y	
CNSR30 2703	F	63	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on332:c.88636_886 37del:p.V29546fs	NA	LP			Y	
CNSR30 2733	М	76	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_133379:exon4 6:c.14580delT:p.Y4 860X	NA	LP			Y	
CNSR30 2739	М	42	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_133379:exon4 6:c.13962delG:p.T4 654fs	NA	LP			Y	
CNSR30 2803	М	65	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on346:c.96144delG :p.W32048X	NA	LP		Y		

Code_n	Ge	Age	Gene	Phenotype	Etiology of	Mutation	Clinvar	ACMG	Defin	Possi	Undete	Insufficient
	nde r				stroke				ite	ble	rmined	Information
CNSR30 2812	M	84	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on360:c.G106945T: p.E35649X	NA	Р			Y	
CNSR30 2836	F	56	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_133378.4:c.59 644+1G>A	LP	VUS			Y	
CNSR30 2853	М	55	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on46:c.G10819T:p. E3607X	NA	LP			Y	
CNSR30 2922	М	46	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on319:c.C67495T:p .R22499X	P/LP	Р			Y	
CNSR30 3144	М	69	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on358:c.C104947T: p.Q34983X	LP	Р		Y		
CNSR30 3232	М	65	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on265:c.G49659A: p.W16553X	NA	Р			Y	
CNSR30 3373	М	45	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on46:c.G10819T:p. E3607X	NA	LP			Y	
CNSR30 3397	М	59	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on48:c.11884delG: p.V3962fs	NA	LP		Y		
CNSR30 3414	М	82	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on289:c.56275delA :p.T18759fs	NA	LP			Y	
CNSR30 3473	F	68	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on304:c.C63025T:p .R21009X	P/LP	Р			Y	

Code_n	Ge nde	Age	Gene	Phenotype	Etiology of stroke	Mutation	Clinvar	ACMG	Defin ite	Possi ble	Undete rmined	Insufficient Information
CNSR30 3486	r M	70	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on52:c.G15304T:p. G5102X	NA	Р			Y	
CNSR30 3552	F	60	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on45:c.C10405T:p. Q3469X	NA	Р			Y	
CNSR30 3676	М	48	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on326:c.76397_763 98del:p.I25466fs	Р	LP			Y	
CNSR30 3961	М	82	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_133379:exon4 6:c.13897dupC:p.Q 4633fs	NA	LP			Y	
CNSR30 3985	F	75	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on159:c.G35500T:p .E11834X	NA	Р			Y	
CNSR30 4024	М	72	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on138:c.33340+2T >C	NA	Р			Y	
CNSR30 4056	F	51	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550.2:c .49345+2T>C	LP	VUS			Y	
CNSR30 4056	F	51	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_133379:exon4 6:c.12571delA:p.T4 191fs	NA	LP			Y	
CNSR30 4076	F	70	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on271:c.C51436T:p .Q17146X	Р	Р			Y	
CNSR30 4115	F	72	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on248:c.46201_462 04del:p.T15401fs	NA	LP			Y	

Code_n	Ge nde	Age	Gene	Phenotype	Etiology of stroke	Mutation	Clinvar	ACMG	Defin ite	Possi ble	Undete rmined	Insufficient Information
	r				SHOKE				ne	bic	Tinneu	mormation
CNSR30 4236	М	72	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on46:c.G10819T:p. E3607X	NA	LP			Y	
CNSR30 4295	М	46	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on100:c.28907delG :p.C9636fs	NA	LP			Y	
CNSR30 4443	F	66	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on251:c.46821_469 06del:p.P15607fs	NA	LP			Y	
CNSR30 4630	F	77	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on87:c.25083_2508 6del:p.F8361fs	NA	LP		Y		
CNSR30 4797	М	57	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_133379:exon4 6:c.13550delT:p.M 4517fs	NA	LP			Y	
CNSR30 5023	М	72	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on63:c.C18541T:p. R6181X	NA	Р			Y	
CNSR30 5065	F	68	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_133379:exon4 6:c.14463_14464de 1:p.T4821fs	NA	LP			Y	
CNSR30 5258	М	63	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550.2:c .49345+2T>C	LP	VUS			Y	
CNSR30 5258	М	63	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_133379:exon4 6:c.12571delA:p.T4 191fs	NA	LP			Y	
CNSR30 5322	F	53	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_003319:exon4 5:c.11505_11506ins AATTAATTCATT AACA:p.V3836_E 3837delinsNX	NA	LP			Y	

Code_n	Ge nde	Age	Gene	Phenotype	Etiology of stroke	Mutation	Clinvar	ACMG	Defin ite	Possi ble	Undete rmined	Insufficient Information
	r											
CNSR30 5448	М	61	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on45:c.C10405T:p. Q3469X	NA	Р			Y	
CNSR30 5694	М	60	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on55:c.16112delA: p.N5371fs	NA	LP			Y	
CNSR30 5735	М	62	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on352:c.98381delG :p.G32794fs	NA	LP			Y	
CNSR30 5812	М	71	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on163:c.35813delA :p.K11938fs	NA	LP			Y	
CNSR30 6351	М	57	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550.2:c .49345+2T>C	LP	VUS			Y	
CNSR30 6351	М	57	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_133379:exon4 6:c.12571delA:p.T4 191fs	NA	LP			Y	
CNSR30 6385	F	67	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on56:c.C16404A:p. C5468X	NA	Р			Y	
CNSR30 6470	М	70	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on358:c.C104947T: p.Q34983X	LP	Р			Y	
CNSR30 6608	M	48	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on63:c.C18541T:p. R6181X	NA	Р			Y	
CNSR30 7049	М	79	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on280:c.C54067T:p .R18023X	LP	Р			Y	

Code_n	Ge nde	Age	Gene	Phenotype	Etiology of stroke	Mutation	Clinvar	ACMG	Defin ite	Possi ble	Undete rmined	Insufficient Information
	r											
CNSR30 7096	М	78	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on92:c.26483- 2A>G	NA	Р		Y		
CNSR30 7169	М	61	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_133379:exon4 6:c.11782_11783del :p.M3928fs	NA	LP			Y	
CNSR30 7344	F	70	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_133379:exon4 6:c.11416_11419del :p.I3806fs	NA	LP			Y	
CNSR30 7493	F	68	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on347:c.96504delA :p.G32168fs	NA	LP			Y	
CNSR30 7561	М	55	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on322:c.68527+1G >T	NA	Р			Y	
CNSR30 7677	М	65	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_133379:exon4 6:c.T13254G:p.Y44 18X	NA	LP			Y	
CNSR30 7734	М	63	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550.2:c .49345+2T>C	LP	VUS			Y	
CNSR30 7734	М	63	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_133379:exon4 6:c.12571delA:p.T4 191fs	NA	LP			Y	
CNSR30 7750	М	52	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on339:c.A92854T:p .R30952X	NA	Р			Y	
CNSR30 7875	М	73	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on46:c.G10819T:p. E3607X	NA	LP			Y	

Code_n	Ge nde	Age	Gene	Phenotype	Etiology of stroke	Mutation	Clinvar	ACMG	Defin ite	Possi ble	Undete rmined	Insufficient Information
	r											
CNSR30 8005	М	48	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on46:c.C10735T:p. Q3579X	NA	Р			Y	
CNSR30 8032	М	72	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on46:c.G10819T:p. E3607X	NA	LP		Y		
CNSR30 8096	М	58	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on46:c.G10819T:p. E3607X	NA	LP			Y	
CNSR30 8211	М	87	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on91:c.G26254T:p. E8752X	NA	Р			Y	
CNSR30 8221	М	75	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on137:c.33247+1G >A	NA	Р			Y	
CNSR30 8406	F	80	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on324:c.69179_691 80insTTAC:p.T230 60fs	NA	LP			Y	
CNSR30 8440	F	58	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on360:c.G106914A :p.W35638X	NA	Р			Y	
CNSR30 8503	F	65	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on343:c.95246delA :p.E31749fs	NA	LP			Y	
CNSR30 8517	М	47	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on328:c.87432delT: p.P29144fs	NA	LP			Y	
CNSR30 8532	М	59	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on93:c.26979dupT: p.G8994fs	NA	LP			Y	

Code_n	Ge nde	Age	Gene	Phenotype	Etiology of stroke	Mutation	Clinvar	ACMG	Defin ite	Possi ble	Undete rmined	Insufficient Information
	r											
CNSR30 8562	М	78	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_133379:exon4 6:c.14236delA:p.T4 746fs	NA	LP			Y	
CNSR30 8731	F	72	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on82:c.23896_2389 7del:p.S7966fs	NA	LP			Y	
CNSR30 8774	М	73	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on87:c.25113delG: p.E8371fs	NA	LP			Y	
CNSR30 8791	М	64	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on7:c.1205delC:p.A 402fs	NA	LP			Y	
CNSR30 9122	М	50	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on11:c.1732dupG:p .E578fs	NA	LP			Y	
CNSR30 9205	М	72	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_133379:exon4 6:c.15075delT:p.V5 025fs	NA	LP			Y	
CNSR30 9225	F	53	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_133379:exon4 6:c.C11806T:p.R39 36X	NA	LP			Y	
CNSR30 9332	М	52	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on354:c.C99052T:p .Q33018X	NA	Р			Y	
CNSR30 9344	М	65	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550.2:c .49345+2T>C	LP	VUS			Y	
CNSR30 9344	М	65	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_133379:exon4 6:c.12571delA:p.T4 191fs	NA	LP			Y	

Code_n	Ge nde	Age	Gene	Phenotype	Etiology of stroke	Mutation	Clinvar	ACMG	Defin ite	Possi ble	Undete rmined	Insufficient Information
	r											
CNSR30 9386	F	71	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on46:c.G10819T:p. E3607X	NA	LP			Y	
CNSR30 9744	М	48	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on335:c.90597delA :p.G30199fs	NA	LP			Y	
CNSR30 9871	М	46	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on46:c.G10819T:p. E3607X	NA	LP			Y	
CNSR31 0007	М	61	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_133379:exon4 6:c.C10522T:p.Q35 08X	NA	LP			Y	
CNSR31 0370	М	58	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:ex on46:c.G10819T:p. E3607X	NA	LP			Y	
CNSR31 0422	М	62	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_133379:exon4 6:c.T13254G:p.Y44 18X	NA	LP			Y	
CNSR30 2718	М	66	ZFPM2	Tetralogy of Fallot	Embolic stroke	NM_012082:exon6: c.739+1G>A	NA	Р			Y	
CNSR31 0062	М	60	ZFPM2	Tetralogy of Fallot	Embolic stroke	NM_012082:exon7: c.G779A:p.R260Q	Р	VUS			Y	
CNSR30 3911	М	82	ACTA2	Aortic aneurysm, familial thoracic 6	Large artery disease	NM_001613:exon3: c.170delG:p.G57fs	NA	LP	Y			
CNSR30 0368	М	64	APOA5	Hyperchylomicronem ia, late-onset	Large artery disease	NM_052968:exon2: c.G30A:p.W10X	NA	Р			Y	
CNSR30 7179	F	50	APOA5	Hyperchylomicronem ia, late-onset	Large artery disease	NM_052968:exon2: c.G30A:p.W10X	NA	Р		Y		
CNSR30 0355	F	79	CETP	Hyperalphalipoprotei nemia	Large artery disease	NM_000078:exon2: c.T222G;p.Y74X	NA	LP			Y	

Code_n	Ge	Age	Gene	Phenotype	Etiology of	Mutation	Clinvar	ACMG	Defin	Possi	Undete	Insufficient
	nde r				stroke				ite	ble	rminea	Information
CNSR30 1124	M	75	CETP	Hyperalphalipoprotei nemia	Large artery disease	NM_000078:exon9: c.783_786del:p.D2 61fs	NA	LP			Y	
CNSR30 1461	F	53	CETP	Hyperalphalipoprotei nemia	Large artery disease	NM_000078:exon6: c.G537A:p.W179X	NA	Р			Y	
CNSR30 1827	М	35	CETP	Hyperalphalipoprotei nemia	Large artery disease	NM_000078:exon2: c.T222G:p.Y74X	NA	LP			Y	
CNSR30 2864	F	64	CETP	Hyperalphalipoprotei nemia	Large artery disease	NM_000078:exon2: c.T222G:p.Y74X	NA	LP			Y	
CNSR30 3299	М	51	CETP	Hyperalphalipoprotei nemia	Large artery disease	NM_000078:exon9: c.783_786del:p.D2 61fs	NA	LP			Y	
CNSR30 3732	F	48	CETP	Hyperalphalipoprotei nemia	Large artery disease	NM_000078:exon1 1:c.1102delC:p.P36 8fs	NA	LP			Y	
CNSR30 4614	М	62	CETP	Hyperalphalipoprotei nemia	Large artery disease	NM_000078:exon9: c.786dupC:p.L262f s	NA	LP			Y	
CNSR30 4790	F	73	CETP	Hyperalphalipoprotei nemia	Large artery disease	NM_000078:exon9: c.783_786del:p.D2 61fs	NA	LP			Y	
CNSR30 5067	М	55	CETP	Hyperalphalipoprotei nemia	Large artery disease	NM_000078:exon9: c.786delC:p.L262fs	NA	LP			Y	
CNSR30 5247	М	76	CETP	Hyperalphalipoprotei nemia	Large artery disease	NM_000078:exon9: c.783_786del:p.D2 61fs	NA	LP			Y	
CNSR30 5437	М	77	CETP	Hyperalphalipoprotei nemia	Large artery disease	NM_000078:exon9: c.C853T:p.R285X	NA	LP			Y	
CNSR30 5830	М	45	CETP	Hyperalphalipoprotei nemia	Large artery disease	NM_000078:exon2: c.T222G:p.Y74X	NA	LP			Y	

Code_n	Ge	Age	Gene	Phenotype	Etiology of	Mutation	Clinvar	ACMG	Defin	Possi	Undete	Insufficient
	nde				stroke				ite	ble	rmined	Information
CNSR30 5982	M	75	CETP	Hyperalphalipoprotei nemia	Large artery	NM_000078:exon1 1:c.982-1G>C	NA	LP			Y	
CNSR30 6316	F	46	CETP	Hyperalphalipoprotei nemia	Large artery disease	NM_000078:exon1 4:c.1321+1G>A	Р	Р			Y	
CNSR30 6620	F	54	CETP	Hyperalphalipoprotei nemia	Large artery disease	NM_000078:exon1 2:c.1208delA:p.D4 03fs	NA	LP			Y	
CNSR30 6695	М	59	CETP	Hyperalphalipoprotei nemia	Large artery disease	NM_000078:exon2: c.T222G:p.Y74X	NA	LP			Y	
CNSR30 6834	М	85	CETP	Hyperalphalipoprotei nemia	Large artery disease	NM_000078:exon2: c.T222G:p.Y74X	NA	LP			Y	
CNSR30 7652	М	70	CETP	Hyperalphalipoprotei nemia	Large artery disease	NM_000078:exon9: c.783_786del:p.D2 61fs	NA	LP			Y	
CNSR30 7689	М	50	CETP	Hyperalphalipoprotei nemia	Large artery disease	NM_000078:exon9: c.783_786del:p.D2 61fs	NA	LP			Y	
CNSR30 7818	М	88	CETP	Hyperalphalipoprotei nemia	Large artery disease	NM_000078:exon9: c.783_786del:p.D2 61fs	NA	LP			Y	
CNSR30 7964	М	47	CETP	Hyperalphalipoprotei nemia	Large artery disease	NM_000078:exon1 4:c.1321+1G>A	Р	Р			Y	
CNSR30 8010	М	82	CETP	Hyperalphalipoprotei nemia	Large artery disease	NM_000078:exon2: c.C160T:p.R54X	NA	LP			Y	
CNSR30 8189	М	64	CETP	Hyperalphalipoprotei nemia	Large artery disease	NM_000078:exon2: c.T222G:p.Y74X	NA	LP			Y	
CNSR30 8467	F	81	CETP	Hyperalphalipoprotei nemia	Large artery disease	NM_000078:exon9: c.783_786del:p.D2 61fs	NA	LP			Y	

