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ABSTRACT
Intracranial haemorrhages, including intracerebral
haemorrhage (ICH), intraventricular haemorrhage (IVH)
and subarachnoid haemorrhage (SAH), are leading
causes of morbidity and mortality worldwide. In
addition, haemorrhage contributes to tissue damage in
traumatic brain injury (TBI). To date, efforts to treat the
long-term consequences of cerebral haemorrhage have
been unsatisfactory. Incident rates and mortality have
not showed significant improvement in recent years. In
terms of secondary damage following haemorrhage, it
is becoming increasingly apparent that blood
components are of integral importance, with
haemoglobin-derived iron playing a major role.
However, the damage caused by iron is complex and
varied, and therefore, increased investigation into the
mechanisms by which iron causes brain injury is
required. As ICH, IVH, SAH and TBI are related, this
review will discuss the role of iron in each, so that
similarities in injury pathologies can be more easily
identified. It summarises important components of
normal brain iron homeostasis and analyses the
existing evidence on iron-related brain injury
mechanisms. It further discusses treatment options of
particular promise.

INTRODUCTION
Iron is a crucial nutrient for multiple bio-
logical functions, including, but not limited
to, oxygen transport, electron transport,
redox reactions, cell division, nucleotide syn-
thesis and myelination.1 In the brain, iron
homeostasis is of critical importance, and
dysregulation can lead to serious neurode-
generative diseases such as Alzheimer’s
disease,2 Parkinson’s disease3 and
Hallerorden-Spatz syndrome.4 However,
while much research has focused on under-
standing metal homeostasis in these diseases,
the role of iron accumulation following intra-
cranial haemorrhage (ICrH) and traumatic
brain injury (TBI) has yet to be fully deter-
mined. ICrH is broadly defined as bleeding
within the cranium, and has an incident rate
of ∼40 per 100 000 people/year.5 ICrH can
be subdivided into intracerebral haemor-
rhage (ICH), intraventricular haemorrhage
(IVH) or subarachnoid haemorrhage (SAH).

In addition, while TBI is not considered one
of these subdivisions, it is often accompanied
by ICrH. All forms of ICrH carry high mor-
tality rates and poor prognosis. Injury follow-
ing haemorrhage can be categorised into
primary injury, sustained during the initial
haemorrhage, and secondary injury, refer-
ring to subsequent and long-term damage
due to other factors.
Over the past decade, interest in identifying

the mechanisms of secondary injury after haem-
orrhage has spiked, and several specific blood
components have been identified as being inte-
gral to this phase of damage.6 In particular,
haemoglobin (Hb)-derived iron is thought to
play an important role. Previous reviews have
either generally discussed all blood compo-
nents7 or specifically focused on one form of
ICrH.8 This review focuses on the role iron
accumulation plays in secondary damage follow-
ing the entire spectrum of ICrH: ICH, SAH,
IVH and TBI-induced haemorrhage, and
assesses potential therapeutic options.

IRON HOMEOSTASIS IN NORMAL BRAIN
Because of its potential toxicity, iron content
is tightly regulated in the brain. Little is
found as the free ferric (Fe3+) or ferrous
(Fe2+) ion. Some is bound to small organic
molecules such as citrate, ATP or ascorbic
acid.9 Iron is also an important component
of many proteins.10 Thus, for example, it is
an essential component of cytochromes a, b
and c and cytochrome oxidase and other
enzymes. There are also iron–sulphur clus-
ters in Complex I and II of the electron
transport chain. In some proteins, including
neuroglobin and Hb, iron is bound in the
form of haem. This section describes the
regulation of these iron pools. Because of
the importance of the latter in cerebral
haemorrhage, regulation of haem iron will
be reviewed separately.

