Identifying sex-specific differences in the carotid revascularisation literature: findings from a scoping review

Vignyan Yogendrakumar, Michel Shamy, Brian Dewar, Dean A Fergusson, Dar Dowlutshahi, Candycy Hamel, Sophia Gocan, Mark Fedyk, Jean-Louis Mas, Peter Rothwell, Virginia Howard, Olena Bereznyakova, On behalf of the WoW-CAD Investigators

ABSTRACT

Objective No systematic review of the literature has dedicated itself to looking at the management of symptomatic carotid stenosis in female patients. In this scoping review, we aimed to identify all randomised controlled trials (RCTs) that reported sex-specific outcomes for patients who underwent carotid revascularisation, and determine whether sufficient information is reported within these studies to assess short-term and long-term outcomes in female patients.

Design, setting and participants We systematically searched Medline, Embase, Pubmed and Cochrane libraries for RCTs published between 1991 and 2020 that included female patients and compared either endarterectomy with stenting, or any revascularisation (endarterectomy or stenting) with medical therapy in patients with symptomatic high-grade (>50%) carotid stenosis.

Results From 1537 references examined, 27 eligible studies were identified. Sex-specific outcomes were reported in 13 studies. Baseline patient characteristics of enrolled female patients were reported in 2 of those 13 studies. Common outcomes reported included stroke and death, however, there was significant heterogeneity in the reporting of both periprocedural and long-term outcomes. Sex-specific differences relating to the degree of stenosis and time from index event to treatment are largely limited to studies comparing endarterectomy to medical therapy. Adverse events were not reported by sex.

Conclusions Only half of the previously published RCTs and systematic reviews report sex-specific outcomes. Detailed analyses on the results of carotid artery intervention for female patients with symptomatic stenosis are limited.

INTRODUCTION

Carotid revascularisation can benefit select patients with symptomatic carotid stenosis. However, there is debate within the community regarding the degree of benefit observed in female patients. Interpretation of extant trial data is challenging, as the trials were not designed to study sex differences, and it is unknown whether observed differences reflect true biological differences or relate to study sampling. In addition, while interaction terms have been non-significant in many of the major trials, there has been, in general, an under-representation of female patients within carotid stenosis trials. A failure to see an interaction effect may therefore reflect inadequate statistical power. This has led to the proposal of novel randomised controlled trials (RCTs) of carotid revascularisation versus best medical therapy (BMT) in women only. These RCTs would randomise female patients away from standard-of-care interventions and would need to have a strong scientific foundation to be ethically justifiable.

While prior systematic reviews have looked at sex-based differences in carotid stenosis management, they have focused on carotid endarterectomy (CEA) in asymptomatic and symptomatic patients, or included non-randomised data, resulting in heterogeneous findings. No systematic review has yet addressed the optimal management (CEA, carotid stenting (CAS) or BMT) of female patients with recently symptomatic high-grade carotid stenosis.

The goal of this scoping review is to determine whether the benefit of carotid revascularisation in female patients can be reliably assessed using existing RCT data, and whether there are sufficient data on outcomes to assess the need for future trials.

METHODS

The authors declare that all supporting data and methodological detail are available within the article and online-only supplement. The protocol for this study was previously published, and this study complies with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension statement for scoping reviews. As a scoping review, our aim was to identify publications of RCTs or related material (systematic reviews, meta-analyses) that reported sex-specific data in relation to the management
of symptomatic carotid stenosis (surgical intervention (CEA, CAS) and/or BMT). Symptomatic stenosis was defined as carotid narrowing greater than 50% (or equivalent measurement) associated with an ipsilateral transient ischemic attack (TIA), amaurosis fugax or stroke. We relied on individual trial reporting of carotid stenosis and outcomes, or summary analysis reported by systematic reviews. Four databases were searched: Ovid Medline, Embase, PubMed and the Cochrane Library on Wiley from 1991 to 2018, as per our protocol7 with an updated