Code_n	Ge nde	Age	Gene	Phenotype	Etiology of stroke	Mutation	Clinvar	ACMG	Defin ite	Possi ble	Undete rmined	Insufficient Information
	r											
CNSR30 9068	М	56	CETP	Hyperalphalipoprotei nemia	Large artery disease	NM_000078:exon9: c.783_786del:p.D2 61fs	NA	LP			Y	
CNSR30 9319	F	75	CETP	Hyperalphalipoprotei nemia	Large artery disease	NM_000078:exon9: c.783_786del:p.D2 61fs	NA	LP			Y	
CNSR30 9412	F	76	CETP	Hyperalphalipoprotei nemia	Large artery disease	NM_000078:exon9: c.783_786del:p.D2 61fs	NA	LP			Y	
CNSR30 9459	М	46	CETP	Hyperalphalipoprotei nemia	Large artery disease	NM_000078:exon1 1:c.1102delC:p.P36 8fs	NA	LP			Y	
CNSR30 9700	М	27	CETP	Hyperalphalipoprotei nemia	Large artery disease	NM_000078:exon2: c.T222G:p.Y74X	NA	LP			Y	
CNSR31 0111	F	79	CETP	Hyperalphalipoprotei nemia	Large artery disease	NM_000078:exon9: c.783_786del:p.D2 61fs	NA	LP			Y	
CNSR30 4557	F	56	COL1A 1	CeAD,FMD,TAA,A AA	Large artery disease	NM_000088:exon5: c.441delC:p.P147fs	Р	LP		Y		
CNSR30 6617	М	49	COL1A 1	CeAD,FMD,TAA,A AA	Large artery disease	NM_000088:exon3 7:c.G2594A:p.R865 H	LP	VUS			Y	
CNSR30 6717	F	63	COL1A 1	CeAD,FMD,TAA,A AA	Large artery disease	NM_000088:exon5: c.386_388delinsT:p .G129Lfs*39	NA	Р			Y	
CNSR30 9324	М	52	COL1A 1	CeAD,FMD,TAA,A AA	Large artery disease	NM_000088:exon2 1:c.1354-1G>C	NA	Р		Y		
CNSR30 5489	F	77	COL1A 2	CeAD,FMD,TAA,A AA	Large artery disease	NM_000089:exon1 9:c.G946A:p.G316 S	Р	VUS			Y	

Code_n	Ge	Age	Gene	Phenotype	Etiology of	Mutation	Clinvar	ACMG	Defin	Possi	Undete	Insufficient
	nde				stroke				ite	ble	rmined	Information
CNSP20	r M	40	COL 1A		Larga artany	NM 000080.avon1	D	VUS		v		
CNSK50 6054	IVI	49	2	$\Delta \Delta$	disease	7.c G874A m G292	P	v05		I		
0004			2	1111	uisease	S						
CNSR30	М	69	COL1A	CeAD,FMD,TAA,A	Large artery	NM_000089:exon5:	NA	LP		Y		
6112			2	AA	disease	c.207delC:p.G69fs						
CNSR30	Μ	72	COL5A	Ehlers-Danlos	Large artery	NM_000093:exon6	LP	VUS			Y	
4228			1	syndrome, classic	disease	6:c.T5486G:p.F182						
				type,		9C						
CNSR30	F	67	COL5A	Ehlers-Danlos	Large artery	NM_001278074:ex	NA	Р			Y	
6147			1	syndrome, classic	disease	on64:c.C5095T:p.Q						
CD 100 0.0		= 1		type,	-	1699X						
CNSR30	М	71	COL5A	Ehlers-Danlos	Large artery	NM_000093:exon4	LP	VUS			Y	
8149			1	syndrome, classic	disease	8:c.G3781A:p.G12						
CNICD20		40	TIN	type,	T	61K	DT 4	D			37	
CNSR30	М	48	ELN	SVAS	Large artery	NM_000501 :exon1	NA	Р			Y	
0432	м	02	ELM	CIVA C	disease	4:c.686-2A>G	TD	D			V	
CNSR30	M	83	ELN	SVAS	Large artery	1000501:exon2	LP	Р			Y	
0010 CNSD20	м	72	ELN	SVAC	Langa antany	4:0.1021+10>A	NIA	D			V	
1002	IVI	12	ELIN	SVAS	Large artery	1\\M_000301.ex011	INA	P			I	
1992					disease	4:0.080- 2A>G2A>G						
CNSP30	м	50	FLN	SVAS	Large artery	NM_000501:exon1	ΝA	D			v	
2656	141	50	LLI	5 115	disease	4:c.686-2A>G	1471	1			1	
CNSR30	F	78	ELN	SVAS	Large artery	NM 001278939:ex	NA	Р		Y		
5968					disease	on26:c.1933+2T>A						
CNSR30	М	55	ELN	SVAS	Large artery	NM 001278939:ex	NA	Р		Y		
6387					disease	on26:c.1933+2T>A						
CNSR30	М	60	ELN	SVAS	Large artery	NM_000501:exon1	NA	Р			Y	
7595					disease	4:c.686-2A>G						
CNSR30	М	39	ELN	SVAS	Large artery	NM_000501:exon1	NA	Р			Y	
8754					disease	1:c.571+1G>A						

Code_n	Ge nde	Age	Gene	Phenotype	Etiology of stroke	Mutation	Clinvar	ACMG	Defin ite	Possi ble	Undete rmined	Insufficient Information
	r											
CNSR31 0118	М	45	ELN	SVAS	Large artery disease	NM_000501:exon2 4:c.1621+1G>A	LP	Р	Y			
CNSR30 0886	М	75	FBN1	Marfan syndrome	Large artery disease	NM_000138:exon2 2:c.A2613C:p.L871 F	Р	VUS			Y	
CNSR30 1821	М	64	FBN1	Marfan syndrome	Large artery disease	NM_000138:exon6 3:c.T7754C:p.I2585 T	P/LP	VUS		Y		
CNSR30 2393	М	51	FBN1	Marfan syndrome	Large artery disease	NM_000138:exon2 2:c.A2613C:p.L871 F	Р	VUS			Y	
CNSR30 3067	F	58	FBN1	Marfan syndrome	Large artery disease	NM_000138:exon2 2:c.A2613C:p.L871 F	Р	VUS			Y	
CNSR30 4747	М	73	FBN1	Marfan syndrome	Large artery disease	NM_000138:exon2 2:c.A2613C:p.L871 F	Р	VUS			Y	
CNSR30 5922	М	50	FBN1	Marfan syndrome	Large artery disease	NM_000138:exon2 2:c.A2613C:p.L871 F	Р	VUS			Y	
CNSR30 9171	М	78	FBN1	Marfan syndrome	Large artery disease	NM_000138:exon1 0:c.G1091A:p.R364 Q	NA	LP			Y	
CNSR30 0049	М	53	LDLR	Hypercholesterolemia , familial, 1	Large artery disease	NM_000527:exon9: c.C1216A:p.R406R	Р	VUS			Y	
CNSR30 0051	F	42	LDLR	Hypercholesterolemia , familial, 1	Large artery disease	NM_000527:exon1 1:c.A1691G:p.N56 4S	LP	VUS	Y			
CNSR30 0104	F	65	LDLR	Hypercholesterolemia , familial, 1	Large artery disease	NM_000527:exon1 1:c.T1592A:p.M53 1K	NA	LP			Y	

Code_n	Ge	Age	Gene	Phenotype	Etiology of	Mutation	Clinvar	ACMG	Defin	Possi	Undete	Insufficient
	nde				stroke				ite	ble	rmined	Information
CNSP30	r F	18		Hypercholecterolemia	Large artery	NM_000527:exon1	ΝA	ID			V	
0212	1	40	LDLK	familial 1	disease	1.c T1592A n M53	INA	LI			1	
0212				, fullifiai, f	uiseuse	1K						
CNSR30	М	62	LDLR	Hypercholesterolemia	Large artery	NM 000527:exon1	NA	LP		Y		
0289				, familial, 1	disease	0:c.A1454T:p.H485						
						L						
CNSR30	Μ	41	LDLR	Hypercholesterolemia	Large artery	NM_000527:exon4:	Р	LP	Y			
0310				, familial, 1	disease	c.510delC:p.D170fs						
CNSR30	F	76	LDLR	Hypercholesterolemia	Large artery	NM_000527:exon4:	NA	LP			Y	
0371				, familial, 1	disease	c.C516A:p.D172E	_					
CNSR30	М	58	LDLR	Hypercholesterolemia	Large artery	NM_000527:exon1	Р	LP		Y		
0418				, familial, l	disease	6:c.A2344T:p.K/82						
CNICDAO	Б	0.1	IDID	TT 1.1 . 1 .	.	X	I.D.	THIC	3.7			
CNSR30	F	81	LDLR	Hypercholesterolemia	Large artery	NM_000527:exon1	LP	VUS	Y			
0451				, familial, I	disease	0:c.A1525G:p.K50						
CNSD20	Б	72	IDID	II.manahalastanalamia	Lanza antany	9E NM 000527.avan1	D/I D	VIIC			V	
0867	Г	15	LDLK	familial 1	Large artery	1000327.ex011 $2x_0 G1870 A = A G2$	P/LP	VUS			I	
0807				, laiiiilai, l	uisease	7T						
CNSR30	М	57	LDLR	Hypercholesterolemia	Large artery	NM 000527:exon1	NA	LP		Y		
1304				, familial, 1	disease	1:c.T1592A:p.M53						
						1K						
CNSR30	F	70	LDLR	Hypercholesterolemia	Large artery	NM_000527:exon1	LP	VUS		Y		
1669				, familial, 1	disease	1:c.A1691G:p.N56						
						4S						
CNSR30	Μ	67	LDLR	Hypercholesterolemia	Large artery	NM_000527:exon7:	LP	VUS	Y			
1850				, familial, 1	disease	c.T1016C:p.L339P						
CNSR30	Μ	42	LDLR	Hypercholesterolemia	Large artery	NM_000527:exon4:	Р	LP	Y			
2713				, familial, 1	disease	c.C487T:p.Q163X						

Code_n	Ge	Age	Gene	Phenotype	Etiology of	Mutation	Clinvar	ACMG	Defin	Possi	Undete	Insufficient
	nde				stroke				ite	ble	rmined	Information
CNSR30 3264	M	60	LDLR	Hypercholesterolemia , familial, 1	Large artery disease	NM_000527:exon1 3:c.C1880T:p.A627 V	LP	VUS	Y			
CNSR30 3708	F	69	LDLR	Hypercholesterolemia , familial, 1	Large artery disease	NM_000527:exon1 3:c.G1864T:p.D622 Y	NA	LP			Y	
CNSR30 4012	М	82	LDLR	Hypercholesterolemia , familial, 1	Large artery disease	NM_000527:exon1 1:c.T1592A:p.M53 1K	NA	LP			Y	
CNSR30 4637	F	70	LDLR	Hypercholesterolemia , familial, 1	Large artery disease	NM_000527:exon1 3:c.G1879A:p.A62 7T	P/LP	VUS		Y		
CNSR30 4929	М	79	LDLR	Hypercholesterolemia , familial, 1	Large artery disease	NM_000527:exon6: c.A924T:p.E308D	LP	VUS			Y	
CNSR30 5027	F	64	LDLR	Hypercholesterolemia , familial, 1	Large artery disease	NM_000527:exon9: c.G1247A:p.R416Q	P/LP	VUS	Y			
CNSR30 5733	М	59	LDLR	Hypercholesterolemia , familial, 1	Large artery disease	NM_000527:exon4: c.T400C:p.C134R	P/LP	VUS			Y	
CNSR30 6253	М	83	LDLR	Hypercholesterolemia , familial, 1	Large artery disease	NM_000527:exon1 4:c.G2026C:p.G676 R	LP	VUS	Y			
CNSR30 6440	М	62	LDLR	Hypercholesterolemia , familial, 1	Large artery disease	NM_000527:exon7: c.C1048T:p.R350X	Р	LP	Y			
CNSR30 6967	М	56	LDLR	Hypercholesterolemia , familial, 1	Large artery disease	NM_000527:exon7: c.G1049A:p.R350Q	Р	VUS			Y	
CNSR30 7020	F	52	LDLR	Hypercholesterolemia , familial, 1	Large artery disease	NM_001195798.2:c .313+1dup	P/LP	VUS		Y		
CNSR30 7426	М	54	LDLR	Hypercholesterolemia , familial, 1	Large artery disease	NM_000527:exon9: c.G1247A:p.R416Q	P/LP	VUS			Y	

Code_n	Ge nde	Age	Gene	Phenotype	Etiology of stroke	Mutation	Clinvar	ACMG	Defin ite	Possi ble	Undete rmined	Insufficient Information
	r											
CNSR30 7613	F	71	LDLR	Hypercholesterolemia , familial, 1	Large artery disease	NM_000527:exon1 4:c.G2026C:p.G676 R	LP	VUS	Y			
CNSR30 7649	М	49	LDLR	Hypercholesterolemia , familial, 1	Large artery disease	NM_000527:exon1 2:c.1745_1746del:p .L582fs	Р	LP	Y			
CNSR30 7861	М	66	LDLR	Hypercholesterolemia , familial, 1	Large artery disease	NM_000527:exon1 0:c.1570_1582del:p .V524fs	NA	LP		Y		
CNSR30 8053	М	69	LDLR	Hypercholesterolemia , familial, 1	Large artery disease	NM_000527:exon1 4:c.G2026C:p.G676 R	LP	VUS			Y	
CNSR30 8235	М	52	LDLR	Hypercholesterolemia , familial, 1	Large artery disease	NM_000527:exon9: c.C1216A:p.R406R	Р	VUS	Y			
CNSR30 8766	М	61	LDLR	Hypercholesterolemia , familial, 1	Large artery disease	NM_000527:exon4: c.G502A:p.D168N	P/LP	VUS			Y	
CNSR30 9242	М	53	LDLR	Hypercholesterolemia , familial, 1	Large artery disease	NM_000527:exon2: c.T100G:p.C34G	P/LP	VUS			Y	
CNSR30 9264	М	42	LDLR	Hypercholesterolemia , familial, 1	Large artery disease	NM_000527:exon5: c.G796C:p.D266H	NA	LP		Y		
CNSR30 9633	М	69	LDLR	Hypercholesterolemia , familial, 1	Large artery disease	NM_000527:exon6: c.908delG:p.R303fs	NA	LP			Y	
CNSR30 0114	М	77	MFAP5	Aortic aneurysm, familial thoracic 9	Large artery disease	NM_003480:exon3: c.C88T:p.R30X	LP	VUS			Y	
CNSR30 1352	М	45	MFAP5	Aortic aneurysm, familial thoracic 9	Large artery disease	NM_003480:exon1 0:c.C472T:p.R158X	Р	VUS			Y	
CNSR30 1444	М	41	MFAP5	Aortic aneurysm, familial thoracic 9	Large artery disease	NM_003480:exon1 0:c.C472T:p.R158X	P	VUS			Y	
CNSR30 2503	F	68	MFAP5	Aortic aneurysm, familial thoracic 9	Large artery disease	NM_003480:exon1 0:c.C472T:p.R158X	P	VUS			Y	

Code_n	Ge nde r	Age	Gene	Phenotype	Etiology of stroke	Mutation	Clinvar	ACMG	Defin ite	Possi ble	Undete rmined	Insufficient Information
CNSR30 2574	М	77	MFAP5	Aortic aneurysm, familial thoracic 9	Large artery disease	NM_003480:exon1 0:c.C472T:p.R158X	Р	VUS			Y	
CNSR30 3517	F	65	MFAP5	Aortic aneurysm, familial thoracic 9	Large artery disease	NM_003480:exon9: c.338dupT:p.L113fs	NA	LP			Y	
CNSR30 5631	М	65	MFAP5	Aortic aneurysm, familial thoracic 9	Large artery disease	NM_003480:exon1 0:c.C472T:p.R158X	Р	VUS			Y	
CNSR30 6162	М	57	MFAP5	Aortic aneurysm, familial thoracic 9	Large artery disease	NM_003480:exon1 0:c.C472T:p.R158X	Р	VUS			Y	
CNSR30 6421	F	53	MFAP5	Aortic aneurysm, familial thoracic 9	Large artery disease	NM_003480:exon1 0:c.C472T:p.R158X	Р	VUS			Y	
CNSR30 0828	М	73	MYH11	Aortic aneurysm, familial thoracic 4	Large artery disease	NM_002474:exon2 8:c.T3791A:p.L126 4Q	NA	LP			Y	
CNSR30 6393	М	44	MYH11	Aortic aneurysm, familial thoracic 4	Large artery disease	NM_002474:exon1 9:c.A2254T:p.K752 X	NA	Р			Y	
CNSR30 7728	М	48	MYH11	Aortic aneurysm, familial thoracic 4	Large artery disease	NM_002474:exon2 6:c.G3466T:p.E115 6X	NA	Р			Y	
CNSR30 0206	М	54	MYLK	Aortic aneurysm, familial thoracic 7	Large artery disease	NM_053025:exon1 6:c.C2371T:p.Q791 X	NA	Р			Y	
CNSR30 2047	F	73	MYLK	Aortic aneurysm, familial thoracic 7	Large artery disease	NM_053025:exon1 8:c.2463-2A>G	NA	Р			Y	
CNSR30 4181	F	64	MYLK	Aortic aneurysm, familial thoracic 7	Large artery disease	NM_053025:exon1 2:c.1517-2A>G	NA	Р			Y	
CNSR30 5870	F	61	MYLK	Aortic aneurysm, familial thoracic 7	Large artery disease	NM_053025:exon1 8:c.C2692T:p.R898 X	NA	Р			Y	