Non-haem-bound iron
Brain iron homeostasis involves regulation of
iron movement between blood and brain,
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between brain intracellular and extracellular spaces and
between different iron pools within such spaces. The
movement of iron across cell membranes requires specific
transport systems. Under normal conditions, the most
important uptake mechanism is the transferrin–transferrin
receptor system (Tf–TfR). Transferrin (Tf) is an 80 kDa
glycoprotein with high affinity for iron,11 with mRNA
expression in oligodendrocytes, neurons and astrocytes.
Once expressed, Tf scavenges free iron in the extracellular
space. Tf binds to Fe3+ and, after binding to membrane
TfR, undergoes endocytosis.12 The endosome is then acid-
ified, releasing the Fe3+ and reducing it to the Fe2+ state.13

Once reduced, the iron is released from the endosome
into the cytoplasm by Divalent Metal Transporter 1
(DMT1), a protein that is widely expressed and which is
capable of transporting a broad range of divalent and tri-
valent ions, including iron, zinc, manganese, cobalt,
cadmium, copper, nickel and lead.12 This cytosolic iron,
also known as the labile iron pool, is largely contained
within lysosomes and is in constant equilibrium with an
iron-binding protein, ferritin (Ft).14 Ft is highly stable at a
wide range of temperatures and acidities, and sequesters
Fe2+ ions in ferroxidase centres of the Ft subunits. These
ferroxidase centres have the important ability to consume
all reagents of the radical Fenton reactions (see the Brain
iron overload and toxicity section) and thereby inhibit
iron-mediated oxidative stress.15 Ft is expressed in micro-
glia and macrophages, but it is also found in some
neurons.16 Should Ft levels become saturated, iron can be
transported out into the cerebral interstitial fluid by ferro-
portin 1 (FP1). In conjunction with such transport, the
toxic Fe2+ is oxidised to Fe3+ by the multicopper ferroxi-
dase ceruloplasmin (CP) so that it can be bound more
easily by transferrin once in the extracellular space. FP1 is
stabilised by the amyloid precursor protein (APP), but the
role of APP in iron transport is still a matter for debate.17

Duce et al18 suggested that neuronal APP possesses ferroxi-
dase capabilities stronger than even Ft. However, this
group recently demonstrated that APP lacks ferroxidase
capabilities but remains essential for FP1 persistence on
the neuronal surface, thereby supporting iron export from
neurons.17 The precise mechanism by which it stabilises
FP1, however, is undetermined.

Other iron transport systems
The systems described above are not the only iron trans-
port systems present in the brain. Iron is also a substrate
for some zinc transporters, such as the Zip8 and Zip14
pathways.19 Other iron transporters include the lactofer-
rin–lactoferrin receptor system in neurons20 and the
melanotransferrin system, which is expressed in active
microglia.21 However, these have not been the topic of
much research in the realm of brain haemorrhage or
TBI, with the exception of Terent et al.22

Regulation of iron homeostasis
The Tf–TfR import system, the Ft sequestering system
and the FP1-CP exporter system are relatively ubiquitous

throughout the brain. Regulation of these systems is pre-
dominantly controlled by iron regulatory proteins, IRP-1
and IRP-2. These proteins bind to an iron-responsive
element, a relatively conserved specific hairpin loop in
the 50-UTR of the mRNA coding region of a number of
iron-related proteins, including Ft, aconitase, APP, FP1,
HIF2α and others.1 23 By binding to this hairpin loop,
IRPs reduce mRNA expression.24 The IRPs are them-
selves inhibited by iron; as such, elevated intracellular
iron results in elevated Ft and FP1 transcription, allow-
ing greater sequestering and export of iron.25

Conversely, when iron levels are low, Ft and FP1 expres-
sion is inhibited, reducing the amount of energy wasted
on unnecessary protein synthesis. In addition, IRPs bind
to TfR and DMT1 mRNA, but in this case, they stabilise
the mRNA and increase expression, thus allowing
greater levels of iron influx during times of insufficient
intracellular iron.1 26 The factors that play a role in this
apparent dichotomy of IRP function have yet to be fully
elucidated.
In addition to IRPs, the protein hepcidin is respon-

sible for internalisation of FP1 and modulation of CP
and DMT1 in the cerebral cortex and hippocampus.27 28

Therefore, it can cause iron accumulation within the
cell when overexpressed.29 Hepcidin expression is
increased in response to cellular iron overload and
inflammation.30 It is therefore a potential therapeutic
target in a variety of iron-related neurodegenerative
disorders.