Table 1 List of studies with sex-specific outcomes

<table>
<thead>
<tr>
<th>Study</th>
<th>Female/male</th>
<th>Interventions</th>
<th>Per cent stenosis</th>
<th>Outcome(s) assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECST11</td>
<td>850/2168</td>
<td>CEA/BMT</td>
<td>0%–99%</td>
<td>Model of stroke-free life expectancy stratified by age and per cent stenosis</td>
</tr>
<tr>
<td>NASCET12</td>
<td>873/2012</td>
<td>CEA/BMT</td>
<td>>70%; 50%–69%;<50%</td>
<td>5-year risk of ipsilateral stroke stratified by per cent stenosis</td>
</tr>
<tr>
<td>SPACE13–14</td>
<td>338/858</td>
<td>CEA/CAS</td>
<td>>50%</td>
<td>▶ 30-day risk of death of any cause, ipsilateral stroke or haemorrhage</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>▶ 30-day risk of stroke and death and 2-year risk of ipsilateral ischaemic stroke</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(combined)</td>
</tr>
<tr>
<td>EVA-3S15</td>
<td>130/397</td>
<td>CEA/CAS</td>
<td>>60%</td>
<td>30-day risk of death, any stroke and 4-year risk of ipsilateral stroke (combined)</td>
</tr>
<tr>
<td>CAVATAS16</td>
<td>152/352</td>
<td>CEA/CAS</td>
<td>>60%</td>
<td>8-year risk of any stroke or perioperative death (combined)</td>
</tr>
<tr>
<td>ICSS17</td>
<td>503/1207</td>
<td>CEA/CAS</td>
<td>>50%</td>
<td>120-day risk of stroke, death or myocardial infarction (combined)</td>
</tr>
<tr>
<td>CREST18</td>
<td>872/1630</td>
<td>CEA/CAS</td>
<td>>50%</td>
<td>▶ 30-day risk of myocardial infarction, stroke or death</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>▶ 4-year risk of myocardial infarction, stroke or death</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>▶ 30-day (myocardial infarction, stroke or death) and 10-year risk of ipsilateral</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>stroke (combined)</td>
</tr>
<tr>
<td>NASCET and ESCT13-15</td>
<td>1718/4175</td>
<td>CEA/BMT</td>
<td>>50%</td>
<td>▶ 5-year relative risk of ipsilateral ischaemic stroke or death, stratified by time from last symptomatic event to randomisation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>▶ 5-year risk of stroke and death in surgery patients, stratified by per cent stenosis and time from last symptomatic event to randomisation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>▶ 5-year risk of ipsilateral ischaemic stroke and any stroke or death within 30 days of randomisation (combined)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>▶ 5-year risk of ipsilateral ischaemic stroke and any stroke or death within 30 days of randomisation (combined), stratified by per cent stenosis</td>
</tr>
<tr>
<td>EVA-3S, SPACE, ICSS, CREST trials9</td>
<td>1437/3317</td>
<td>CEA/CAS</td>
<td>Multiple thresholds</td>
<td>▶ 120-day risk of any stroke or death and 5-year risk of ipsilateral stroke (combined)</td>
</tr>
<tr>
<td>EVA-3S, SPACE, BACASS, ICSS, CREST trials10</td>
<td>1466/3395</td>
<td>CEA/CAS</td>
<td>Multiple thresholds</td>
<td>▶ 5-year risk of ipsilateral stroke (combined)</td>
</tr>
</tbody>
</table>

BACASS, Basel Carotid Artery Stenting Study; BMT, best medical therapy; CAS, carotid artery stenting; CAVATAS, Carotid And Vertebral Artery Transluminal Angioplasty Study; CEA, carotid endarterectomy; CREST, Carotid Revascularisation Endarterectomy Versus Stenting Trial; ECST, European Carotid Surgery Trial; EVA-3S, Endarterectomy Versus Angioplasty in Patients with Symptomatic Severe Carotid Stenosis; ICSS, International Carotid Stenting Study; NASCET, North American Symptomatic Carotid Endarterectomy Trial; SPACE, Stent-Supported Percutaneous Angioplasty of the Carotid Artery Versus Endarterectomy.
RESULTS
We identified 13 studies reporting sex-specific outcomes (table 1 and online supplemental figure 1 and table II) representing eight RCTs, three individual patient-data meta-analyses and 3184 female patients.3,4,9-18 Inclusion criteria were largely consistent across studies with the majority recruiting symptomatic patients (TIA, non-disabling ipsilateral stroke or retinal infarction), with carotid stenosis >50% based on either North American Symptomatic Carotid Endarterectomy Trial (NASCET) Collaborators or European Carotid Surgery Trialists’ (ESCT) Collaborative Group criteria. Asymptomatic patients were also recruited in Carotid Revascularisation Endarterectomy Versus Stenting Trial (CREST).3 Baseline patient characteristics by sex were reported in two sub-analyses of the NASCET and CREST (online supplemental table III).3,12 Individual patient data meta-analyses that compared CEA to BMT4 or CEA to CAS5,10 did not evaluate sex-specific baseline characteristics.