Code_n	Ge nde	Age	Gene	Phenotype	Etiology of stroke	Mutation	Clinvar	ACMG	Defin ite	Possi ble	Undete rmined	Insufficient Information
	r											
CNSR30 7523	F	67	MYLK	Aortic aneurysm, familial thoracic 7	Large artery disease	NM_053025:exon1 4:c.C1915T:p.Q639 X	NA	Р			Y	
CNSR30 7730	М	56	MYLK	Aortic aneurysm, familial thoracic 7	Large artery disease	NM_053025:exon1 8:c.C2665T:p.Q889 X	NA	Р			Y	
CNSR30 9070	М	61	MYLK	Aortic aneurysm, familial thoracic 7	Large artery disease	NM_053025:exon6: c.422+1G>A	NA	Р			Y	
CNSR30 9296	М	58	MYLK	Aortic aneurysm, familial thoracic 7	Large artery disease	NM_053025:exon1 0:c.1228dupG:p.D4 10fs	NA	LP			Y	
CNSR30 0785	М	76	PRKG1	Aortic aneurysm, familial thoracic 8	Large artery disease	NM_006258:exon1 3:c.T1473A:p.H491 Q	NA	LP			Y	
CNSR30 2491	F	48	PRKG1	Aortic aneurysm, familial thoracic 8	Large artery disease	NM_006258:exon2: c.A320G:p.D107G	NA	LP			Y	
CNSR30 3483	М	72	PRKG1	Aortic aneurysm, familial thoracic 8	Large artery disease	NM_006258:exon8: c.T962C:p.I321T	NA	LP			Y	
CNSR30 3769	М	65	PRKG1	Aortic aneurysm, familial thoracic 8	Large artery disease	NM_006258:exon2: c.A320G:p.D107G	NA	LP			Y	
CNSR30 4124	F	58	PRKG1	Aortic aneurysm, familial thoracic 8	Large artery disease	NM_006258:exon3: c.T541C:p.F181L	NA	LP			Y	
CNSR30 5284	F	68	PRKG1	Aortic aneurysm, familial thoracic 8	Large artery disease	NM_006258:exon8: c.T962C:p.I321T	NA	LP			Y	
CNSR30 5514	F	80	PRKG1	Aortic aneurysm, familial thoracic 8	Large artery disease	NM_006258:exon2: c.A350G:p.D117G	NA	LP			Y	
CNSR30 5685	F	57	PRKG1	Aortic aneurysm, familial thoracic 8	Large artery disease	NM_006258:exon3: c.T539C:p.V180A	NA	LP			Y	
CNSR30 6077	F	65	PRKG1	Aortic aneurysm, familial thoracic 8	Large artery disease	NM_006258:exon8: c.T962C:p.I321T	NA	LP			Y	

Code_n	Ge	Age	Gene	Phenotype	Etiology of	Mutation	Clinvar	ACMG	Defin	Possi	Undete	Insufficient
	nde r				stroke				ite	ble	rmined	Information
CNSR30 6372	M	60	PRKG1	Aortic aneurysm, familial thoracic 8	Large artery disease	NM_006258:exon2: c.G391A:p.V131M	NA	LP			Y	
CNSR30 7814	М	60	PRKG1	Aortic aneurysm, familial thoracic 8	Large artery disease	NM_006258:exon1 0:c.1128delC:p.N37 6fs	NA	LP			Y	
CNSR30 9202	F	44	PRKG1	Aortic aneurysm, familial thoracic 8	Large artery disease	NM_001098512:ex on1:c.A257C:p.K86 T	NA	LP			Y	
CNSR30 9352	F	49	PRKG1	Aortic aneurysm, familial thoracic 8	Large artery disease	NM_006258:exon2: c.A320G:p.D107G	NA	LP		Y		
CNSR30 0151	М	61	RNF21 3	Moyamoya disease	Large artery disease	NM_001256071:ex on60:c.G14429A:p. R4810K	Р	VUS			Y	
CNSR30 0449	F	65	RNF21 3	Moyamoya disease	Large artery disease	NM_001256071:ex on60:c.G14429A:p. R4810K	Р	VUS			Y	
CNSR30 0542	М	65	RNF21 3	Moyamoya disease	Large artery disease	NM_001256071:ex on60:c.G14429A:p. R4810K	Р	VUS			Y	
CNSR30 0570	F	60	RNF21 3	Moyamoya disease	Large artery disease	NM_001256071:ex on60:c.G14429A:p. R4810K	Р	VUS			Y	
CNSR30 0650	М	71	RNF21 3	Moyamoya disease	Large artery disease	NM_001256071:ex on60:c.G14429A:p. R4810K	Р	VUS			Y	
CNSR30 1176	M	60	RNF21 3	Moyamoya disease	Large artery disease	NM_001256071:ex on60:c.G14429A:p. R4810K	Р	VUS		Y		
CNSR30 1302	M	66	RNF21 3	Moyamoya disease	Large artery disease	NM_001256071:ex on60:c.G14429A:p. R4810K	Р	VUS		Y		

Code_n	Ge nde	Age	Gene	Phenotype	Etiology of stroke	Mutation	Clinvar	ACMG	Defin ite	Possi ble	Undete rmined	Insufficient Information
	r											
CNSR30 1408	М	70	RNF21 3	Moyamoya disease	Large artery disease	NM_001256071:ex on60:c.G14429A:p. R4810K	Р	VUS			Y	
CNSR30 1446	М	57	RNF21 3	Moyamoya disease	Large artery disease	NM_001256071:ex on60:c.G14429A:p. R4810K	Р	VUS			Y	
CNSR30 1456	F	46	RNF21 3	Moyamoya disease	Large artery disease	NM_001256071:ex on60:c.G14429A:p. R4810K	Р	VUS			Y	
CNSR30 1695	М	45	RNF21 3	Moyamoya disease	Large artery disease	NM_001256071:ex on60:c.G14429A:p. R4810K	Р	VUS		Y		
CNSR30 1768	М	62	RNF21 3	Moyamoya disease	Large artery disease	NM_001256071:ex on60:c.G14429A:p. R4810K	Р	VUS			Y	
CNSR30 2170	М	37	RNF21 3	Moyamoya disease	Large artery disease	NM_001256071:ex on60:c.G14429A:p. R4810K	Р	VUS				Y
CNSR30 2455	F	27	RNF21 3	Moyamoya disease	Large artery disease	NM_001256071:ex on60:c.G14429A:p. R4810K	Р	VUS	Y			
CNSR30 2619	М	65	RNF21 3	Moyamoya disease	Large artery disease	NM_001256071:ex on60:c.G14429A:p. R4810K	Р	VUS			Y	
CNSR30 2741	F	67	RNF21 3	Moyamoya disease	Large artery disease	NM_001256071:ex on60:c.G14429A:p. R4810K	Р	VUS		Y		
CNSR30 2775	М	35	RNF21 3	Moyamoya disease	Large artery disease	NM_001256071:ex on60:c.G14429A:p. R4810K	Р	VUS	Y			

Code_n	Ge nde	Age	Gene	Phenotype	Etiology of stroke	Mutation	Clinvar	ACMG	Defin ite	Possi ble	Undete rmined	Insufficient Information
	r				Service					~~~		
CNSR30 3338	М	65	RNF21 3	Moyamoya disease	Large artery disease	NM_001256071:ex on60:c.G14429A:p. R4810K	Р	VUS			Y	
CNSR30 3394	М	54	RNF21 3	Moyamoya disease	Large artery disease	NM_001256071:ex on60:c.G14429A:p. R4810K	Р	VUS				Y
CNSR30 3404	М	57	RNF21 3	Moyamoya disease	Large artery disease	NM_001256071:ex on60:c.G14429A:p. R4810K	Р	VUS			Y	
CNSR30 3451	F	53	RNF21 3	Moyamoya disease	Large artery disease	NM_001256071:ex on60:c.G14429A:p. R4810K	Р	VUS	Y			
CNSR30 3695	F	70	RNF21 3	Moyamoya disease	Large artery disease	NM_001256071:ex on60:c.G14429A:p. R4810K	Р	VUS		Y		
CNSR30 4133	F	54	RNF21 3	Moyamoya disease	Large artery disease	NM_001256071:ex on60:c.G14429A:p. R4810K	Р	VUS			Y	
CNSR30 4137	F	60	RNF21 3	Moyamoya disease	Large artery disease	NM_001256071:ex on60:c.G14429A:p. R4810K	Р	VUS			Y	
CNSR30 4305	М	61	RNF21 3	Moyamoya disease	Large artery disease	NM_001256071:ex on60:c.G14429A:p. R4810K	Р	VUS			Y	
CNSR30 4368	М	56	RNF21 3	Moyamoya disease	Large artery disease	NM_001256071:ex on60:c.G14429A:p. R4810K	Р	VUS			Y	
CNSR30 4370	М	67	RNF21 3	Moyamoya disease	Large artery disease	NM_001256071:ex on60:c.G14429A:p. R4810K	Р	VUS			Y	

Code_n	Ge	Age	Gene	Phenotype	Etiology of stroke	Mutation	Clinvar	ACMG	Defin ite	Possi ble	Undete rmined	Insufficient Information
	r				SHOKE				itt	ыс	Tinneu	mormation
CNSR30 4477	М	69	RNF21 3	Moyamoya disease	Large artery disease	NM_001256071:ex on60:c.G14429A:p. R4810K	Р	VUS				Y
CNSR30 4840	М	30	RNF21 3	Moyamoya disease	Large artery disease	NM_001256071:ex on60:c.G14429A:p. R4810K	Р	VUS	Y			
CNSR30 5285	М	52	RNF21 3	Moyamoya disease	Large artery disease	NM_001256071:ex on60:c.G14429A:p. R4810K	Р	VUS			Y	
CNSR30 5511	М	45	RNF21 3	Moyamoya disease	Large artery disease	NM_001256071:ex on60:c.G14429A:p. R4810K	Р	VUS			Y	
CNSR30 5688	F	51	RNF21 3	Moyamoya disease	Large artery disease	NM_001256071:ex on60:c.G14429A:p. R4810K	Р	VUS			Y	
CNSR30 5701	F	58	RNF21 3	Moyamoya disease	Large artery disease	NM_001256071:ex on60:c.G14429A:p. R4810K	Р	VUS			Y	
CNSR30 5969	F	67	RNF21 3	Moyamoya disease	Large artery disease	NM_001256071:ex on60:c.G14429A:p. R4810K	Р	VUS	Y			
CNSR30 6018	М	79	RNF21 3	Moyamoya disease	Large artery disease	NM_001256071:ex on60:c.G14429A:p. R4810K	Р	VUS			Y	
CNSR30 6251	F	48	RNF21 3	Moyamoya disease	Large artery disease	NM_001256071:ex on60:c.G14429A:p. R4810K	Р	VUS	Y			
CNSR30 6474	М	51	RNF21 3	Moyamoya disease	Large artery disease	NM_001256071:ex on60:c.G14429A:p. R4810K	Р	VUS				Y

Code_n	Ge nde	Age	Gene	Phenotype	Etiology of stroke	Mutation	Clinvar	ACMG	Defin ite	Possi ble	Undete rmined	Insufficient Information
	r				Strone				ne	bie	Timiteu	mormution
CNSR30 6719	F	56	RNF21 3	Moyamoya disease	Large artery disease	NM_001256071:ex on60:c.G14429A:p. R4810K	Р	VUS			Y	
CNSR30 7009	F	65	RNF21 3	Moyamoya disease	Large artery disease	NM_001256071:ex on60:c.G14429A:p. R4810K	Р	VUS				Y
CNSR30 7043	М	62	RNF21 3	Moyamoya disease	Large artery disease	NM_001256071:ex on60:c.G14429A:p. R4810K	Р	VUS			Y	
CNSR30 7110	М	62	RNF21 3	Moyamoya disease	Large artery disease	NM_001256071:ex on60:c.G14429A:p. R4810K	Р	VUS			Y	
CNSR30 7307	М	72	RNF21 3	Moyamoya disease	Large artery disease	NM_001256071:ex on60:c.G14429A:p. R4810K	Р	VUS			Y	
CNSR30 7323	М	66	RNF21 3	Moyamoya disease	Large artery disease	NM_001256071:ex on60:c.G14429A:p. R4810K	Р	VUS			Y	
CNSR30 7418	F	68	RNF21 3	Moyamoya disease	Large artery disease	NM_001256071:ex on60:c.G14429A:p. R4810K	Р	VUS		Y		
CNSR30 7541	F	61	RNF21 3	Moyamoya disease	Large artery disease	NM_001256071:ex on60:c.G14429A:p. R4810K	Р	VUS			Y	
CNSR30 8107	М	51	RNF21 3	Moyamoya disease	Large artery disease	NM_001256071:ex on60:c.G14429A:p. R4810K	Р	VUS			Y	
CNSR30 8482	М	53	RNF21 3	Moyamoya disease	Large artery disease	NM_001256071:ex on60:c.G14429A:p. R4810K	Р	VUS			Y	

Code_n	Ge nde	Age	Gene	Phenotype	Etiology of stroke	Mutation	Clinvar	ACMG	Defin ite	Possi ble	Undete rmined	Insufficient Information
	r											
CNSR30 8599	М	59	RNF21 3	Moyamoya disease	Large artery disease	NM_001256071:ex on60:c.G14429A:p. R4810K	Р	VUS			Y	
CNSR30 8643	М	60	RNF21 3	Moyamoya disease	Large artery disease	NM_001256071:ex on60:c.G14429A:p. R4810K	Р	VUS			Y	
CNSR30 8924	F	44	RNF21 3	Moyamoya disease	Large artery disease	NM_001256071:ex on60:c.G14429A:p. R4810K	Р	VUS	Y			
CNSR30 9034	М	58	RNF21 3	Moyamoya disease	Large artery disease	NM_001256071:ex on60:c.G14429A:p. R4810K	Р	VUS			Y	
CNSR30 9437	F	51	RNF21 3	Moyamoya disease	Large artery disease	NM_001256071:ex on60:c.G14429A:p. R4810K	Р	VUS		Y		
CNSR30 9554	F	53	RNF21 3	Moyamoya disease	Large artery disease	NM_001256071:ex on60:c.G14429A:p. R4810K	Р	VUS			Y	
CNSR30 9631	М	62	RNF21 3	Moyamoya disease	Large artery disease	NM_001256071:ex on60:c.G14429A:p. R4810K	Р	VUS	Y			
CNSR31 0183	М	41	RNF21 3	Moyamoya disease	Large artery disease	NM_001256071:ex on60:c.G14429A:p. R4810K	Р	VUS		Y		
CNSR31 0309	М	51	RNF21 3	Moyamoya disease	Large artery disease	NM_001256071:ex on60:c.G14429A:p. R4810K	Р	VUS			Y	
CNSR30 3114	М	71	ETV6	Thrombocytopenia 5	Prothrombot ic state	NM_001987:exon2: c.C115T:p.R39X	NA	Р			Y	

Code_n	Ge	Age	Gene	Phenotype	Etiology of	Mutation	Clinvar	ACMG	Defin ite	Possi ble	Undete	Insufficient
	r				SUORC				ite	DIC	Timiteu	mormation
CNSR30	F	60	F2	Thrombophilia due to	Prothrombot	NM_000506:exon1	NA	LP			Y	
0244				thrombin defect	ic state	0:c.C1195T:p.R399 C						
CNSR30	М	60	F2	Thrombophilia due to	Prothrombot	NM_000506:exon1	NA	LP			Y	
0779				thrombin defect	ic state	3:c.G1679A:p.R560 Q						
CNSR30	М	49	F2	Thrombophilia due to	Prothrombot	NM_000506:exon4:	NA	LP			Y	
1431				thrombin defect	ic state	c.G290A:p.R97Q						
CNSR30	Μ	75	F2	Thrombophilia due to	Prothrombot	NM_000506:exon7:	NA	LP			Y	
2043				thrombin defect	ic state	c.A715G:p.S239G						
CNSR30	F	62	F2	Thrombophilia due to	Prothrombot	NM_000506:exon7:	NA	LP			Y	
2610				thrombin defect	ic state	c.A715G:p.S239G						
CNSR30	М	65	F2	Thrombophilia due to	Prothrombot	NM_000506:exon4:	NA	LP			Y	
2706	_			thrombin defect	ic state	c.G290A:p.R97Q						
CNSR30	F	64	F2	Thrombophilia due to	Prothrombot	NM_000506:exon7:	NA	LP			Y	
2815				thrombin defect	ic state	c.C683T:p.T2281						
CNSR30	М	54	F2	Thrombophilia due to	Prothrombot	NM_000506:exon1	NA	LP			Y	
2834				thrombin defect	ic state	1:c.G1307A:p.R436						
						Q						
CNSR30	М	53	F2	Thrombophilia due to	Prothrombot	NM_000506:exon4:	NA	LP			Y	
3002		-0		thrombin defect	ic state	c.G290A:p.R9/Q						
CNSR30	Μ	70	F2	Thrombophilia due to	Prothrombot	NM_000506:exon/:	NA	LP			Y	
3616		<i></i>		thrombin defect	ic state	c.A/15G:p.S239G						
CNSR30	Μ	68	F2	Thrombophilia due to	Prothrombot	NM_000506:exon2:	NA	LP			Y	
3837				thrombin defect	ic state	c.A136G:p.146A						
CNSR30	Μ	45	F2	Thrombophilia due to	Prothrombot	NM_000506:exon4:	NA	LP			Y	
4831				thrombin defect	ic state	c.G290A:p.R9/Q						
CNSR30	М	64	F2	Thrombophilia due to	Prothrombot	NM_000506:exon1	NA	LP			Y	
4932				thrombin defect	ic state	0:c.G11961:p.K399						
	1	1	1	1	1			1	I	I	1	1