Haem-bound iron
In order to understand the posthaemorrhagic effects of
iron, it is important to understand the iron homeostasis
in normal brain. Brain iron is present in one of the two
forms: haem-bound or non-haem-bound. Haem is the
core moiety of Hb and refers to a protoporphyrin IX
scaffold supporting an Fe2+ central atom. Haem-bound
iron is transported via a variety of transportation path-
ways. Predominant among them is the Hb-haptoglobin
(Hp)-CD163 pathway (figure 1). Hb, the oxygen-
carrying protein, contains about 70% of whole-body iron
in its haem cores.31 It is not limited to erythroid cells,
but rather it can be expressed in a wide range of glial
cells, macrophages and neurons within the central
nervous system.32–35 Within neurons, Hb may act as an
oxygen reservoir and control mitochondrial function.36

While normally stored intracellularly, Hb is occasionally
released from cells during haemolysis. This free extracel-
lular Hb is subsequently scavenged by the protein Hp,
an abundant plasma glycoprotein that binds to Hb with
incredibly high affinity.37 Hp is a tetrameric, α2β2 serine
protease, in which the α domain is responsible for
dimer and multimer formations (Hp 1–1, 2–1 and 2–2
phenotypes), whereas the β subunit binds to Hb and Hp
receptors after the Hb naturally dissociates into
dimers.38 This newly formed complex is redox-inactive,
with Hp assisting in diffusing any radical chemistry that
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may occur following H2O2 attack (see the Mitochondrial
damage section).39

This complex has a high affinity for the membrane-bound
receptor CD163, a 130 kDa transmembrane member of the
scavenger receptor cysteine-rich domain-containing protein
family. Binding of the Hb:Hp complex to CD163 results in
endocytosis, preventing accumulation of Hb in the extracel-
lular space.40 The regulatory mechanism of CD163 in the
brain is not well understood, though it is apparent that it is
upregulated following vascular compromise, inflammation
and by the presence of Hp:Hb complexes.41 42 CD163 is
shed from the cell membrane by ADAM17, a membrane-
bound serine protease responsible for a variety of cell signal-
ling, including TNF-α and Aβ formation in Alzheimer’s
disease.43–45 This ‘soluble’ CD163 is composed of 94% of
the protein’s ectodomain and is an inflammatory bio-
marker. CD163 has long been viewed as a monocyte/macro-
phage marker, expressed exclusively within that cell line.
However, recent in vivo findings demonstrated that follow-
ing IVH, hippocampal neurons express CD163.46 This
finding has been corroborated and extended to cortical
neurons by Chen-Roetling and Regan.47

Following endocytosis, the Hb:Hp complex dissociates,
allowing Hb to be degraded to haem inside endo-
somes48 49 (figure 1). Inside the cell, haem can be
bound by one of several haem-binding proteins,50 whose
roles in ICrH have not yet been investigated, or it can be
degraded by haem oxygenase (HO) proteins (the indu-
cible HO-1 or the constitutively expressed HO-2). HO-1
mRNA expression is increased significantly by the pres-
ence of haem as well as a variety of other proinflamma-
tory signal molecules.51 HO proteins degrade haem into
carbon monoxide, biliverdin and Fe2+.52 The biliverdin
is converted to bilirubin (an antioxidant known to be
neurotoxic in preterm neonates) by biliverdin reduc-
tase,53 54 while the iron is bound by Ft and sequestered.

INTRACEREBRAL HAEMORRHAGE
Introduction
ICH describes bleeding into the brain parenchyma due
to the rupture of a cerebral blood vessel. Of the ICrH

subtypes, ICH is the most common, accounting for ∼10–
20% of all strokes.55 ICH can either be secondary or
primary. Secondary ICH refers to bleeding caused by a
pre-existing condition, such as a tumour, whereas
primary ICH is a vessel rupture without an underlying
lesion, with hypertension being a major cause. ICH inci-
dence has not altered in the past three decades, being
stable at ∼25 per 100 000 person-years.56 Of note, Asian
populations are at significantly higher risk of ICH than
non-Asian populations. Prognosis is very poor, with
death occurring within 1 month in over 40% of cases.57