Commonly reported outcomes included stroke (any or ipsilateral), death (any cause) or a combination thereof. The timepoints at which these outcomes were evaluated varied widely from trial to trial. Individual trials reported a range of follow-up times for long-term outcomes (2–10 years), often combining these measures with periprocedural events (30-day events; figure 1). A Cochrane analysis comparing CEA to CAS was able to assess 30-day periprocedural risk of death and stroke by acquiring individual patient data from five trials.10 Sex-specific assessments of long-term outcomes were largely limited to 5-year risk of stroke (ipsilateral or any)±death.4,5 Sex-specific differences relating to the degree of stenosis were only reported in studies comparing CEA to BMT.15

Overall, the individual patient data meta-analysis of NASCET and ESCT reported a lower absolute risk (ARR) for 5-year stroke and periprocedural death with CEA in women compared with men (2.8% (2.2-7.8) vs 11.0% (7.6–14.4)).4 When stratified by per cent stenosis, women with ≥70% benefited from the procedure (ARR: 9.9%), while those with 50%–69% stenosis did not. A similar pattern was observed with time to procedure: only women who had a CEA performed within 2 weeks of the index event had a significant reduction in recurrent stroke.4 Comparing CEA to CAS at 30 days, there was a non-significant trend towards an increased hazard with CAS.10 No study compared CAS to BMT. Adverse events were not reported by sex.

DISCUSSION
We sought to perform a scoping review of the literature to determine the type and amount of information available relating to different management strategies for female patients with symptomatic carotid stenosis. Individual patient data analyses from high quality trials have reported on female outcomes for only select comparisons (CEA to BMT and CEA to CAS) in relation to specific outcome measures, (eg, 30-day outcome and 5-year ipsilateral stroke). No conclusions can be drawn about CAS versus CEA, or in relation to per cent stenosis or time to treatment. However, our appraisal of data available within individual trials indicates that a detailed, aggregated

Figure 1 Sex-specific long-term outcomes. n represents the number of female patients. Pattern areas represent pooled individual patient data analysis.
subgroup analysis in female compared to male patients is possible (table 1 and online supplemental table II). We contend that such an analysis would be necessary before female-only RCTs of carotid revascularisation are considered. A trial that would randomise female patients with symptomatic carotid stenosis away from standard revascularisation would need a strong scientific argument to be ethically justified,19 and we believe our scoping review demonstrates that more work is needed to draw any conclusions from the available scientific evidence.

Author affiliations
1 Department of Medicine, Division of Neurology and Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
2 Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
3 Stroke Prevention Clinic, Ottawa Hospital, Ottawa, Ontario, Canada
4 Bioethics Program, UC Davis Department of Medicine, Sacramento, California, USA
5 Université Paris Descartes Faculté de Medecine Site Cochin, Paris, Ile-de-France, France
6 Service de Neurologie, Hôpital Sainte-Anne, Paris, France
7 The University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, USA
8 School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, USA

Contributors Study was designed and conceptualised by VF, MS and OB. Search and screening was performed by BD, CH and OB. Manuscript was drafted by VF. Critical manuscript revision was performed by DD, SS, MF, PR and WH for intellectual content.

Funding This work is funded by grants from the Heart and Stroke Foundation of Canada (Seed Catalyst Grant for Women’s Health; no award/grant number) and the Department of Medicine, University of Ottawa.

Competing interests None declared.

Patient consent for publication Not required.