Code_n	Ge	Age	Gene	Phenotype	Etiology of	Mutation	Clinvar	ACMG	Defin	Possi	Undete	Insufficient
	nde				stroke				ite	ble	rmined	Information
CNSP30	r M	66	F2	Thrombonhilio due to	Prothrombot	NM 000506.exon4.	NA	ID			V	
5605	101	00	12	thrombin defect	ic state	c G290A n R970	INA	LI			1	
CNSR30	М	51	F2	Thrombophilia due to	Prothrombot	NM 000506:exon7:	NA	LP		Y		
6073		-		thrombin defect	ic state	c.A715G:p.S239G						
CNSR30	М	69	F2	Thrombophilia due to	Prothrombot	NM_000506:exon7:	NA	LP			Y	
6469				thrombin defect	ic state	c.C677A:p.A226E						
CNSR30	F	71	F2	Thrombophilia due to	Prothrombot	NM_000506:exon1	NA	LP			Y	
6519				thrombin defect	ic state	1:c.G1299T:p.R433						
67 167 A 6	-	0.1			D 1 1	S						
CNSR30	F	81	F2	Thrombophilia due to	Prothrombot	NM_000506:exon5:	NA	LP			Y	
6646				thrombin defect	ic state	$c.419_{420ins1GA}$						
CNSP20	м	4.4	E2	Thrombonhilio duo to	Drothromhot	NM 000506.even1	NA	ID			v	
6750	IVI	44	ΓZ	thrombin defect	ic state	1.c G1200T.n R/33	INA	LF			I	
0155				unomoni derect	ie state	S						
CNSR30	М	45	F2	Thrombophilia due to	Prothrombot	NM 000506:exon1	NA	Р			Y	
7305				thrombin defect	ic state	1:c.C1306T:p.R436						
						Χ						
CNSR30	Μ	82	F2	Thrombophilia due to	Prothrombot	NM_000506:exon2:	NA	LP			Y	
7437				thrombin defect	ic state	c.G119A:p.R40Q						
CNSR30	Μ	76	F2	Thrombophilia due to	Prothrombot	NM_000506:exon9:	Р	LP			Y	
7824		50	50	thrombin defect	ic state	c.G1054A:p.E352K	N 7.4	I D				
CNSR30	М	58	F2	Thrombophilia due to	Prothrombot	NM_000506:exon1	NA	LP			Y	
/908				thrombin defect	ic state	0:c.C114/1:p.K385						
CNSR30	F	74	F2	Thrombonhilia due to	Prothrombot	W 000506:exon/:	NΛ	ΙP			v	
8145	1	77	1 2	thrombin defect	ic state	c G290A n R970					1	
CNSR30	М	56	F2	Thrombophilia due to	Prothrombot	NM 000506:exon7:	NA	LP			Y	
8905		20		thrombin defect	ic state	c.A715G:p.S239G					-	
CNSR30	М	62	F2	Thrombophilia due to	Prothrombot	NM 000506:exon8:	NA	LP			Y	
8999				thrombin defect	ic state	c.G1003A:p.D335N						
Code_n	Ge nde	Age	Gene	Phenotype	Etiology of stroke	Mutation	Clinvar	ACMG	Defin ite	Possi ble	Undete rmined	Insufficient Information
----------------	-----------	-----	-------	--	-------------------------	---	---------	------	--------------	--------------	------------------	-----------------------------
	r				5010110							
CNSR30 9128	М	52	F2	Thrombophilia due to thrombin defect	Prothrombot ic state	NM_000506:exon1 1:c.G1299T:p.R433 S	NA	LP			Y	
CNSR31 0389	М	53	F2	Thrombophilia due to thrombin defect	Prothrombot ic state	NM_000506:exon7: c.A715G:p.S239G	NA	LP			Y	
CNSR31 0428	М	60	F2	Thrombophilia due to thrombin defect	Prothrombot ic state	NM_000506:exon2: c.C239T:p.T80M	NA	LP			Y	
CNSR30 1130	F	87	GP1BA	von Willebrand disease, platelet-type	Prothrombot ic state	NM_000173:exon2: c.A449G:p.N150S	LP	VUS			Y	
CNSR30 0210	М	54	JAK2	Thrombocythemia 3	Prothrombot ic state	NM_004972:exon1 4:c.G1849T:p.V617 F	Р	VUS	Y			
CNSR30 0974	F	61	JAK2	Thrombocythemia 3	Prothrombot ic state	NM_004972:exon1 4:c.G1849T:p.V617 F	Р	VUS	Y			
CNSR30 1140	F	67	JAK2	Thrombocythemia 3	Prothrombot ic state	NM_004972:exon1 4:c.G1849T:p.V617 F	Р	VUS	Y			
CNSR30 1453	М	74	JAK2	Thrombocythemia 3	Prothrombot ic state	NM_004972:exon1 4:c.G1849T:p.V617 F	Р	VUS	Y			
CNSR30 1596	М	81	JAK2	Thrombocythemia 3	Prothrombot ic state	NM_004972:exon1 4:c.G1849T:p.V617 F	Р	VUS	Y			
CNSR30 1724	F	53	JAK2	Thrombocythemia 3	Prothrombot ic state	NM_004972:exon1 4:c.G1849T:p.V617 F	Р	VUS	Y			
CNSR30 1871	М	70	JAK2	Thrombocythemia 3	Prothrombot ic state	NM_004972:exon1 4:c.G1849T:p.V617 F	Р	VUS	Y			

Code_n	Ge nde	Age	Gene	Phenotype	Etiology of stroke	Mutation	Clinvar	ACMG	Defin ite	Possi ble	Undete rmined	Insufficient Information
	r											
CNSR30 2013	F	62	JAK2	Thrombocythemia 3	Prothrombot ic state	NM_004972:exon1 4:c.G1849T:p.V617 F	Р	VUS	Y			
CNSR30 2241	М	76	JAK2	Thrombocythemia 3	Prothrombot ic state	NM_004972:exon1 4:c.G1849T:p.V617 F	Р	VUS	Y			
CNSR30 2246	F	43	JAK2	Thrombocythemia 3	Prothrombot ic state	NM_004972:exon1 4:c.G1849T:p.V617 F	Р	VUS	Y			
CNSR30 2755	F	59	JAK2	Thrombocythemia 3	Prothrombot ic state	NM_004972:exon1 4:c.G1849T:p.V617 F	Р	VUS	Y			
CNSR30 2832	М	63	JAK2	Thrombocythemia 3	Prothrombot ic state	NM_004972:exon1 4:c.G1849T:p.V617 F	Р	VUS	Y			
CNSR30 2950	F	60	JAK2	Thrombocythemia 3	Prothrombot ic state	NM_004972:exon1 4:c.G1849T:p.V617 F	Р	VUS	Y			
CNSR30 3845	М	61	JAK2	Thrombocythemia 3	Prothrombot ic state	NM_004972:exon1 4:c.G1849T:p.V617 F	Р	VUS	Y			
CNSR30 3914	F	51	JAK2	Thrombocythemia 3	Prothrombot ic state	NM_004972:exon1 4:c.G1849T:p.V617 F	Р	VUS	Y			
CNSR30 4686	М	64	JAK2	Thrombocythemia 3	Prothrombot ic state	NM_004972:exon1 4:c.G1849T:p.V617 F	Р	VUS	Y			
CNSR30 6131	F	76	JAK2	Thrombocythemia 3	Prothrombot ic state	NM_004972:exon1 4:c.G1849T:p.V617 F	P	VUS	Y			

Code_n	Ge nde	Age	Gene	Phenotype	Etiology of stroke	Mutation	Clinvar	ACMG	Defin ite	Possi ble	Undete rmined	Insufficient Information
	r											
CNSR30 6885	М	65	JAK2	Thrombocythemia 3	Prothrombot ic state	NM_004972:exon1 4:c.G1849T:p.V617 F	Р	VUS	Y			
CNSR30 6975	М	53	JAK2	Thrombocythemia 3	Prothrombot ic state	NM_004972:exon1 4:c.G1849T:p.V617 F	Р	VUS	Y			
CNSR30 6992	F	62	JAK2	Thrombocythemia 3	Prothrombot ic state	NM_004972:exon1 4:c.G1849T:p.V617 F	Р	VUS	Y			
CNSR30 7039	М	66	JAK2	Thrombocythemia 3	Prothrombot ic state	NM_004972:exon1 4:c.G1849T:p.V617 F	Р	VUS	Y			
CNSR30 7258	М	73	JAK2	Thrombocythemia 3	Prothrombot ic state	NM_004972:exon1 4:c.G1849T:p.V617 F	Р	VUS	Y			
CNSR30 7566	F	62	JAK2	Thrombocythemia 3	Prothrombot ic state	NM_004972:exon1 4:c.G1849T:p.V617 F	Р	VUS	Y			
CNSR30 8276	М	67	JAK2	Thrombocythemia 3	Prothrombot ic state	NM_004972:exon1 4:c.G1849T:p.V617 F	Р	VUS	Y			
CNSR30 8823	М	67	JAK2	Thrombocythemia 3	Prothrombot ic state	NM_004972:exon1 4:c.G1849T:p.V617 F	Р	VUS			Y	
CNSR30 8929	М	79	JAK2	Thrombocythemia 3	Prothrombot ic state	NM_004972:exon1 4:c.G1849T:p.V617 F	Р	VUS			Y	
CNSR30 9106	М	77	JAK2	Thrombocythemia 3	Prothrombot ic state	NM_004972:exon1 4:c.G1849T:p.V617 F	Р	VUS	Y			

Code_n	Ge nde r	Age	Gene	Phenotype	Etiology of stroke	Mutation	Clinvar	ACMG	Defin ite	Possi ble	Undete rmined	Insufficient Information
CNSR30 9615	F	79	JAK2	Thrombocythemia 3	Prothrombot ic state	NM_004972:exon1 4:c.G1849T:p.V617 F	Р	VUS			Y	
CNSR30 9872	М	75	JAK2	Thrombocythemia 3	Prothrombot ic state	NM_004972:exon1 4:c.G1849T:p.V617 F	Р	VUS	Y			
CNSR31 0420	М	69	JAK2	Thrombocythemia 3	Prothrombot ic state	NM_004972:exon1 4:c.G1849T:p.V617 F	Р	VUS	Y			
CNSR30 5210	М	58	PROC	Thrombophilia due to protein C deficiency, autos	Prothrombot ic state	NM_000312:exon9: c.G889C:p.D297H	Р	VUS			Y	
CNSR30 6872	F	64	PROC	Thrombophilia due to protein C deficiency, autos	Prothrombot ic state	NM_000312:exon3: c.G199C:p.E67Q	NA	LP			Y	
CNSR30 7697	М	58	PROC	Thrombophilia due to protein C deficiency, autos	Prothrombot ic state	NM_000312:c.678 +9C>T	Р	VUS			Y	
CNSR30 7931	М	29	PROC	Thrombophilia due to protein C deficiency, autos	Prothrombot ic state	NM_000312:exon7: c.C658T:p.R220W	Р	VUS			Y	
CNSR30 9298	F	64	PROC	Thrombophilia due to protein C deficiency, autos	Prothrombot ic state	NM_000312:exon3: c.G76C:p.V26L	NA	LP			Y	
CNSR31 0362	М	74	PROC	Thrombophilia due to protein C deficiency, autos	Prothrombot ic state	NM_000312:exon9: c.G889C:p.D297H	Р	VUS			Y	
CNSR30 3734	М	40	PROS1	Thrombophilia due to protein S deficiency	Prothrombot ic state	NM_000313:exon1 0:c.C1063T:p.R355 C	Р	VUS			Y	

Code_n	Ge	Age	Gene	Phenotype	Etiology of stroke	Mutation	Clinvar	ACMG	Defin	Possi ble	Undete	Insufficient
	r				SHOKE				ite	bie	Timiteu	mormation
CNSR30 3874	М	48	PROS1	Thrombophilia due to protein S deficiency	Prothrombot ic state	NM_000313:exon6: c.A586G:p.K196E	Р	VUS			Y	
CNSR30 4216	М	65	PROS1	Thrombophilia due to protein S deficiency	Prothrombot ic state	NM_000313:exon1 4:c.T1680A:p.Y560 X	LP	LP			Y	
CNSR30 4306	F	61	PROS1	Thrombophilia due to protein S deficiency	Prothrombot ic state	NM_000313:exon1 0:c.C1063T:p.R355 C	Р	VUS			Y	
CNSR30 5014	F	67	PROS1	Thrombophilia due to protein S deficiency	Prothrombot ic state	NM_000313:exon1 0:c.C1063T:p.R355 C	Р	VUS			Y	
CNSR30 7585	М	56	PROS1	Thrombophilia due to protein S deficiency	Prothrombot ic state	NM_000313:exon1 4:c.1753delG:p.E58 5fs	NA	LP			Y	
CNSR30 7679	М	63	PROS1	Thrombophilia due to protein S deficiency	Prothrombot ic state	NM_000313:exon1 0:c.C1063T:p.R355 C	Р	VUS			Y	
CNSR30 8628	F	59	PROS1	Thrombophilia due to protein S deficiency	Prothrombot ic state	NM_000313:exon1 2:c.1427_1428insA :p.L476fs	NA	LP			Y	
CNSR30 0805	М	53	SERPI NC1	Thrombophilia due to antithrombin III deficiency	Prothrombot ic state	NM_000488:exon2: c.C218T:p.P73L	P/LP	VUS			Y	
CNSR30 1590	М	70	SERPI NC1	Thrombophilia due to antithrombin III deficiency	Prothrombot ic state	NM_000488:exon3: c.T442C:p.S148P	Р	VUS			Y	
CNSR30 5745	М	71	SERPI NC1	Thrombophilia due to antithrombin III deficiency	Prothrombot ic state	NM_000488:exon3: c.T442C:p.S148P	Р	VUS			Y	

Code_n	Ge nde r	Age	Gene	Phenotype	Etiology of stroke	Mutation	Clinvar	ACMG	Defin ite	Possi ble	Undete rmined	Insufficient Information
CNSR30 5890	F	41	SERPI NC1	Thrombophilia due to antithrombin III deficiency	Prothrombot ic state	NM_000488:exon3: c.A572G:p.Q191R	LP	VUS			Y	
CNSR30 6312	М	50	SERPI NC1	Thrombophilia due to antithrombin III deficiency	Prothrombot ic state	NM_000488:exon2: c.C235T:p.R79C	LP	VUS			Y	
CNSR30 9720	М	60	SERPI NC1	Thrombophilia due to antithrombin III deficiency	Prothrombot ic state	NM_000488:exon3: c.A572G:p.Q191R	LP	VUS			Y	
CNSR30 0699	F	69	SERPI ND1	Thrombophilia due to heparin cofactor II deficie	Prothrombot ic state	NM_000185:exon2: c.657_660del:p.R21 9fs	NA	LP			Y	
CNSR30 2505	М	54	SERPI ND1	Thrombophilia due to heparin cofactor II deficie	Prothrombot ic state	NM_000185:exon2: c.C415T:p.R139X	NA	Р			Y	
CNSR30 4069	М	62	SERPI ND1	Thrombophilia due to heparin cofactor II deficie	Prothrombot ic state	NM_000185:exon2: c.556_557del:p.F18 6fs	NA	LP			Y	
CNSR30 5242	F	70	SERPI ND1	Thrombophilia due to heparin cofactor II deficie	Prothrombot ic state	NM_000185:exon3: c.949_950del:p.E31 7fs	NA	LP			Y	
CNSR30 7508	М	55	SERPI ND1	Thrombophilia due to heparin cofactor II deficie	Prothrombot ic state	NM_000185:exon3: c.917delA:p.E306fs	NA	LP			Y	
CNSR30 9254	М	66	SERPI ND1	Thrombophilia due to heparin cofactor II deficie	Prothrombot ic state	NM_000185:exon2: c.668_677del:p.D2 23fs	NA	LP			Y	
CNSR30 5747	М	62	STIM1	Stormorken syndrome	Prothrombot ic state	NM_001277961:ex on11:c.1621_1624d el:p.S541fs	NA	LP			Y	