It is therefore of pressing concern to identify therapeutic
targets for ICH. There is a substantial body of preclinical
evidence that iron plays a role in ICH-induced injury8

and, in patients suffering from ICH, high-serum levels of
Ft are independently associated with poor outcome.58

Iron transport into the cell
Haemoglobin
In ICH, erythrocytes are released into the brain paren-
chyma, where they lyse within hours/days, releasing
their components, including Hb, into the extracellular
space.59 This Hb may be scavenged by Hp and endocy-
tosed by CD163 into macrophages and monocytes as
described above. The Hp is produced locally in the
brain by oligodendrocytes.60 However, recent findings
suggest that Hp may also exacerbate neuronal vulner-
ability to Hb-mediated iron toxicity.47 That study suggests
that Hp increases the ability for haem-bound iron to
gain access to neurons via CD163, thereby increasing
neurotoxicity. In contrast to glial cells, neurons have low
Ft levels and thus lack sufficient iron buffering to
handle the amount of Hb-derived iron.47 61 62

Haem
Hb that is not scavenged immediately degrades and
releases haem.59 Haem can react with lipid peroxide-
generated hydrogen peroxides according to the Fenton
reactions, leading to the formation of reactive oxygen
species (ROS).63 64 To prevent this, extracellular haem is
bound by haemopexin,65 a 60 kDa glycoprotein that is
normally not expressed in brain parenchyma,66 but

Figure 1 Haemolysis and

haemoglobin degradation after

brain haemorrhages.
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which is induced after ICH.67 The resultant haem–hae-
mopexin complex can be taken up into cells via CD91
(also known as low-density lipoprotein receptor-related
protein, LRP1) and metabolised by HO proteins.68

CD91 is widely expressed in brain cell types, including
in glial cells, macrophages and neurons.69 The
haemopexin-CD91 pathway is, therefore, another poten-
tial mechanism by which iron can access neuronal cells.
After endocytosis, haemopexin is degraded within the
lysosome, and consequently, decreases in plasma haemo-
pexin concentration occur in severe haemolysis seen
during ICH.70 71 Normally, the iron released by this deg-
radation is stored in Ft and inhibits IRPs, thus stimulat-
ing a variety of iron-related proteins, including APP.72

However, excessive levels of intracellular haem can result
in overuse and quick degradation of Ft, resulting in the
formation of haemosiderin, an intracellular insoluble
iron storage complex.73 74 Haemosiderin is a major loca-
tion of iron accumulation and is used as a marker for
haemorrhagic injury.75 Haem–haemopexin complexes
also increase the endogenous levels of holo-APP, as well
as HO-1.76 Deletion of the haemopexin gene aggravates
injury following ICH.77 78

Brain iron overload and toxicity
While the iron homeostatic mechanisms function well in
normal physiological conditions, the amount of Hb
released into the extracellular space following haemor-
rhage may overwhelm these iron-handling systems.
Saturation of these systems, or iron overload, can result
in the presence of iron in a form where it can partici-
pate in harmful reactions; for example, free radical
production.

Mechanisms of iron toxicity
Iron toxicity is generally thought to result from the gen-
eration of free radicals via the Fenton reaction. In that
reaction, ferrous iron reacts with hydrogen peroxide to
form radical oxygen species according to the reaction
below:

Fe2þ þH2O2 ! Fe3þ þOH� þOH�

The resulting ferric iron can be reduced back to Fe2+ by
a variety of reducing agents and thereby regenerate the
starting reagents. In this way, the radical reaction cycle
can begin again. Some cellular antioxidants like GSH
and superoxide dismutase work to limit this damage, but
these antioxidants have limited efficacy to combat the
amount of oxidative stress during ICH.79 80