Provenance and peer review Not commissioned; externally peer reviewed.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs
Vignan Yogendrakumar http://orcid.org/0000-0001-8814-6853
Mark Fedyk http://orcid.org/0000-0002-0815-662X

REFERENCES
SUPPLEMENTAL MATERIAL

- Methods and Search Results
- Supplemental Figure 1: PRISMA Diagram
- Table I: MEDLINE Search Terms
- Table II: Full List of Included Studies
- Table III: Baseline Characteristics of Selected Studies
- References
Supplemental Methods and Search Results:

Eligibility Criteria:
Studies related to asymptomatic carotid stenosis, carotid artery occlusions or near-occlusions, were excluded. Meta-analysis or systematic reviews reporting individual patient data from RCTs were also included, however observational studies, case series, and reports were not included due to the elevated risk of bias associated with non-randomized data. We had no restrictions on country of study, ethnicity, sex, socio-economic status of study populations, or healthcare location of research. We only included studies presented in the English and French language.

Information Sources and Search:
Supplementary searches included scanning the reference list of included studies and reviews identified through the primary search and ClinicalTrials.gov. The detailed search strategy using keywords and Medical Subject Headings (MeSH) terms is provided in Supplement Table I.

Study Selection:
Screening and full-text review was conducted using Covidence Systematic Review software (Covidence, Melbourne, Australia). A two-stage screening was performed by two independent reviewers (OB and BD). In stage one, both abstracts and titles were screened for potentially relevant articles. In stage two, full-text screening was performed using a screening form created a priori. A liberal accelerated method was utilized, requiring two reviewers to exclude a study. A pilot screening exercise was performed at both levels, with 100 records piloted for level 1 and 25 records piloted at level 2. Disputes were resolved by author, MS.

Data Charting Process and Selected Items:
Data extraction was conducted independently by each reviewer using an a priori collection form. We collected publication information, study population information, severity of ipsilateral carotid stenosis, type of ipsilateral event, treatment allocation, follow-up time, and outcome data.

Article Selection:
Among the 1,537 records retrieved, title and abstract screening narrowed our search to 90 articles that underwent full text screening. Reasons for exclusion included: assessment of different outcome, alternate study designs, and lack of full-text availability (i.e. published abstracts). All included studies were peer-reviewed original research contributions using clinical trial data.
Supplemental Figure 1: PRISMA Diagram

1,541 References Imported For Screening

4 Duplicates Removed

1,537 Studies - Abstract and Title Screening

1,448 Studies Excluded

90 Full-Text Studies Assessed for Eligibility

63 Studies Excluded:
- 19 - Full-text unavailable
- 13 – Outcomes other than stroke, MI, or death
- 13 - Incorrect study design (case-control etc.)
- 4 – Languages beyond English/French
- 5 – Duplicate Studies
- 1 - Halted Study Early
- 3 – Studies focused on Angioplasty
- 3 – Asymptomatic Stenosis Populations
- 1 – Studies focused on Redo-interventions
- 1 – Studies focused on Carotid Occlusions

27 Studies Examined

13 Studies Reporting Sex-Specific Data
Supplemental Table I: Sample Search Strategy

1 Carotid Stenosis/ or carotid stenosis.kw.
2 (carotid adj3 (stenos$ or ulcer$ or plaque$ or narrow$ or obstruct$ or occlus$ or constrict$)).tw.
3 1 or 2
4 Endarterectomy, Carotid
5 endarterectom*.tw,kw.
6 STENTS/ or stent*.tw,kw.
7 carotid revascularization.tw,kw.
8 or/4-7
9 3 and 8
10 WOMEN
11 Sex Characteristics
12 sex factors
13 (female or women).tw
14 (sex or gender or women or female).ti.
15 (gender based or gender specific).tw.
16 ((sex or gender) adj2 (difference* or disparit*)).tw.
17 or/10-16
18 9 and 17
19 randomized controlled trial.pt.
20 controlled clinical trial.pt.
21 randomi?ed.ab.
22 placebo.ab.
23 clinical trials as topic.sh.
24 randomly.ab.
25 trial.ti.
26 groups.ab.
27 or/19-26
28 9 and 27
29 symptomatic.tw,kw.
30 28 and 29
31 18 and 27
32 30 or 31
33 limit 32 to yr="1990 -Current"
34 case reports.pt.
35 33 not 34
36 limit 35 to (english or french)
Supplemental Table II: Full List of Included Studies (n=27)