Code_n	Ge nde	Age	Gene	Phenotype	Etiology of stroke	Mutation	Clinvar	ACMG	Defin ite	Possi ble	Undete rmined	Insufficient Information
CNSR30 0050	r M	60	VWF	von Willebrand disease, type 1	Prothrombot ic state	NM_000552:exon1 8:c.G2303A:p.R768 Q	LP	VUS			Y	
CNSR30 0111	М	59	VWF	von Willebrand disease, type 1	Prothrombot ic state	NM_000552:exon1 8:c.2289dupG:p.S7 64	NA	LP			Y	
CNSR30 0534	М	68	VWF	von Willebrand disease, type 1	Prothrombot ic state	NM_000552:exon1 4:c.C1677A:p.C559 X	NA	LP			Y	
CNSR30 0609	F	74	VWF	von Willebrand disease, type 1	Prothrombot ic state	NM_000552:exon1 8:c.G2303A:p.R768 Q	LP	VUS			Y	
CNSR30 0627	F	67	VWF	von Willebrand disease, type 1	Prothrombot ic state	NM_000552:exon2 8:c.C4135T:p.R137 9C	Р	VUS			Y	
CNSR30 1287	М	48	VWF	von Willebrand disease, type 1	Prothrombot ic state	NM_000552:exon1 8:c.G2303A:p.R768 Q	LP	VUS			Y	
CNSR30 1361	М	62	VWF	von Willebrand disease, type 1	Prothrombot ic state	NM_000552:exon3 2:c.5462delC:p.T18 2	NA	LP			Y	
CNSR30 1580	М	74	VWF	von Willebrand disease, type 1	Prothrombot ic state	NM_000552:exon2 8:c.C4696T:p.R156 6X	Р	Р			Y	
CNSR30 1972	М	66	VWF	von Willebrand disease, type 1	Prothrombot ic state	NM_000552:exon1 8:c.G2303A:p.R768 Q	LP	VUS			Y	
CNSR30 2390	М	54	VWF	von Willebrand disease, type 1	Prothrombot ic state	NM_000552:exon4 3:c.C7390T:p.R246 4C	P/LP	VUS			Y	

Code_n	Ge nde r	Age	Gene	Phenotype	Etiology of stroke	Mutation	Clinvar	ACMG	Defin ite	Possi ble	Undete rmined	Insufficient Information
CNSR30 2557	F	67	VWF	von Willebrand disease, type 1	Prothrombot ic state	NM_000552:exon1 8:c.G2303A:p.R768 Q	LP	VUS			Y	
CNSR30 3068	М	73	VWF	von Willebrand disease, type 1	Prothrombot ic state	NM_000552:exon2 8:c.C3797A:p.P126 6Q	LP	VUS			Y	
CNSR30 3106	М	60	VWF	von Willebrand disease, type 1	Prothrombot ic state	NM_000552:exon1 8:c.G2303A:p.R768 Q	LP	VUS			Y	
CNSR30 3246	F	64	VWF	von Willebrand disease, type 1	Prothrombot ic state	NM_000552:exon1 8:c.C2372T:p.T791 M	LP	VUS			Y	
CNSR30 3642	М	64	VWF	von Willebrand disease, type 1	Prothrombot ic state	NM_000552:exon1 8:c.G2303A:p.R768 Q	LP	VUS			Y	
CNSR30 3701	М	77	VWF	von Willebrand disease, type 1	Prothrombot ic state	NM_000552:exon1 8:c.G2303A:p.R768 Q	LP	VUS			Y	
CNSR30 3871	М	63	VWF	von Willebrand disease, type 1	Prothrombot ic state	NM_000552:exon4 4:c.C7464T:p.G248 8G	LP	VUS			Y	
CNSR30 4193	М	68	VWF	von Willebrand disease, type 1	Prothrombot ic state	NM_000552:exon1 8:c.G2303A:p.R768 Q	LP	VUS			Y	
CNSR30 4338	F	57	VWF	von Willebrand disease, type 1	Prothrombot ic state	NM_000552:exon2 8:c.C3797A:p.P126 6Q	LP	VUS			Y	
CNSR30 4493	М	64	VWF	von Willebrand disease, type 1	Prothrombot ic state	NM_000552:exon1 8:c.G2303A:p.R768 O	LP	VUS			Y	

Code_n	Ge nde r	Age	Gene	Phenotype	Etiology of stroke	Mutation	Clinvar	ACMG	Defin ite	Possi ble	Undete rmined	Insufficient Information
CNSR30 4667	М	52	VWF	von Willebrand disease, type 1	Prothrombot ic state	NM_000552:exon1 8:c.G2303A:p.R768 Q	LP	VUS			Y	
CNSR30 4733	М	75	VWF	von Willebrand disease, type 1	Prothrombot ic state	NM_000552:exon2 0:c.2658delC:p.P88 6fs	NA	LP			Y	
CNSR30 4865	М	50	VWF	von Willebrand disease, type 1	Prothrombot ic state	NM_000552:exon1 8:c.G2303A:p.R768 Q	LP	VUS			Y	
CNSR30 5150	М	63	VWF	von Willebrand disease, type 1	Prothrombot ic state	NM_000552:exon4 3:c.G7332A:p.W24 44X	NA	Р			Y	
CNSR30 6284	М	68	VWF	von Willebrand disease, type 1	Prothrombot ic state	NM_000552:exon1 8:c.G2303A:p.R768 Q	LP	VUS			Y	
CNSR30 6560	М	76	VWF	von Willebrand disease, type 1	Prothrombot ic state	NM_000552:exon1 8:c.G2303A:p.R768 Q	LP	VUS			Y	
CNSR30 6641	F	70	VWF	von Willebrand disease, type 1	Prothrombot ic state	NM_000552:exon4 4:c.C7464T:p.G248 8G	LP	VUS			Y	
CNSR30 6919	М	68	VWF	von Willebrand disease, type 1	Prothrombot ic state	NM_000552:exon2 0:c.G2561A:p.R854 Q	P/LP	VUS			Y	
CNSR30 7271	М	63	VWF	von Willebrand disease, type 1	Prothrombot ic state	NM_000552:exon3 9:c.C6835T:p.Q227 9X	NA	Р			Y	
CNSR30 8117	F	79	VWF	von Willebrand disease, type 1	Prothrombot ic state	NM_000552:exon1 8:c.G2303A:p.R768 O	LP	VUS			Y	

Code_n	Ge nde	Age	Gene	Phenotype	Etiology of stroke	Mutation	Clinvar	ACMG	Defin ite	Possi ble	Undete rmined	Insufficient Information
	r				Strone				ne	510	Tilliteu	mormution
CNSR30 8135	М	53	VWF	von Willebrand disease, type 1	Prothrombot ic state	NM_000552:exon2 8:c.T3774A:p.Y125 8X	NA	LP			Y	
CNSR30 8576	М	25	VWF	von Willebrand disease, type 1	Prothrombot ic state	NM_000552:exon1 8:c.G2303A:p.R768 Q	LP	VUS			Y	
CNSR30 8978	F	75	VWF	von Willebrand disease, type 1	Prothrombot ic state	NM_000552:exon7: c.C813G:p.Y271X	NA	LP			Y	
CNSR30 9553	М	62	VWF	von Willebrand disease, type 1	Prothrombot ic state	NM_000552:exon2 8:c.G3970A:p.G13 24S	Р	VUS			Y	
CNSR30 9563	М	50	VWF	von Willebrand disease, type 1	Prothrombot ic state	NM_000552:exon2 8:c.4094delT:p.L13 65fs	NA	LP			Y	
CNSR31 0361	М	62	VWF	von Willebrand disease, type 1	Prothrombot ic state	NM_000552:exon3 0:c.G5235A:p.W17 45X	NA	Р			Y	
CNSR30 1005	М	51	COL4A 1	Brain small vessel disease with or without ocular anomalies/PADMAL	Small vessel disease	NM_001303110:ex on6:c.G343A:p.G11 5S	NA	LP	Y			
CNSR30 2264	М	73	COL4A 1	Brain small vessel disease with or without ocular anomalies/PADMAL	Small vessel disease	NM_001303110:ex on9:c.G502A:p.G1 68R	NA	LP	Y			
CNSR30 2968	F	81	COL4A 1	Brain small vessel disease with or without ocular anomalies/PADMAL	Small vessel disease	NM_001845:exon5 0:c.G4718A:p.G15 73E	NA	LP	Y			

Code_n	Ge nde r	Age	Gene	Phenotype	Etiology of stroke	Mutation	Clinvar	ACMG	Defin ite	Possi ble	Undete rmined	Insufficient Information
CNSR30 2973	М	58	COL4A 1	Brain small vessel disease with or without ocular anomalies/PADMAL	Small vessel disease	NM_001303110:ex on15:c.G823A:p.G 275	NA	LP			Y	
CNSR30 3061	F	55	COL4A 1	Brain small vessel disease with or without ocular anomalies/PADMAL	Small vessel disease	NM_001303110:ex on9:c.G502A:p.G1 68R	NA	LP			Y	
CNSR30 3631	F	79	COL4A 1	Brain small vessel disease with or without ocular anomalies/PADMAL	Small vessel disease	NM_001303110:ex on21:c.G1277T:p.G 42	NA	LP	Y			
CNSR30 3650	F	88	COL4A 1	Brain small vessel disease with or without ocular anomalies/PADMAL	Small vessel disease	NM_001845:exon2 7:c.G1937C:p.G646 A	NA	LP	Y			
CNSR30 4740	М	52	COL4A 1	Brain small vessel disease with or without ocular anomalies/PADMAL	Small vessel disease	NM_001845:exon4 0:c.3407-1G>A	NA	Р			Y	
CNSR30 4947	М	43	COL4A 1	Brain small vessel disease with or without ocular anomalies/PADMAL	Small vessel disease	NM_001845:exon3 7:c.C3187T:p.R106 3X	NA	LP	Y			
CNSR30 5943	M	70	COL4A 1	Brain small vessel disease with or without ocular anomalies/PADMAL	Small vessel disease	NM_001303110:ex on6:c.G343A:p.G11 5S	NA	LP	Y			

Code_n	Ge nde	Age	Gene	Phenotype	Etiology of stroke	Mutation	Clinvar	ACMG	Defin ite	Possi ble	Undete rmined	Insufficient Information
CNGD20	r	70	COLAA	D 11 1	0 11 1	NDA 001945 4	NIA	ID			37	
6510	м	/8	1	disease with or without ocular anomalies/PADMAL	disease	NM_001845:exon4 9:c.G4471A:p.G14 91S	NA	LP			Ŷ	
CNSR30 7106	М	58	COL4A 1	Brain small vessel disease with or without ocular anomalies/PADMAL	Small vessel disease	NM_001303110:ex on23:c.G1420A:p. G474R	NA	LP	Y			
CNSR30 8031	М	70	COL4A 1	Brain small vessel disease with or without ocular anomalies/PADMAL	Small vessel disease	NM_001845:exon2 7:c.G1937C:p.G646 A	NA	LP		Y		
CNSR30 8223	F	69	COL4A 1	Brain small vessel disease with or without ocular anomalies/PADMAL	Small vessel disease	NM_001845:exon2 5:c.G1640C:p.G547 A	NA	LP			Y	
CNSR30 9282	F	76	COL4A 1	Brain small vessel disease with or without ocular anomalies/PADMAL	Small vessel disease	NM_001303110:ex on15:c.G823C:p.G2 75R	NA	LP			Y	
CNSR31 0132	F	81	COL4A 1	Brain small vessel disease with or without ocular anomalies/PADMAL	Small vessel disease	NM_001845:exon3 9:c.G3379A:p.G112 7S	NA	LP	Y			
CNSR30 0117	М	75	COL4A 2	Brain small vessel disease 2	Small vessel disease	NM_001846:exon3 3:c.G2954T:p.G985 V	NA	LP	Y			
CNSR30 0633	М	64	COL4A 2	Brain small vessel disease 2	Small vessel disease	NM_001846:exon2 8:c.G2105C:p.G702 A	NA	LP			Y	

Code_n	Ge nde	Age	Gene	Phenotype	Etiology of stroke	Mutation	Clinvar	ACMG	Defin ite	Possi ble	Undete rmined	Insufficient Information
	r											
CNSR30 0646	М	65	COL4A 2	Brain small vessel disease 2	Small vessel disease	NM_001846:exon3 7:c.3420delA:p.G11 40fs	NA	LP			Y	
CNSR30 0683	F	79	COL4A 2	Brain small vessel disease 2	Small vessel disease	NM_001846:exon1 9:c.G1180A:p.G394 R	NA	LP		Y		
CNSR30 1611	М	53	COL4A 2	Brain small vessel disease 2	Small vessel disease	NM_001846:exon3 6:c.G3338A:p.G111 3E	NA	LP			Y	
CNSR30 1656	М	57	COL4A 2	Brain small vessel disease 2	Small vessel disease	NM_001846:exon4 8:c.G4909A:p.G16 37S	NA	LP	Y			
CNSR30 1698	М	60	COL4A 2	Brain small vessel disease 2	Small vessel disease	NM_001846:exon1 9:c.G1180A:p.G394 R	NA	LP			Y	
CNSR30 1913	F	68	COL4A 2	Brain small vessel disease 2	Small vessel disease	NM_001846:exon3 3:c.G2954T:p.G985 V	NA	LP			Y	
CNSR30 2077	М	44	COL4A 2	Brain small vessel disease 2	Small vessel disease	NM_001846:exon4 8:c.G4906A:p.G16 36S	NA	LP			Y	
CNSR30 2272	F	61	COL4A 2	Brain small vessel disease 2	Small vessel disease	NM_001846:exon2 0:c.1306delC:p.P43 6fs	NA	LP	Y			
CNSR30 2290	F	72	COL4A 2	Brain small vessel disease 2	Small vessel disease	NM_001846:exon4 6:c.G4465A:p.G14 89S	NA	LP	Y			
CNSR30 2556	М	57	COL4A 2	Brain small vessel disease 2	Small vessel disease	NM_001846:exon5: c.220delC:p.P74fs	NA	LP		Y		

Code_n	Ge	Age	Gene	Phenotype	Etiology of	Mutation	Clinvar	ACMG	Defin	Possi	Undete	Insufficient
	nde				stroke				ite	ble	rmined	Information
CNSR30 2914	F	70	COL4A 2	Brain small vessel disease 2	Small vessel disease	NM_001846:exon4 4:c.C4228T:p.R141 0	NA	Р		Y		
CNSR30 3301	М	61	COL4A 2	Brain small vessel disease 2	Small vessel disease	NM_001846:exon7: c.G451A:p.G151S	NA	LP			Y	
CNSR30 3811	М	68	COL4A 2	Brain small vessel disease 2	Small vessel disease	NM_001846:exon3 9:c.G3589A:p.G119 7S	NA	LP	Y			
CNSR30 3908	М	47	COL4A 2	Brain small vessel disease 2	Small vessel disease	NM_001846:exon2 2:c.G1525A:p.G50 9R	NA	LP			Y	
CNSR30 5035	F	75	COL4A 2	Brain small vessel disease 2	Small vessel disease	NM_001846:exon2 0:c.1306delC:p.P43 6fs	NA	LP	Y			
CNSR30 5298	М	67	COL4A 2	Brain small vessel disease 2	Small vessel disease	NM_001846:exon2 8:c.G2105C:p.G702 A	NA	LP			Y	
CNSR30 5789	М	59	COL4A 2	Brain small vessel disease 2	Small vessel disease	NM_001846:exon3 4:c.G3088A:p.G10 30S	NA	LP			Y	
CNSR30 6020	М	52	COL4A 2	Brain small vessel disease 2	Small vessel disease	NM_001846:exon1 8:c.G1078A:p.G36 0S	NA	LP			Y	
CNSR30 6307	F	76	COL4A 2	Brain small vessel disease 2	Small vessel disease	NM_001846:exon1 7:c.G995A:p.G332 E	NA	LP			Y	
CNSR30 6619	М	58	COL4A 2	Brain small vessel disease 2	Small vessel disease	NM_001846:exon2 5:c.G1778A:p.G59 3D	NA	LP			Y	

Code_n	Ge nde	Age	Gene	Phenotype	Etiology of stroke	Mutation	Clinvar	ACMG	Defin ite	Possi ble	Undete rmined	Insufficient Information
CNSR30 7166	г М	72	COL4A 2	Brain small vessel disease 2	Small vessel disease	NM_001846:exon1 2:c.G719A:p.G240 D	NA	LP	Y			
CNSR30 7249	М	62	COL4A 2	Brain small vessel disease 2	Small vessel disease	NM_001846:exon4 2:c.G3985A:p.G13 29R	NA	LP				Y
CNSR30 7401	М	64	COL4A 2	Brain small vessel disease 2	Small vessel disease	NM_001846:exon4 4:c.4269delC:p.G14 23fs	NA	LP	Y			
CNSR30 7591	F	53	COL4A 2	Brain small vessel disease 2	Small vessel disease	NM_001846:exon2 0:c.1306dupC:p.G4 3	NA	LP		Y		
CNSR30 7722	М	71	COL4A 2	Brain small vessel disease 2	Small vessel disease	NM_001846:exon2 0:c.C1291T:p.R431 X	NA	Р	Y			
CNSR30 8082	F	67	COL4A 2	Brain small vessel disease 2	Small vessel disease	NM_001846:exon3 4:c.G3071C:p.G102 4A	NA	LP		Y		
CNSR30 8217	М	70	COL4A 2	Brain small vessel disease 2	Small vessel disease	NM_001846:exon2 5:c.G1792A:p.G59 8S	NA	LP	Y			
CNSR30 8251	М	65	COL4A 2	Brain small vessel disease 2	Small vessel disease	NM_001846:exon3 3:c.G2954T:p.G985 V	NA	LP	Y			
CNSR30 8728	F	72	COL4A 2	Brain small vessel disease 2	Small vessel disease	NM_001846:exon3 9:c.G3589A:p.G119 7S	NA	LP	Y			
CNSR30 9273	М	67	COL4A 2	Brain small vessel disease 2	Small vessel disease	NM_001846:exon2 3:c.G1597T:p.G533 X	NA	Р	Y			