Mitochondrial damage
The oxidative damage resulting from such iron overload
targets the mitochondrial inner membrane.81 82 Iron
overload in HT-22 hippocampal neurons induces mito-
chondrial fragmentation that is dependent on depho-
sphorylation of dynamin-related protein 1 (Drp1), a
mitochondrially localised GTPase, which controls

mitochondrial fission.83 84 This mitochondrial fission is
closely regulated by Calcineurin phosphatase signal
pathways,85 86 which are also affected by iron overload.83

Oedema
Iron overload also induces significant perihaematomal
oedema. Oedema has been repeatedly shown to be asso-
ciated with poor outcome after ICH.87 88 In clinical
studies, serum Ft is often used as an estimate of the
body’s iron load.89 90 Serum Ft levels are highly corre-
lated to perihaematomal oedema volumes following
ICH;91–94 while this is most likely because it reflects ele-
vated iron levels, it has been proposed that serum Ft
could play a role as an iron-independent proinflamma-
tory signalling molecule in hepatic stellate cells.95 There
has been no research to assess whether it could play an
equivalent role in the brain. Nevertheless, iron overload
has been shown to increase brain water content following
ICH.96 Important to the formation of cerebral oedema is
aquaporin 4 (AQP4), one of the most abundant water
channel proteins in the brain.97–99 AQP4 is mostly
expressed in astrocyte foot processes99 100 around blood
vessels where it plays critical roles in brain water homeo-
stasis. Increased expression of AQP4 is found in ICH,101

and there is a high correlation between iron accumula-
tion and AQP4 expression.102 AQP4 is known to be regu-
lated by metal ions such as mercury,103 but it is unknown
whether iron has similar effects.

Cell death
The above-described damage culminates in widespread
glial and neuronal cell death. This cell death is therefore
intrinsically linked to its iron source. The form of cell
death is not purely necrotic. Ferrous citrate infusion
(designed to simulate post-ICH iron overload) results in
increased LC3-II expression and autophagic cell death,
as assessed by BECN1 staining.104 LC3-II is the activated
conjugate of microtubule-associated protein 1A/1B
light chain-3, and it is recruited to autophagosomal
membranes, thereby being a key marker of autophagic
cell death.105 Iron-induced autophagy following ICH
has been documented previously,106 though the mech-
anism by which iron enhances autophagy is not fully
understood. Autophagy is induced by oxidative stress,
which has linked HO-1 (a marker for such stress) to this
type of cell death following iron overload.107 During
ICH, it is possible that HO-1 promotes the intracellu-
lar release and capture of redox-reactive iron, thereby
promoting autophagy.108 Inhibition of autophagy leads
to protection against iron-induced neurodegenera-
tion.109–111

Apoptosis of neurons and astrocytes has also been
identified after ICH.112 113 Haem alone can induce
apoptotic cell death in neuronal cells (as identified by
DNA fragmentation, caspase activation and mitochon-
drial membrane disruption).114 Such apoptosis is poten-
tially related to a member of the high-temperature
requirement (Htr) family, HtrA2, a mitochondrially
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located serine protease which, on release into the cyto-
plasm, contributes to apoptosis via caspase-dependent
and caspase-independent pathways. Haem incubation of
PC12 neuroblastoma cells resulted in HtrA2-mediated
apoptosis.115 A variety of other apoptotic pathways have
been proposed following ICH, including SSTR1, bcl-2,
CHMP4B, ESCRT-III, VCAM1 and c-Fos,116–119 but their
links (if any) to iron have not yet been identified.
Another form of regulated cell death of note is ferropto-

sis, an iron-dependent form of cell death distinct from
autophagy, apoptosis, necrosis and other forms of cell
death.120 On accumulation of lipid ROS, the RAS Selective
Lethal proteins erastin and RSL3 mediate cell death that is
critically dependent on iron (but not other divalent
metals).121 However, research on ICH-induced ferroptosis
has been significantly hindered by a lack of easily identifi-
able markers. Chang et al122 found that ICH increases
ferroptosis-related gene expression (including IRP2), and
that this expression could be ameliorated by treatment
with (-)-epicatechin, a scavenger of free radicals and other
pro-oxidants, that activates the Nrf2 signalling pathway, a
master regulator of antioxidant defence mechanisms.
However, besides that study, there has been a lack of suc-
cessful studies investigating the ability of ICH-induced iron
overload to activate ferroptotic pathways. Given the
emphasis on the iron-dependent nature of ICH and fer-
roptosis, this may be a fertile field of inquiry.