<table>
<thead>
<tr>
<th>Study</th>
<th>Study Type</th>
<th>Interventions</th>
<th>Percent Stenosis</th>
<th>Outcome Assessed</th>
</tr>
</thead>
</table>
| North American Symptomatic Carotid Endarterectomy Trial Collaborators (NASCET) | RCT | CEA / BMT | 70-99% | - 2-year longitudinal collection of death and stroke events¹
- 8-year longitudinal collection of stroke events (disabling, ipsilateral)²
- 5-year risk of ipsilateral stroke stratified by percent stenosis (sex-specific data available)³ |
| European Carotid Surgery Trialists’ Collaborative Group (ECST) | RCT | CEA / BMT | 70-99% 0-29% | - 30-day risk of death or disabling stroke⁴
- 3-year longitudinal collection of death and stroke events⁴
- 8-year longitudinal collection of death and stroke events⁵
- Model of stroke-free life expectancy stratified by age and percent stenosis⁶ |
| Carotid and Vertebral Artery Transluminal Angioplasty Study (CAVATAS) | RCT | CEA / CAS | 70-99% 50-69% 0-49% | - 30-day risk of death or disabling stroke⁷
- 3-year longitudinal collection of death and stroke⁷
- Sex-specific 8-year longitudinal collection of stroke events (disabling, TIA) and/or death⁸ |
| Stenting and Angioplasty with Protection in Patients at High Risk for Endarterectomy (SAPPHIRE) | RCT | CEA / CAS | > 50%* > 80%† | Death, stroke, myocardial infarction + Composite at 1 year⁹ |
| Stent-Supported Percutaneous Angioplasty of the Carotid Artery versus Endarterectomy (SPACE) | RCT | CEA / CAS | > 50% | - 30-day risk of death, stroke, bleeding, or composite¹⁰
- Sex-specific 30 day risk of composite outcome¹⁰ |
<table>
<thead>
<tr>
<th>Study</th>
<th>Study Type</th>
<th>Interventions</th>
<th>Percent Stenosis</th>
<th>Outcome Assessed</th>
</tr>
</thead>
</table>
| Endarterectomy versus Angioplasty in Patients with Symptomatic Severe Carotid Stenosis (EVA-3S) | RCT | CEA / CAS | > 60% | - 2-year risk of ipsilateral ischemic stroke plus 30-day risk of stroke and death\(^{11}\)
- Sex-specific 2-year risk of ipsilateral ischemic stroke plus 30-day risk of stroke and death\(^{11}\)
- Study aimed at identifying risk factors associated with outcome\(^{12}\) |
| Basel Carotid Artery Stenting Study (BACCAS) | RCT | CEA / CAS | > 70% | - Stroke or death within 30 days of procedure and at 6 months\(^{15}\)
- stroke or death within 30 days of procedure and at 4 years\(^{14}\)
- Sex-specific 30-day risk of death, any stroke and 4 year risk of ipsilateral stroke (combined) \(^{14}\)
- Stroke or death at 5 years and 10 years\(^{15}\) |
| Carotid Revascularization Endarterectomy vs. Stenting Trial (CREST) | RCT | CEA / CAS | > 50%\(^*\) > 60%\(^†\) | - Stroke, myocardial infarction, death within 30 days of randomization\(^{17}\)
- ipsilateral stroke at 4 years\(^{17}\)
- Sex-specific 30-day and 4 year risk of myocardial infarction, stroke, or death (composite and individual components)\(^{18}\)
- Myocardial infarction, stroke, death and other adverse events during the periprocedural period\(^{19}\)
- 30-day and/or 10-year risk stroke, myocardial infarction, death (composite outcome)\(^{20}\) |
<table>
<thead>
<tr>
<th>Study</th>
<th>Study Type</th>
<th>Interventions</th>
<th>Percent Stenosis</th>
<th>Outcome Assessed</th>
</tr>
</thead>
</table>
| International Carotid Stenting Study (ICSS) Investigators | RCT | CEA / CAS | > 50% | - Sex-specific 30-day and 10 year risk of primary composite outcome²⁰
- 120-day risk of stroke, death, or myocardial infarction (composite)²¹
- Sex-specific 120-day risk of the composite outcome²¹
- 7-year longitudinal collection of stroke, death, or myocardial infarction events²² |
| NASCET and ECST | IPD Meta-Analysis | CEA / BMT | 0-99% | - Risk of ipsilateral ischemic stroke, determined in relation to time from the last symptomatic event to randomization (sex-specific data available)²³
- 5-year risk of ipsilateral ischemic stroke and any stroke or death within 30 days of randomization [combined]²⁴
- 5-year risk of ipsilateral ischemic stroke and any stroke or death within 30 days of randomization [combined], stratified by percent stenosis²⁴ |
| EVA-3S, SPACE, ICSS, CREST trials | IPD Meta-Analysis | CEA / CAS | Multiple | Associations between perioperative and clinical variables and the 30-day risk of stroke or death²⁵
- Multiple outcomes assessed within 120 days and at 5 years²⁶
- Sex-specific outcomes of 120-day risk of any stroke or death |
<table>
<thead>
<tr>
<th>Study</th>
<th>Study Type</th>
<th>Interventions</th>
<th>Percent Stenosis</th>
<th>Outcome Assessed</th>
</tr>
</thead>
</table>
| EVA-3S, SPACE, BACASS, ICSS, CREST trials | IPD Meta-Analysis | CEA / CAS | Multiple | and 5-year risk of ipsilateral stroke (combined)26
- Sex-specific outcome of 5 year risk of ipsilateral stroke.26
- Multiple outcomes assessed at 30 days after treatment (stroke, death, ipsilateral stroke, disabling stroke, myocardial infarction, restenosis etc.)27
- Sex-Specific outcomes for death or any stroke within 30 days of treatment27 |