Code_n	Ge nde	Age	Gene	Phenotype	Etiology of stroke	Mutation	Clinvar	ACMG	Defin ite	Possi ble	Undete rmined	Insufficient Information
	r				Strone				ne	510	Tilliteu	mormunon
CNSR30 9581	М	68	COL4A 2	Brain small vessel disease 2	Small vessel disease	NM_001846:exon3 4:c.G3088A:p.G10 30S	NA	LP				Y
CNSR30 9645	М	59	COL4A 2	Brain small vessel disease 2	Small vessel disease	NM_001846:exon2 2:c.G1525A:p.G50 9R	NA	LP		Y		
CNSR30 9799	F	52	COL4A 2	Brain small vessel disease 2	Small vessel disease	NM_001846:exon4 0:c.G3649A:p.G12 17R	NA	LP			Y	
CNSR30 9962	М	62	COL4A 2	Brain small vessel disease 2	Small vessel disease	NM_001846:exon7: c.G451A:p.G151S	NA	LP			Y	
CNSR31 0003	М	53	COL4A 2	Brain small vessel disease 2	Small vessel disease	NM_001846:exon3 9:c.G3607A:p.G12 03S	NA	LP	Y			
CNSR30 1748	F	52	GSN	Amyloidosis, Finnish type	Small vessel disease	NM_000177:exon7: c.G1034A:p.W345 X	NA	Р			Y	
CNSR30 3348	М	63	GSN	Amyloidosis, Finnish type	Small vessel disease	NM_000177:exon1 2:c.1736dupT:p.V5 79fs	NA	LP		Y		
CNSR30 3408	М	52	GSN	Amyloidosis, Finnish type	Small vessel disease	NM_000177:exon1 1:c.C1534T:p.Q512 X	NA	Р			Y	
CNSR30 3542	М	72	GSN	Amyloidosis, Finnish type	Small vessel disease	NM_000177:exon1 3:c.1899_1909del:p .A6	NA	LP			Y	
CNSR30 3781	F	71	GSN	Amyloidosis, Finnish type	Small vessel disease	NM_000177:exon1 0:c.1408delG:p.G4 70fs	NA	LP			Y	

Code_n	Ge nde	Age	Gene	Phenotype	Etiology of stroke	Mutation	Clinvar	ACMG	Defin ite	Possi ble	Undete rmined	Insufficient Information
	r				Strone				ne	DIC	Tinneu	mormution
CNSR30 3822	М	50	GSN	Amyloidosis, Finnish type	Small vessel disease	NM_000177:exon1 0:c.1408delG:p.G4 70fs	NA	LP			Y	
CNSR30 4726	F	55	GSN	Amyloidosis, Finnish type	Small vessel disease	NM_000177:exon2: c.349+1G>T	NA	Р			Y	
CNSR30 6001	М	71	GSN	Amyloidosis, Finnish type	Small vessel disease	NM_000177:exon1 0:c.G1349A:p.W45 0X	NA	Р				Y
CNSR30 9374	М	54	GSN	Amyloidosis, Finnish type	Small vessel disease	NM_001127663:ex on3:c.85dupT:p.L2 8fs	NA	LP		Y		
CNSR30 5312	F	58	HTRA1	CARASIL	Small vessel disease	NM_002775:exon2: c.G517A:p.A173T	NA	LP	Y			
CNSR30 7080	М	59	HTRA1	CARASIL	Small vessel disease	NM_002775:exon4: c.778-2A>G	NA	Р	Y			
CNSR30 9218	F	45	HTRA1	CARASIL	Small vessel disease	NM_002775:exon7: c.C1156T:p.R386X	NA	Р			Y	
CNSR30 0221	F	69	NOTC H3	CADASIL	Small vessel disease	NM_000435:exon1 7:c.G2687T:p.C896 F	NA	LP	Y			
CNSR30 0468	М	75	NOTC H3	CADASIL	Small vessel disease	NM_000435:exon1 1:c.C1630T:p.R544 C	P/LP	Р	Y			
CNSR30 0673	М	74	NOTC H3	CADASIL	Small vessel disease	NM_000435:exon1 5:c.C2299T:p.R767 C	NA	LP		Y		
CNSR30 0768	М	43	NOTC H3	CADASIL	Small vessel disease	NM_000435:exon1 1:c.C1630T:p.R544 C	P/LP	Р	Y			

Code_n	Ge	Age	Gene	Phenotype	Etiology of stroke	Mutation	Clinvar	ACMG	Defin ite	Possi ble	Undete	Insufficient
	r				SHOKE				ne	bic	Tinneu	mormation
CNSR30 0946	М	42	NOTC H3	CADASIL	Small vessel disease	NM_000435:exon2 1:c.C3427T:p.R114 3C	NA	LP	Y			
CNSR30 1247	М	55	NOTC H3	CADASIL	Small vessel disease	NM_000435:exon1 3:c.A2129G:p.Y71 0C	NA	LP	Y			
CNSR30 1511	М	37	NOTC H3	CADASIL	Small vessel disease	NM_000435:exon2 0:c.G3313T:p.G110 5C	NA	LP	Y			
CNSR30 1757	М	46	NOTC H3	CADASIL	Small vessel disease	NM_000435:exon1 8:c.C2898A:p.C966 X	NA	Р	Y			
CNSR30 1888	F	61	NOTC H3	CADASIL	Small vessel disease	NM_000435:exon1 6:c.G2459T:p.C820 F	NA	LP	Y			
CNSR30 1929	М	65	NOTC H3	CADASIL	Small vessel disease	NM_000435:exon1 1:c.C1759T:p.R587 C	NA	LP	Y			
CNSR30 1933	М	61	NOTC H3	CADASIL	Small vessel disease	NM_000435:exon1 3:c.C2038T:p.R680 C	NA	LP	Y			
CNSR30 2163	М	46	NOTC H3	CADASIL	Small vessel disease	NM_000435:exon1 5:c.C2299T:p.R767 C	NA	LP	Y			
CNSR30 2623	М	46	NOTC H3	CADASIL	Small vessel disease	NM_000435:exon4: c.T547A:p.C183S	NA	LP	Y			
CNSR30 2884	М	55	NOTC H3	CADASIL	Small vessel disease	NM_000435:exon1 1:c.C1630T:p.R544 C	P/LP	Р	Y			

Code_n	Ge nde	Age	Gene	Phenotype	Etiology of stroke	Mutation	Clinvar	ACMG	Defin ite	Possi ble	Undete rmined	Insufficient Information
	r				Serone							
CNSR30 2919	М	53	NOTC H3	CADASIL	Small vessel disease	NM_000435:exon1 2:c.C1918T:p.R640 C	NA	LP			Y	
CNSR30 3044	М	58	NOTC H3	CADASIL	Small vessel disease	NM_000435:exon1 7:c.G2689T:p.G897 C	NA	LP	Y			
CNSR30 3149	М	58	NOTC H3	CADASIL	Small vessel disease	NM_000435:exon1 1:c.C1759T:p.R587 C	NA	LP	Y			
CNSR30 3251	F	64	NOTC H3	CADASIL	Small vessel disease	NM_000435:exon1 1:c.C1630T:p.R544 C	P/LP	Р	Y			
CNSR30 3417	F	81	NOTC H3	CADASIL	Small vessel disease	NM_000435:exon2 2:c.C3601T:p.R120 1C	NA	LP	Y			
CNSR30 3714	F	67	NOTC H3	CADASIL	Small vessel disease	NM_000435:exon1 1:c.C1759T:p.R587 C	NA	LP	Y			
CNSR30 3980	F	56	NOTC H3	CADASIL	Small vessel disease	NM_000435:exon1 2:c.C1918T:p.R640 C	NA	LP	Y			
CNSR30 4138	F	46	NOTC H3	CADASIL	Small vessel disease	NM_000435:exon5: c.G798C:p.W266C	NA	LP	Y			
CNSR30 4414	F	66	NOTC H3	disease	Small vessel disease	NM_000435:exon1 1:c.C1630T:p.R544 C	P/LP	Р	Y			
CNSR30 4488	М	54	NOTC H3	CADASIL	Small vessel disease	NM_000435:exon3: c.G260T:p.C87F	NA	LP	Y			
CNSR30 4558	F	61	NOTC H3	CADASIL	Small vessel disease	NM_000435:exon1 0:c.G1547T:p.C516 F	NA	LP	Y			

83

Code_n	Ge nde	Age	Gene	Phenotype	Etiology of stroke	Mutation	Clinvar	ACMG	Defin ite	Possi ble	Undete rmined	Insufficient Information
	r				Surone							
CNSR30 4990	М	45	NOTC H3	CADASIL	Small vessel disease	NM_000435:exon1 4:c.C2149T:p.R717 C	NA	LP	Y			
CNSR30 5140	М	59	NOTC H3	CADASIL	Small vessel disease	NM_000435:exon2 2:c.C3568T:p.R119 0C	NA	LP	Y			
CNSR30 5147	М	50	NOTC H3	CADASIL	Small vessel disease	NM_000435:exon1 4:c.C2182T:p.R728 C	LP	VUS	Y			
CNSR30 5228	М	56	NOTC H3	CADASIL	Small vessel disease	NM_000435:exon2 0:c.C3298T:p.R110 0C	NA	LP	Y			
CNSR30 5245	F	63	NOTC H3	CADASIL	Small vessel disease	NM_000435:exon1 1:c.C1630T:p.R544 C	P/LP	Р			Y	
CNSR30 5301	М	57	NOTC H3	CADASIL	Small vessel disease	NM_000435:exon1 1:c.C1630T:p.R544 C	P/LP	Р	Y			
CNSR30 5508	М	57	NOTC H3	CADASIL	Small vessel disease	NM_000435:exon1 1:c.C1630T:p.R544 C	P/LP	Р	Y			
CNSR30 5632	М	79	NOTC H3	CADASIL	Small vessel disease	NM_000435:exon2 1:c.C3427T:p.R114 3C	NA	LP	Y			
CNSR30 6139	F	61	NOTC H3	CADASIL	Small vessel disease	NM_000435:exon1 6:c.T2498G:p.F833 C	NA	LP	Y			
CNSR30 6600	М	52	NOTC H3	CADASIL	Small vessel disease	NM_000435:exon1 1:c.C1759T:p.R587 C	NA	LP	Y			

Code_n	Ge nde	Age	Gene	Phenotype	Etiology of stroke	Mutation	Clinvar	ACMG	Defin ite	Possi ble	Undete rmined	Insufficient Information
CNSR30 6663	F	68	NOTC H3	CADASIL	Small vessel disease	NM_000435:exon1 5:c.C2353T:p.R785 C	NA	LP	Y			
CNSR30 6806	F	56	NOTC H3	CADASIL	Small vessel disease	NM_000435:exon6: c.889_894delinsTG	NA	Р			Y	
CNSR30 6879	М	61	NOTC H3	CADASIL	Small vessel disease	NM_000435:exon1 1:c.C1630T:p.R544 C	P/LP	Р	Y			
CNSR30 6929	М	39	NOTC H3	CADASIL	Small vessel disease	NM_000435:exon1 1:c.C1630T:p.R544 C	P/LP	Р	Y			
CNSR30 6956	М	82	NOTC H3	CADASIL	Small vessel disease	NM_000435:exon1 5:c.C2353T:p.R785 C	NA	LP	Y			
CNSR30 7019	F	63	NOTC H3	CADASIL	Small vessel disease	NM_000435:exon1 2:c.T1931A:p.V644 D	NA	LP	Y			
CNSR30 7044	F	52	NOTC H3	CADASIL	Small vessel disease	NM_000435:exon4: c.G671A:p.C224Y	Р	VUS	Y			
CNSR30 7182	М	44	NOTC H3	CADASIL	Small vessel disease	NM_000435:exon1 1:c.C1759T:p.R587 C	NA	LP	Y			
CNSR30 7435	М	74	NOTC H3	CADASIL	Small vessel disease	NM_000435:exon1 8:c.2984delC:p.P99	NA	LP				Y
CNSR30 7912	М	65	NOTC H3	CADASIL	Small vessel disease	NM_000435:exon1 1:c.C1630T:p.R544 C	P/LP	Р	Y			
CNSR30 8185	М	61	NOTC H3	CADASIL	Small vessel disease	NM_000435:exon4: c.C619T:p.R207C	P/LP	VUS		Y		

85

Code_n	Ge nde	Age	Gene	Phenotype	Etiology of stroke	Mutation	Clinvar	ACMG	Defin ite	Possi ble	Undete rmined	Insufficient Information
	r											
CNSR30 8416	F	75	NOTC H3	CADASIL	Small vessel disease	NM_000435:exon1 1:c.C1759T:p.R587 C	NA	LP	Y			
CNSR30 8638	F	52	NOTC H3	CADASIL	Small vessel disease	NM_000435:exon9: c.1488delC:p.P496	NA	LP			Y	
CNSR30 8656	М	65	NOTC H3	CADASIL	Small vessel disease	NM_000435:exon1 1:c.C1630T:p.R544 C	P/LP	Р		Y		
CNSR30 8967	М	63	NOTC H3	CADASIL	Small vessel disease	NM_000435:exon1 1:c.C1819T:p.R607 C	P/LP	VUS	Y			
CNSR30 9724	М	49	NOTC H3	CADASIL	Small vessel disease	NM_000435:exon1 1:c.C1630T:p.R544 C	P/LP	Р	Y			
CNSR31 0191	М	61	NOTC H3	CADASIL	Small vessel disease	NM_000435:exon1 1:c.C1630T:p.R544 C	P/LP	Р	Y			
CNSR31 0413	М	75	NOTC H3	CADASIL	Small vessel disease	NM_000435:exon2 1:c.C3427T:p.R114 3C	NA	LP			Y	
CNSR30 0708	F	67	PRNP	Cerebral amyloid angiopathy, PRNP- related	Small vessel disease	NM_000311:exon2: c.G538A:p.V180I	P/LP	VUS			Y	
CNSR30 1128	М	76	PRNP	Cerebral amyloid angiopathy, PRNP- related	Small vessel disease	NM_000311:exon2: c.G538A:p.V180I	P/LP	VUS			Y	
CNSR30 4209	М	71	PRNP	Cerebral amyloid angiopathy, PRNP- related	Small vessel disease	NM_000311:exon2: c.G628A:p.V210I	P	VUS			Y	
CNSR30 4380	М	69	PSEN1	Alzheimer's disease	Small vessel disease	NM_000021:exon7: c.C658T:p.R220X	NA	Р			Y	

86

Code_n	Ge nde	Age	Gene	Phenotype	Etiology of stroke	Mutation	Clinvar	ACMG	Defin ite	Possi ble	Undete rmined	Insufficient Information
	r											
CNSR30 7124	F	71	TREX1	Vasculopathy, retinal, with cerebral leukoencephalopathy and systemic manifestations/RVCL -S	Small vessel disease	NM_016381:exon1: c.1024_1041del:p.3 42_347del	Р	VUS			Y	
CNSR30 8620	М	70	TREX1	Vasculopathy, retinal, with cerebral leukoencephalopathy and systemic manifestations/RVCL -S	Small vessel disease	NM_016381:exon1: c.G832A:p.A278T, TR	LP	VUS			Y	
CNSR30 0109	F	67	TTR	Amyloidosis, hereditary, transthyretin-related	Small vessel disease	NM_000371:exon3: c.A326G:p.E109G	NA	LP			Y	
CNSR30 0873	М	69	TTR	Amyloidosis, hereditary, transthyretin-related	Small vessel disease	NM_000371:exon4: c.C347G:p.T116R	NA	LP		Y		
CNSR30 0907	М	45	TTR	Amyloidosis, hereditary, transthyretin-related	Small vessel disease	NM_000371:exon2: c.C170A:p.A57D	NA	LP			Y	
CNSR30 1040	М	74	TTR	Amyloidosis, hereditary, transthyretin-related	Small vessel disease	NM_000371:exon2: c.T119C:p.V40A	NA	LP			Y	
CNSR30 1165	F	54	TTR	Amyloidosis, hereditary, transthyretin-related	Small vessel disease	NM_000371:exon2: c.C170A:p.A57D	NA	LP			Y	
CNSR30 2353	М	78	TTR	Amyloidosis, hereditary, transthyretin-related	Small vessel disease	NM_000371:exon2: c.C170A:p.A57D	NA	LP		Y		