Vicious cycle of iron accumulation
In haemorrhagic transformation after cerebral ischae-
mia, iron overload may engage in a vicious cycle.
Cerebral ischaemia causes a shift to glycolytic from oxi-
dative metabolism, lactic acid production and marked
decreases in brain pH. Iron can be released from Ft fol-
lowing exposure to decreased pH, superoxide radicals
and ascorbate123–126 and it may then damage mitochon-
dria further inhibiting oxidative metabolism and result
in the production of free radicals. In turn, this may
cause further release of iron, a vicious cycle. The extent
to which this occurs in ICH, SAH and IVH is uncertain
and merits investigation.

INTRAVENTRICULAR HAEMORRHAGE
Introduction
IVH is defined by the presence of bleeding into the
brain ventricular system. It is particularly common in
preterm neonates (in such cases, the bleeding often ori-
ginates from the germinal matrix and therefore, IVH is
sometimes referred to as germinal matrix haemorrhage)
and carries with it high morbidity and mortality. Over
12 000 premature infants develop IVH every year in the
USA,127 and the incidence has increased over the last
20 years.7 IVH is also often a complication of other ICrH
subtypes; 50% of patients with primary ICH and 45% of
patients with SAH develop IVH.128 129 Despite this, IVH
is probably the least studied and therefore least well-
understood subtype of ICrH.

Iron in IVH
In IVH, blood can disperse within the ventricular system.
Unlike in ICH, where iron has the greatest effects on
perihaematomal tissue, in IVH blood-derived Hb and
iron can have effects distant from the initial bleed. A sig-
nificant proportion of the iron within the ventricular
cerebrospinal fluid (CSF) following IVH is free or
non-protein-bound,130 allowing it to engage in Fenton
reactions. This iron eventually accumulates in the epen-
dymal and subependymal regions as evidenced by the
increase in Ft expression and iron deposition in those
cells.131 132 In addition, after lysed red blood cell injec-
tion into the ventricles in a rat, periventricular HO-1 was
upregulated, while iron injection resulted in ependymal
cell injury with mitochondrial swelling and loss of
cilia.132 The subventricular zone, a site of ongoing neur-
onal proliferation, became overloaded with iron follow-
ing Hb injection in neonatal rats.133 IVH has been
shown to cause substantial damage to the bordering
hippocampus in an iron-dependent fashion.134 This
damage has been identified as
hydrocephalus-independent and possibly mediated by
iron-activated c-Jun Kinase apoptotic pathways.46

Choroid plexus
One potentially important site of damage following IVH
is the choroid plexus epithelium. The choroid plexuses
are present in the lateral, third and fourth ventricles of
the brain. They form a unique blood–CSF barrier and
are the predominant CSF-generating tissue. TfR is
present on choroid plexus epithelial cells and iron is
localised to these cells in healthy brains.135 136 These
cells are highly responsive to ischaemic insult, and subse-
quent choroid plexus cell death results in increased per-
meability of the blood–CSF barrier to a variety of
proinflammatory cytokines and leucocytes,137 and
decreased production of trophic factors.138 Choroid
plexus cells express AQP1, which is involved in CSF pro-
duction.139 However, following intraventricular injection
of Hb to simulate IVH, AQP1 protein levels increased
significantly and there was also an upregulation of
AQP5, conveying a high degree of water permeability.140

In addition, Hb intraventricular injection resulted in
ultrastructural damage to the choroid plexus that was
accompanied by oxidative stress, cellular activation and
an inflammatory response.141 This damage to the
blood–CSF barrier, in addition to the increase in AQP
expression, suggests that iron may cause increased CSF
production by the choroid plexus.