CEA: Carotid endarterectomy; IPD: individual patient data; RCT: randomized controlled trial

*Denotes Symptomatic Stenosis; †Denotes Asymptomatic Stenosis
Supplemental Table III: Baseline Female Patient Characteristics of the Primary Studies

<table>
<thead>
<tr>
<th></th>
<th>ECST (1998)⁴</th>
<th>Rothwell et al.⁵</th>
<th>Alamowitch et al.⁹⁹</th>
<th>SPACE (2006)¹⁰</th>
<th>Eckstein et al. (SPACE)¹¹</th>
<th>Mas et al. (EVA-3S)¹²</th>
<th>Ederle et al. (CAVATAS)¹³</th>
<th>ICSS¹⁴</th>
<th>Howard et al. (CREST)³</th>
<th>Brott et al.¹⁵</th>
<th>Brott et al.¹⁶</th>
<th>Muller et al. (2020)¹⁷</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>850</td>
<td>1718</td>
<td>1208</td>
<td>334</td>
<td>338</td>
<td>130</td>
<td>152</td>
<td>503</td>
<td>872</td>
<td>872</td>
<td>1437</td>
<td>1466</td>
</tr>
<tr>
<td>Age (years)</td>
<td>NR</td>
<td>NR</td>
<td>34.8%†</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>69.2 (9.2)</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Hypertension</td>
<td>NR</td>
<td>NR</td>
<td>66.6%</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>88.3%</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Diabetes</td>
<td>NR</td>
<td>NR</td>
<td>22.7%</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>31.6%</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Dyslipidemia</td>
<td>NR</td>
<td>NR</td>
<td>42.0%</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>84.4%</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Present Smoker</td>
<td>NR</td>
<td>NR</td>
<td>34.3%</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>27.7%</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>Previous TIA/Stroke</td>
<td>NR</td>
<td>NR</td>
<td>18.1%</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>50%-69% Stenosis</td>
<td>NR</td>
<td>NR</td>
<td>24.2%</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>>70% Stenosis</td>
<td>NR</td>
<td>NR</td>
<td>41.8%</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

NR: not reported

*Baseline patient characteristics for NASCET and ACE trials reported together

†Reported “Age older than 70 years” in percent
References:

22. Bonati LH, Dobson J, Featherstone RL, Ederle J, van der Worp HB, de Borst GJ, Mali