Code_n	Ge nde	Age	Gene	Phenotype	Etiology of stroke	Mutation	Clinvar	ACMG	Defin ite	Possi ble	Undete rmined	Insufficient Information
	r											
CNSR30 3371	М	37	TTR	Amyloidosis, hereditary, transthyretin-related	Small vessel disease	NM_000371:exon2: c.C170A:p.A57D	NA	LP			Y	
CNSR30 4525	М	46	TTR	Amyloidosis, hereditary, transthyretin-related	Small vessel disease	NM_000371:exon4: c.G424A:p.V142I	P/LP	VUS			Y	
CNSR30 4550	F	57	TTR	Amyloidosis, hereditary, transthyretin-related	Small vessel disease	NM_000371:exon3: c.A287G:p.K96R	NA	LP			Y	
CNSR30 5919	М	61	TTR	Amyloidosis, hereditary, transthyretin-related	Small vessel disease	NM_000371:exon3: c.G307A:p.G103S	NA	LP				Y
CNSR30 6558	F	45	TTR	Amyloidosis, hereditary, transthyretin-related	Small vessel disease	NM_000371:exon3: c.G241A:p.E81K	Р	VUS			Y	
CNSR30 6867	М	70	TTR	Amyloidosis, hereditary, transthyretin-related	Small vessel disease	NM_000371:exon2: c.C170A:p.A57D	NA	LP			Y	
CNSR30 7119	М	64	TTR	Amyloidosis, hereditary, transthyretin-related	Small vessel disease	NM_000371:exon4: c.C347G:p.T116R	NA	LP			Y	
CNSR30 7312	F	64	TTR	Amyloidosis, hereditary, transthyretin-related	Small vessel disease	NM_000371:exon2: c.T119C:p.V40A	NA	LP			Y	
CNSR30 7403	F	60	TTR	Amyloidosis, hereditary, transthyretin-related	Small vessel disease	NM_000371:exon3: c.A287G:p.K96R	NA	LP			Y	
CNSR30 7497	М	60	TTR	Amyloidosis, hereditary, transthyretin-related	Small vessel disease	NM_000371:exon2: c.C170A:p.A57D	NA	LP			Y	

Code_n	Ge nde	Age	Gene	Phenotype	Etiology of stroke	Mutation	Clinvar	ACMG	Defin ite	Possi ble	Undete rmined	Insufficient Information
	r				5010110							
CNSR30 7816	М	71	TTR	Amyloidosis, hereditary, transthyretin-related	Small vessel disease	NM_000371:exon2: c.C170A:p.A57D	NA	LP			Y	
CNSR30 7956	М	58	TTR	Amyloidosis, hereditary, transthyretin-related	Small vessel disease	NM_000371:exon2: c.C170A:p.A57D	NA	LP			Y	
CNSR30 8636	F	64	TTR	Amyloidosis, hereditary, transthyretin-related	Small vessel disease	NM_000371:exon4: c.C419T:p.A140V	NA	LP			Y	
CNSR30 9004	М	62	TTR	Amyloidosis, hereditary, transthyretin-related	Small vessel disease	NM_000371:exon4: c.G361A:p.G121S	NA	LP			Y	
CNSR31 0000	М	45	TTR	Amyloidosis, hereditary, transthyretin-related	Small vessel disease	NM_000371:exon4: c.G349T:p.A117S	P/LP	VUS			Y	
CNSR31 0227	F	62	TTR	Amyloidosis, hereditary, transthyretin-related	Small vessel disease	NM_000371:exon4: c.G361A:p.G121S	NA	LP			Y	
CNSR31 0334	М	47	TTR	Amyloidosis, hereditary, transthyretin-related	Small vessel disease	NM_000371:exon2: c.G148A:p.V50M	Р	LP			Y	
CNSR31 0356	М	69	TTR	Amyloidosis, hereditary, transthyretin-related	Small vessel disease	NM_000371:exon4: c.C413T:p.T138I	NA	LP			Y	
CNSR30 2278	F	75	ACVR L1	Telangiectasia, hereditary hemorrhagic, type 2	Other disease	NM_000020:exon7: c.C936A:p.H312Q	NA	LP				Y
CNSR30 2466	М	55	ACVR L1	Telangiectasia, hereditary hemorrhagic, type 2	Other disease	NM_000020:exon6: c.G682A:p.V228I	LP	VUS			Y	

Code_n	Ge nde	Age	Gene	Phenotype	Etiology of stroke	Mutation	Clinvar	ACMG	Defin ite	Possi ble	Undete rmined	Insufficient Information
	r											
CNSR30 4271	М	68	ACVR L1	Telangiectasia, hereditary hemorrhagic, type 2	Other disease	NM_001077401:ex on6:c.817_818delin sTG:p.L273W	NA	LP			Y	
CNSR30 0263	М	79	APOA1	Amyloidosis, 3 or more types	Other disease	NM_000039:exon3: c.127dupG:p.V43fs	NA	LP			Y	
CNSR30 4280	F	47	APOA1	Amyloidosis, 3 or more types	Other disease	NM_000039:exon3: c.116_117insTGGC :p.A39fs	NA	LP			Y	
CNSR30 2473	М	61	BMPR2	Pulmonary hypertension, primary	Other disease	NM_001204:exon2: c.77-1G>C	NA	Р			Y	
CNSR30 3094	М	62	BMPR2	Pulmonary hypertension, primary	Other disease	NM_001204:exon1 2:c.G1687A:p.V56 3M	Р	VUS			Y	
CNSR30 6598	М	76	BMPR2	Pulmonary hypertension, primary	Other disease	NM_001204:exon1 2:c.G1687A:p.V56 3M	Р	VUS			Y	
CNSR31 0185	М	44	BMPR2	Pulmonary hypertension, primary	Other disease	NM_001204:exon1 2:c.G1687A:p.V56 3M	Р	VUS			Y	
CNSR30 1648	М	64	CBL	Noonan syndrome- like disorder with or without juvenile myelomonocytic leukemia	Other disease	NM_005188:exon1 3:c.2153+1G>T	NA	Р				Y
CNSR30 8533	F	65	CBL	Noonan syndrome- like disorder with or without juvenile myelomonocytic leukemia	Other disease	NM_005188:exon8: c.T1111C:p.Y371H	Р	VUS			Y	

Code_n	Ge	Age	Gene	Phenotype	Etiology of	Mutation	Clinvar	ACMG	Defin	Possi	Undete	Insufficient
	nde				stroke				ite	ble	rmined	Information
CNSR30	r F	51	DVRK1	Abdominal obesity-	Other	NM_004714:exon1	NΛ	P			V	
9022	1.	51	B	metabolic syndrome	disease	0.c C1462T.n R488	INA	1			1	
<i>J</i> 022			Б	3	uisease	X						
CNSR30	F	69	DYRK1	Abdominal obesity-	Other	NM_004714:exon3:	NA	LP			Y	
9338			В	metabolic syndrome	disease	c.149_150del:p.V5						
				3		Ofs						
CNSR30	Μ	60	ENG	Telangiectasia,	Other	NM_000118:exon2:	Р	VUS			Y	
3561				hereditary	disease	c.G219A:p.T73T						
				hemorrhagic, type 1								
CNSR30	Μ	45	FLCN	Birt-Hogg-Dube	Other	NM_144997:exon1	NA	LP			Y	
4704				syndrome	disease	2:c.1381dupA:p.S4						
						61fs						
CNSR30	Μ	72	FLCN	Birt-Hogg-Dube	Other	NM_144997:exon4:	NA	LP			Y	
7128		- 0		syndrome	disease	c.7delG:p.A3fs	_					
CNSR30	F	58	FLCN	Birt-Hogg-Dube	Other	NM_144997:exon1	Р	LP			Y	
9913				syndrome	disease	1:c.1285dupC:p.H4						
						29fs	_					
CNSR30	Μ	47	FLCN	Birt-Hogg-Dube	Other	NM_144997:exon1	Р	LP			Y	
9961				syndrome	disease	1:c.1285dupC:p.H4						
(1) (2) A (~ 1	ET COL			29fs						
CNSR31	Μ	61	FLCN	Birt-Hogg-Dube	Other	NM_144997:exon9:	NA	Р			Y	
0041				syndrome	disease	c.C1015T:p.Q339X						
CNSR30	F	44	GLA	Fabry Disease	Other	NM_000169:exon3:	NA	LP		Y		
4882		-	GT 1		disease	c.514delT:p.C1/2fs	-					
CNSR30	Μ	76	GLA	Fabry Disease	Other	c.639+919G>A	Р	VUS		Y		
6744	-			D1 1	disease							
CNSR30	F	84	KIFIB	Pheochromocytoma	Other	NM_0150/4:exon6:	NA	Р			Y	
1291				D1 1	disease	c.C4631:p.R155X						
CNSR30	Μ	84	KIFIB	Pheochromocytoma	Other	NM_183416:exon2	NA	LP			Y	
8367					disease	1:c.1996delG:p.G6						
		1		1		66fs			1	1		

91

Code_n	Ge nde	Age	Gene	Phenotype	Etiology of stroke	Mutation	Clinvar	ACMG	Defin ite	Possi ble	Undete rmined	Insufficient Information
	r											
CNSR30	М	56	KRIT1	Cerebral cavernous	Other	NM_194454:exon1	Р	Р	Y			
0249				malformations-1	disease	3:c.G1391A:p.W46						
						4X						
CNSR30	F	51	KRIT1	Cerebral cavernous	Other	NM_194456:exon8:	NA	LP			Y	
2326				malformations-1	disease	c.45/dupA:p.1153f						
CNSR30	F	60	KRIT1	Cerebral cavernous	Other	S NM 194456:exon6:	NΛ	P			V	
4825	1	00	KKITI	malformations-1	disease	c.262+1G>A	1174	1			1	
CNSR30	М	63	KRIT1	Cerebral cavernous	Other	NM 194456:exon5:	NA	LP			Y	
5230				malformations-1	disease	c.T33G:p.Y11X						
CNSR30	М	51	KRIT1	Cerebral cavernous	Other	NM_194456:exon9:	NA	LP			Y	
9657				malformations-1	disease	c.T585A:p.Y195X						
CNSR30	Μ	52	NF1	Neurofibromatosis 1	Other	NM_000267:exon4	NA	Р		Y		
5024					disease	1:c.C6349T:p.Q211						
						7X	_					
CNSR30	М	53	NF1	Neurofibromatosis 1	Other	NM_000267:exon1	Р	LP		Y		
5340					disease	8:c.2027dupC:p.16						
CNSD20	м	72	NE1	Nourofibromotogia 1	Other	/01S	I D	VIIC		V		
7410	101	13	INFT	Incuroribionatosis i	disease	a G470 A = P160 K	LF	v03		1		
CNSR30	м	53	PDF4D	Acrodysostosis 2	Other	NM 001165899 ex	NΔ	р			v	
4809	141	55	I DL-D	with or without	disease	on3:c G94T:n G32	142 \$	1			1	
				hormone resistance		X						
CNSR30	F	62	PDE4D	Acrodysostosis 2,	Other	NM 001197223:ex	NA	LP			Y	
4838				with or without	disease	on1:c.18 21del:p.Y						
				hormone resistance		6fs - 1						
CNSR30	М	60	PKD1	ADPKD	Other	NM_001009944.3(Р	VUS			Y	
0154					disease	PKD1):c.7065+9C>						
					1	Т			1			

Code_n	Ge	Age	Gene	Phenotype	Etiology of	Mutation	Clinvar	ACMG	Defin	Possi	Undete	Insufficient
	nae r				stroke				ite	ble	rminea	Information
CNSR30 0265	M	53	PKD1	ADPKD	Other disease	NM_001009944:ex on10:c.1987delC:p. Q663fs	NA	LP		Y		
CNSR30 1236	М	69	PKD1	ADPKD	Other disease	NM_001009944:ex on44:c.G12036A:p. W4012X	Р	Р		Y		
CNSR30 1587	F	64	PKD1	ADPKD	Other disease	NM_001009944:ex on29:c.C9829T:p.R 3277C	P/LP	VUS			Y	
CNSR30 4664	F	49	PKD1	ADPKD	Other disease	NM_001009944:ex on11:c.T2534G:p.L 845W	NA	LP			Y	
CNSR30 6045	F	56	PKD1	ADPKD	Other disease	NM_001009944:ex on19:c.G7494A:p. W2498X	NA	Р			Y	
CNSR30 6128	М	65	PKD1	ADPKD	Other disease	NM_001009944:ex on34:c.10499+1G> A	NA	Р			Y	
CNSR30 9549	М	47	PKD1	ADPKD	Other disease	NM_001009944:ex on11:c.T2534C:p.L 845S	P/LP	VUS			Y	
CNSR30 9966	F	50	PKD1	ADPKD	Other disease	NM_001009944:ex on45:c.G12391T:p. E4131X	Р	Р			Y	
CNSR30 1946	М	67	PKD2	ADPKD	Other disease	NM_000297:exon3: c.779delC:p.T260fs	NA	LP			Y	
CNSR30 1999	F	54	PKD2	ADPKD	Other disease	NM_000297:exon4: c.C958T:p.R320X	Р	Р	Y			
CNSR30 3365	М	53	PKD2	ADPKD	Other disease	NM_000297:exon4: c.1094+1G>C	NA	Р	Y			

Code_n	Ge	Age	Gene	Phenotype	Etiology of	Mutation	Clinvar	ACMG	Defin	Possi	Undete	Insufficient
	nae r				stroke				ne	ble	rminea	Information
CNSR30 4191	F	57	PKD2	ADPKD	Other disease	NM_000297:exon1 4:c.C2533T:p.R845 X	Р	Р	Y			
CNSR30 8318	М	59	PKD2	ADPKD	Other disease	NM_000297:exon1 2:c.G2305T:p.E769 X	LP	Р	Y			
CNSR30 8733	F	63	PKD2	ADPKD	Other disease	NM_000297:exon6: c.T1506G:p.Y502X	NA	Р	Y			
CNSR30 1009	F	76	RET	Medullary thyroid carcinoma or Pheochromocytoma	Other disease	NM_020975:exon1 4:c.G2410A:p.V80 4M	P/LP	VUS			Y	
CNSR30 1675	М	62	RET	Medullary thyroid carcinoma or Pheochromocytoma	Other disease	NM_020975:exon1 4:c.G2410A:p.V80 4M	P/LP	VUS			Y	
CNSR30 3165	F	61	RET	Medullary thyroid carcinoma or Pheochromocytoma	Other disease	NM_020975:exon1 4:c.G2410A:p.V80 4M	P/LP	VUS			Y	
CNSR30 5395	М	60	RET	Medullary thyroid carcinoma or Pheochromocytoma	Other disease	NM_020975:exon1 3:c.G2370T:p.L790 F	Р	VUS			Y	
CNSR30 9526	F	64	RET	Medullary thyroid carcinoma or Pheochromocytoma	Other disease	NM_020975:exon1 3:c.G2370T:p.L790 F	Р	VUS			Y	
CNSR31 0343	М	68	RET	Medullary thyroid carcinoma or Pheochromocytoma	Other disease	NM_020975:exon1 4:c.G2410A:p.V80 4M	P/LP	VUS			Y	
CNSR30 3341	М	44	TGIF1	Holoprosencephaly 4	Other disease	NM_173208:exon3: c.C83T:p.S28F	NA	LP			Y	
CNSR30 8090	F	71	TGIF1	Holoprosencephaly 4	Other disease	NM_173208:exon4: c.A451G:p.T151A	Р	VUS			Y	

Code_n	Ge	Age	Gene	Phenotype	Etiology of	Mutation	Clinvar	ACMG	Defin	Possi	Undete	Insufficient
	nde				stroke				ite	ble	rmined	Information
	r											
CNSR30	М	66	TGIF1	Holoprosencephaly 4	Other	NM_173208:exon4:	Р	VUS			Y	
8126					disease	c.A451G:p.T151A						
CNSR30	М	62	VHL	Pheochromocytoma	Other	NM 000551:exon3:	NA	LP				Y
4572					disease	c.A479G:p.E160G						

Code_n	Gend er	Age	Gene	Phenotype	Etiology of stroke	Mutation	Clinv ar	ACM G	Defin ite	Possi ble	Undet ermin ed	Insufficient Information
CNSR30 0094	М	70	CETP	Hyperalphalipoprot einemia	Large artery disease	NM_000078:exon2:c.C1 60T:p.R54X	NA	LP			Y	
CNSR30 0094	М	70	VWF	von Willebrand disease, type 1	Prothrombotic state	NM_000552:exon28:c.C 4909T:p.Q1637X	NA	Р		Y		
CNSR30 0101	М	68	LDL R	Hypercholesterolem ia, familial, 1	Large artery disease	NM_000527:exon3:c.49 7delinsGGATCCCCCA GCTGCATCCCCCAG: p.A166GfsX48	LP	VUS		Y		
CNSR30 0101	М	68	RNF2 13	Moyamoya disease	Large artery disease	NM_001256071:exon60: c.G14429A:p.R4810K	Р	VUS			Y	
CNSR30 0197	F	67	JAK2	Thrombocythemia 3	Prothrombotic state	NM_004972:exon14:c.G 1849T:p.V617F	Р	VUS	Y			
CNSR30 0197	F	67	SERP INC1	Thrombophilia due to antithrombin III deficiency	Prothrombotic state	NM_000488:exon2:c.C2 35T:p.R79C	LP	VUS			Y	
CNSR30 0499	F	82	ELN	SVAS	Large artery disease	c.639+919G>A	NA	Р			Y	
CNSR30 0499	F	82	GLA	Fabry Disease	Other disease	NM_000501:exon14:c. 686-2A>G	Р	VUS		Y		
CNSR30 0830	М	64	KCN Q1	Hereditary cardiac dysrhythm	Embolic stroke	NM_000218:exon3:c.T 560C:p.L187P	P/LP	VUS		Y		
CNSR30 0830	М	64	RNF 213	Moyamoya disease	Large artery disease	NM_001256071:exon6 0:c.G14429A:p.R4810 K	Р	VUS			Y	
CNSR30 1010	М	55	LDL R	Hypercholesterole mia, familial, 1	Large artery disease	NM_000527:exon5:c.G 796A:p.D266N	P/LP	VUS			Y	

eTable 4 Diagnoses of 29 individuals harbored more than 2 P/LP variants in different genes