Posthaemorrhagic hydrocephalus
Posthaemorrhagic hydrocephalus (PHH) is a common
complication of IVH and the role of iron in PHH has
been a topic of interest recently. It has been demon-
strated repeatedly that iron is intimately involved in
PHH.132 133 142 The mechanism underlying this action is
not well understood. Potential mechanisms involve an
increase in choroid plexus production of CSF and
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obstruction of CSF flow pathways. Meng et al143 have pro-
posed that iron-mediated upregulation of the Wnt sig-
nalling pathway, which regulates fibrosis, is involved.
However, this is clearly an area in which additional inves-
tigation would have significant impact into the develop-
ment of treatments for PHH.

SUBARACHNOID HAEMORRHAGE
Introduction
SAH is defined by the presence of blood in the CSF in
the subarachnoid space between the arachnoid mem-
brane and the pia mater. It is most frequently occurs fol-
lowing the rupture of an intracranial aneurysm.144

Mortality rates are extremely high, estimated at between
40% and 50%,145 with incident rates of up between 2
and 32/100 000.146 SAH causes early and late brain
injury, the latter being associated with delayed cerebral
vasospasm.

Iron in SAH
SAH-induced damage within the first 72 hours of ictus is
classified as early brain injury and iron plays an integral
role in such injury. Following SAH, erythrocytes lyse and
release their components into the subarachnoid space,
exposing the brain to high concentrations of Hb. The
Hb is promptly broken down to haem extracellularly.
The haem–haemopexin scavenging has been demon-
strated to be active and potentially harmful following
SAH. CD91, the receptor for haemopexin, is positively
correlated with iron deposition in brain tissue, which in
turn is negatively correlated with neurological
outcome.68 This system may be responsible for intracel-
lular accumulation of iron that results following SAH.
Non-haem iron and Ft levels in the brain and CSF
increase progressively for the first 72 hours.147 148 This
increase is accompanied by a significant upregulation in
HO-1 levels in microglia and neuronal death via oxida-
tive DNA injury.149 A pilot study in human patients sug-
gested a causal relationship between free iron in the
CSF following SAH and brain injury.150 Indeed, suppres-
sion of hepcidin (and thus inhibition of FP1 internalisa-
tion) attenuated brain damage following experimental
SAH, suggesting the importance of intracellular iron
accumulation.29 This suggests that the initial inflamma-
tion caused by iron accumulation stimulates hepcidin
expression, which in turn leads to a decreased efflux of
iron from these cells. In this way, iron accumulation is a
vicious cycle following SAH.
Additionally, a variety of other iron-handling proteins,

such as Tf and TfR, are upregulated after SAH.151 Tf
and TfR may also participate in intracellular iron accu-
mulation. Once inside the cell, iron via the mitochon-
drial calcium uniporter can gain access to the
mitochondrial matrix,152 153 where it can disrupt mito-
chondrial integrity, release caspase-3 and lead to neur-
onal degeneration. It is additionally possible that iron
triggers apoptosis via cathepsins.154

Vasospasm
Endothelins (ET) are potent vasoconstrictors that have a
major role in SAH-induced vasospasm. Following stimu-
lation by angiotensin, thrombin, cytokines or ROS, ET-1
is upregulated,155 resulting in vasoconstriction. Such
vasoconstriction is counteracted by nitric oxide (NO)
that inhibits ET-1 release, resulting in vasodilation.156

Iron-containing haem has been shown to cause vasocon-
striction.157 Indeed, reductions in free-iron levels ameli-
orate SAH-induced vasosconstriction.158 The iron within
haem binds to the vasodilator NO,159 thereby reducing
the ability of NO to inhibit ET-1 leading to vasoconstric-
tion or vasospasm. Moreover, the formation of ROS by
iron-mediated Fenton reactions is implicated in the gen-
eration of vasospasm, as the hydroxyl radicals also react
with NO.160 161 Following vasospasm, ET also alters iron-
regulatory proteins expression. Hepcidin is induced fol-
lowing ET-1 treatment/release, as is Ft and Tf/
TfR.155 162 The increase in hepcidin expression may
result in increased intracellular iron accumulation and,
in turn, induce brain damage.