Code_n	Gend er	Age	Gene	Phenotype	Etiology of stroke	Mutation	Clinva r	AC MG	Defin ite	Possi ble	Undeter mined	Insufficient Information
CNSR30 1010	М	55	PDE 4D	Acrodysostosis 2, with or without hormone resistance	Other disease	NM_001197220:exon 1:c.65+1G>A	NA	Р			Y	
CNSR30 1223	М	53	SCN2 B	Hereditary cardiac dysrhythm	Embolic stroke	NM_004588:exon2:c.C 142G:p.L48V	NA	LP			Y	
CNSR30 1223	М	53	LDL R	Hypercholesterole mia, familial, 1	Large artery disease	NM_000527:exon5:c.G 805A:p.G269S	P/LP	VU S	Y			
CNSR30 1496	М	47	JAK2	Thrombocythemia 3	Prothrombotic state	NM_004972:exon14:c. G1849T:p.V617F	Р	VU S	Y			
CNSR30 1496	М	47	NF1	Neurofibromatosi s 1	Other disease	NM_000267:exon25:c. 3240delA:p.L1080fs	NA	LP		Y		
CNSR30 1738	F	64	FBN1	Marfan syndrome	Large artery disease	NM_000138:exon27:c. C3268G:p.P1090A	NA	LP			Y	
CNSR30 1738	F	64	RNF2 13	Moyamoya disease	Large artery disease	NM_001256071:exon6 0:c.G14429A:p.R4810 K	Р	VU S		Y		
CNSR30 1797	М	77	F2	Thrombophilia due to thrombin defect	Prothrombotic state	NM_000506:exon11:c. G1303A:p.E435K	NA	LP			Y	
CNSR30 1797	М	77	VWF	von Willebrand disease, type 1	Prothrombotic state	NM_000552:exon44:c. G7450A:p.V2484I	LP	VU S			Y	
CNSR30 2006	М	46	KCN A5	Hereditary cardiac dysrhythm	Embolic stroke	NM_002234:exon1:c.C 1727T:p.A576V	Р	VU S			Y	
CNSR30 2006	М	46	RNF2 13	Moyamoya disease	Large artery disease	NM_001256071:exon6 0:c.G14429A:p.R4810 K	Р	VU S			Y	
CNSR30 2050	F	76	KCN Q1	Hereditary cardiac dysrhythm	Embolic stroke	NM_000218:exon6:c.G 815A:p.G272D	Р	VU S	Y			
CNSR30 2050	F	76	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:exon3 26:c.C85223G:p.S2840 8X	NA	Р			Y	

97

Code_n	Gend er	Age	Gene	Phenotype	Etiology of stroke	Mutation	Clinva r	AC MG	Defin ite	Possi ble	Undeter mined	Insufficient Information
CNSR30 2050	F	76	LDL R	Hypercholesterole mia, familial, 1	Large artery disease	NM_000527:exon13:c. G1898T:p.R633L	NA	Р	Y			
CNSR30 2176	М	63	CETP	Hyperalphalipopr oteinemia	Large artery disease	NM_000078:exon2:c.T 222G:p.Y74X	NA	LP			Y	
CNSR30 2176	М	63	F2	Thrombophilia due to thrombin defect	Prothrombotic state	NM_000506:exon7:c.G 691A:p.G231R	NA	LP			Y	
CNSR30 3412	F	70	GJA1	Atrioventricular septal defect 3	Embolic stroke	NM_000165:exon2:c.G 158A:p.R53H	NA	LP			Y	
CNSR30 3412	F	70	KCN A5	Hereditary cardiac dysrhythm	Embolic stroke	NM_002234:exon1:c.C 1727T:p.A576V	Р	VU S			Y	
CNSR30 3485	М	50	JAK2	Thrombocythemia 3	Prothrombotic state	NM_004972:exon14:c. G1849T:p.V617F	Р	VU S			Y	
CNSR30 3485	М	50	DYR K1B	Abdominal obesity-metabolic syndrome 3	Other disease	NM_004714:exon8:c.C 1072T:p.R358X	NA	Р			Y	
CNSR30 3619	М	65	CETP	Hyperalphalipopr oteinemia	Large artery disease	NM_000078:exon11:c. 1115_1127del:p.Q372f s	NA	LP			Y	
CNSR30 3619	М	65	COL 4A2	Brain small vessel disease 2	Small vessel disease	NM_001846:exon39:c. G3589A:p.G1197S	NA	LP			Y	
CNSR30 3839	М	55	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_001267550:exon3 24:c.69145delA:p.I230 49fs	NA	LP		Y		
CNSR30 3839	М	55	SERP INC1	Thrombophilia due to antithrombin III deficiency	Prothrombotic state	NM_000488:exon3:c.T 442C:p.S148P	Р	VU S			Y	
CNSR30 3839	М	55	VWF	von Willebrand disease, type 1	Prothrombotic state	NM_000552:exon14:c. 1614delC:p.P538	NA	LP			Y	
CNSR30 4342	М	53	KCN A5	Hereditary cardiac dysrhythm	Embolic stroke	NM_002234:exon1:c.C 1727T:p.A576V	Р	VU S			Y	

98

Code_n	Gend er	Age	Gene	Phenotype	Etiology of stroke	Mutation	Clinva r	AC MG	Defin ite	Possi ble	Undeter mined	Insufficient Information
CNSR30 4342	М	53	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_133379:exon46:c. C13231T:p.Q4411X	NA	LP			Y	
CNSR30 6238	F	74	CETP	Hyperalphalipopr oteinemia	Large artery disease	NM_000078:exon13:c. 1225_1226insAGACT: p.K409fs	NA	LP			Y	
CNSR30 6238	F	74	PRN P	Cerebral amyloid angiopathy, PRNP-related	Small vessel disease	NM_000311:exon2:c.G 538A:p.V180I	P/LP	VU S		Y		
CNSR30 6857	М	74	TTN	Hereditary cardiomyopathies	Embolic stroke	NM_133379:exon46:c. 13109delC:p.S4370X	NA	LP			Y	
CNSR30 6857	М	74	RNF2 13	Moyamoya disease	Large artery disease	NM_001256071:exon6 0:c.G14429A:p.R4810 K	Р	VU S			Y	
CNSR30 6857	М	74	F2	Thrombophilia due to thrombin defect	Prothrombotic state	NM_000506:exon2:c.T 80C:p.V27A	NA	LP			Y	
CNSR30 6857	М	74	VWF	von Willebrand disease, type 1	Prothrombotic state	NM_000552:exon20:c. G2561A:p.R854Q	P/LP	VU S			Y	
CNSR30 7276	М	53	PRO C	Thrombophilia due to protein C deficiency, autos	Prothrombotic state	NM_000312:exon9:c.G 1000A:p.G334S	Р	VU S			Y	
CNSR30 7276	М	53	COL 4A2	Brain small vessel disease 2	Small vessel disease	NM_001846:exon30:c. 2577_2578insGG	NA	LP				Y
CNSR30 7448	М	64	MFA P5	Aortic aneurysm, familial thoracic 9	Large artery disease	NM_003480:exon10:c. C472T:p.R158X	Р	VU S			Y	
CNSR30 7448	М	64	TGIF 1	Holoprosencephal y 4	Other disease	NM_173208:exon4:c.A 451G:p.T151A	Р	VU S			Y	
CNSR30 7803	М	64	VWF	von Willebrand disease, type 1	Prothrombotic state	NM_000552:exon22:c. C2965T:p.Q989X	NA	Р			Y	
CNSR30 7803	М	64	NOT CH3	CADASIL	Small vessel disease	NM_000435:exon11:c. C1759T:p.R587C	NA	LP	Y			

Code_n	Gend er	Age	Gene	Phenotype	Etiology of stroke	Mutation	Clinva r	AC MG	Defin ite	Possi ble	Undeter mined	Insufficient Information
CNSR30 8769	М	58	ELN	SVAS	Large artery disease	splicing	Р	Р			Y	
CNSR30 8769	М	58	LDL R	Hypercholesterole mia, familial, 1	Large artery disease	NM_000527:exon10:c. G1567A:p.V523M	Р	VU S		Y		
CNSR30 8831	М	42	COL 4A2	Brain small vessel disease 2	Small vessel disease	NM_001846:exon12:c. G701T:p.G234V	NA	LP			Y	
CNSR30 8831	М	42	PKD 1	ADPKD	Other disease	NM_001009944:exon4 5:c.G12391T:p.E4131 X	Р	Р			Y	
CNSR30 9790	М	57	RBM 20	Hereditary cardiomyopathies	Embolic stroke	NM_001134363:exon2 :c.870delA:p.S290fs	NA	LP			Y	
CNSR30 9790	М	57	TTR	Amyloidosis, hereditary, transthyretin- related	Small vessel disease	NM_000371:exon2:c.C 170A:p.A57D	NA	LP				Y
CNSR31 0131	М	60	MYB PC3	Hereditary cardiomyopathies	Embolic stroke	NM_000256:exon12:c. 1042_1043insCGGCA: p.M348fs	Р	LP			Y	
CNSR31 0131	М	60	NOT CH3	CADASIL	Small vessel disease	NM_000435:exon11:c. C1630T:p.R544C	P/LP	VU S	Y			
CNSR31 0244	М	53	GAT A4	Tetralogy of Fallot	Embolic stroke	NM_001308093:c.100 0+103G>T	Р	VU S			Y	
CNSR31 0244	М	53	NF1	Neurofibromatosi s 1	Other disease	NM_000267:exon14:c. 1541_1542del:p.Q514f s	Р	LP		Y		
CNSR31 0283	М	59	GJA5	Hereditary cardiac dysrhythm	Embolic stroke	NM_005266:exon2:c.C 292T:p.H98Y	NA	LP		Y		
CNSR31 0283	М	59	NOT CH3	CADASIL	Small vessel disease	NM_000435:exon3:c.C 328T:p.R110C	Р	VU S	Y			
Code	Gender	Age	Gene	Mutation	Clinvar	ACMG	Phenotype					
------------	--------	-----	-------	--	---------	------	--------------------------					
CNSR309580	F	66	ABCC6	NM_001171: exon26: c.C3703T: p.R1235W	Р	VUS	Pseudoxanthoma elasticum					
CNSR301384	М	53	ABCC6	NM_001171: exon31: c.4404-1G>A	NA	Р	Pseudoxanthoma elasticum					
CNSR301384	М	53	ABCC6	NM_001171: exon24: c.C3490T: p.R1164X	Р	Р	Pseudoxanthoma elasticum					
CNSR309564	М	37	ABCC6	NM_001171: exon26: c.C3703T: p.R1235W	Р	VUS	Pseudoxanthoma elasticum					
CNSR309564	М	37	ABCC6	NM_001171: exon28: c.G3892A: p.V1298I	NA	LP	Pseudoxanthoma elasticum					
CNSR310336	М	48	ABCC6	NM_001171: exon26: c.3735+1G>T	NA	Р	Pseudoxanthoma elasticum					
CNSR310336	М	48	ABCC6	NM_001171: exon23: c.C3304T: p.Q1102X	NA	Р	Pseudoxanthoma elasticum					

eTable 5 Four individuals with 2 P/LP variants in the ABCC6 gene

Characteristic	ToTal (N=759)	Embolic stroke (N=245, 32.28)	Large artery disease (N=184, 24.24)	Prothrombotic state (N=124, 16.34)	Small vessel disease (N=148, 19.50)	Other disease (N=58, 7.64)
Age at time of study entry, mean±SD	61.53±11.50	61.91±12.23	60.43±12.22	62.78±10.54	61.52±10.59	60.71±10.05
≤45 yr	66 (8.70)	21 (8.57)	21 (11.41)	8 (6.45)	13 (8.78)	4 (6.90)
> 45 yr	693 (91.30)	226 (92.24)	163 (88.59)	116 (93.55)	135 (91.22)	54 (93.10)
Male, n (%)	504 (66)	162 (66.12)	119 (64.67)	89 (71.77)	98 (66.22)	36 (62.07)
Medical history, n (%)						
Ischaemic stroke	193 (25.43)	56 (22.86)	42 (22.83)	30 (24.19)	47 (31.76)	18 (31.03)
Coronary heart diseases	98 (12.91)	36 (14.69)	15 (8.15)	17 (13.71)	22 (14.86)	8 (13.79)
Atrial fibrillation	64 (8.43)	25 (10.20)	14 (7.61)	10 (8.06)	9 (6.08)	6 (10.35)
Hypertension	452 (59.55)	139 (56.73)	119 (64.67)	71 (57.26)	81 (54.73)	42 (72.41)
Diabetes mellitus	177 (23.32)	57 (23.27)	45 (24.46)	29 (23.39)	28 (18.92)	18 (31.03)
Dyslipidemia	68 (8.96)	26 (10.61)	10 (5.43)	8 (6.45)	18 (12.12)	6 (10.35)
Stroke type						
IS	718 (94.60)	233 (95.10)	171 (92.93)	119 (95.97)	142 (95.95)	53 (91.38)
TIA	41 (5.40)	12 (4.90)	13 (7.07)	5 (4.03)	6 (4.05)	5 (8.62)
Family history of Stroke	97 (12.78)	38 (15.51)	24 (13.04)	13 (10.48)	15 (10.14)	7 (12.07)
CCS						
Large artery atherosclerosis	220 (28.99)	66 (26.94)	70 (38.04)	33 (26.61)	40 (27.03)	11 (18.97)
Cardioaortic embolism	57 (7.51)	27 (11.02)	10 (5.43)	6 (4.84)	8 (5.41)	6 (10.35)
Small arterial occlusion	191 (25.16)	66 (26.94)	36 (19.57)	27 (21.77)	43 (29.05)	19 (32.76)
Other etiologies	11 (1.45)	1 (0.41)	6 (3.26)	1 (0.81)	3 (2.03)	0 (0.00)
Undetermined etiology	280 (36.89)	85 (34.69)	62 (33.70)	57 (45.97)	54 (36.49)	22 (37.93)

eTable 6 Characteristics of the Patients with one MGD in C3 cohort

Code_n	Mendelian caused of stroke through EHR reviewed	Gene	Age	Gender
CNSR301140	Thrombocythemia	JAK2;exon11:c.G1402T:p.V468F,	67	Female
CNSR301496	Thrombocythemia	JAK2;exon11:c.G1402T:p.V468F,	47	Male
CNSR302832	Thrombocythemia	JAK2;exon11:c.G1402T:p.V468F,	63	Male
CNSR307039	Thrombocythemia	JAK2;exon11:c.G1402T:p.V468F,	66	Male
CNSR307566	Thrombocythemia	JAK2;exon11:c.G1402T:p.V468F,	62	Female
CNSR309872	Thrombocythemia	JAK2;exon11:c.G1402T:p.V468F,	75	Male
CNSR303251	Small vessel disease, CADASIL	NOTCH3;exon11:c.C1630T:p.R544C	64	Female
CNSR305508	Small vessel disease, CADASIL	NOTCH3;exon11:c.C1630T:p.R544C	57	Male
CNSR306929	Small vessel disease, CADASIL	NOTCH3;exon11:c.C1630T:p.R544C	39	Male
CNSR307912	Small vessel disease, CADASIL	NOTCH3;exon11:c.C1630T:p.R544C	65	Male
CNSR308967	Small vessel disease, CADASIL	NOTCH3;exon11:c.C1819T:p.R607C	63	Male
CNSR301757	Small vessel disease, CADASIL	NOTCH3;exon18:c.C2898A:p.C966X	46	Male
CNSR310283	Small vessel disease, CADASIL	NOTCH3;exon3:c.C328T:p.R110C	59	Male
CNSR307044	Small vessel disease, CADASIL	NOTCH3;exon4:c.G671A:p.C224Y	52	Female
CNSR302455	Moyamoya	RNF213;exon60:c.G14429A:p.R4810K	27	Female
CNSR304840	Moyamoya,PFO?	RNF213;exon60:c.G14429A:p.R4810K	30	Male
CNSR306251	Moyamoya	RNF213;exon60:c.G14429A:p.R4810K	48	Female

eTable '	7 The	characteristics	s of individual	s who had	been diagnose	d monogenic stroke	before gene testing
						······································	