TRAUMATIC BRAIN INJURY
Introduction
TBI is the leading cause of death before the age of 40,
with incident rates of ∼200 per 100 000 person-years.163

TBI accounts for about 40% of all deaths due to acute
injury.164 TBI is often associated with a single or mul-
tiple ICrHs which may contribute to brain injury.165 As
such, many of the findings specific to certain types of
ICrH have significance to TBI. It is therefore important
to include it in any discussion of ICrH-related research.

Iron accumulation in TBI
As in ICrH, damage from TBI is classified as primary or
secondary, where primary injury refers to the immediate
result of mechanical brain trauma, and secondary injury
refers to the subsequent biomolecular and physiological
responses to that injury. Iron has been frequently noted
as a potential mediator for secondary injury following
TBI due to its ability to form free radicals and induce oxi-
dative stress.166 167 Iron levels in the brain are elevated
following TBI.168–171 While haem-bound iron from
erythrocyte lysis is a significant contributor to this, it
appears that this iron is supplemented by a release of
endogenous sources of iron, suggesting that, like in forms
of haemorrhage, the secondary cell loss associated with
TBI allows subsequent iron release and a vicious cycle is
thus perpetrated.167 172 Repeated TBI results in chronic-
ally elevated iron levels, as is observed in chronic trau-
matic encephalopathy. Such iron deposition is positively
correlated with cognitive impairment following TBI.173

Mechanism of iron-induced injury in TBI
In mice, decreasing CP and APP expression inhibits iron
export from neurons. Knockout of these proteins
increased brain injury and iron accumulation following
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TBI.174 However, the neuroprotective role of APP in TBI
is not fully established. Aβ deposition is seen in some
patients with repeated TBI, and iron has been shown to
increase the toxicity of Aβ.167 175 176 Iron is associated
with increased brain oedema formation and blood–
brain barrier (BBB) disruption after TBI.177

Furthermore, there is evidence that iron can promote
HO-1-mediated neurofibrillary tangle formation, which
in turn results in tau phosphorylation as seen in
Alzhemier’s disease.178 HO-1 expression has been shown
to be upregulated significantly in response to TBI.177

While it has been shown that iron further facilitates
ROS-related damage to neuronal DNA,179 more research
must be performed to assess the nature of this
facilitation.

TREATMENTS
Introduction
Preclinical evidence indicates that iron is a key player in
brain injury after all forms of cerebral haemorrhage. To
date, no existing neuroprotective therapy has been
shown to improve morbidity or mortality following ICH
in humans.180 However, using animal models, investiga-
tors have identified therapeutic treatments, including
but not limited to deferoxamine (DFX) and minocy-
cline, which target iron-mediated damage.

Deferoxamine
Attenuation of brain injury
DFX is a ferric ion chelator that is used clinically for
systemic iron overload. The efficacy of DFX in
treating haemorrhage-induced brain damage in preclin-
ical models has been reviewed previously.181–183

Evidence of efficacy in TBI has also been demon-
strated.184 A stratified meta-analysis showed DFX to be
effective in experimental ICH, particularly when
administered 2–4 hours after haemorrhage, and with a
dosage of 10–50 mg/kg.181 DFX has been repeatedly
demonstrated to ameliorate iron-induced oedema,185

neuronal death,186 hippocampal degeneration46 and
inflammation.185 187–189 During SAH, DFX treatment
chelates free iron before it can form ROS, thus amelior-
ating vasospasm.158

Attenuation of PHH
DFX significantly has been shown to reduce PHH.142 165

Gao et al132 showed that hydrocephalus developed after
intraventricular injection of lysed but not packed ery-
throcytes into adult rats, and that DFX coinjection
reduced ventricular enlargement by 27%. Strahle et al133

also demonstrated that iron injection alone could cause
hydrocephalus in neonatal rats, and that DFX reduced
ventricular enlargement by 57%. Intriguingly, iron was
singled out as a key component inducing hydrocephalus
due to a comparison between haem and protoporphyrin
IX (the latter being the haem scaffold without the iron
core) which demonstrated that protoporphyrin IX

injection had no effect on ventricular volume compared
with controls. Iron may induce PHH through free
radical production and oxidative stress, but it is possible
that it also activates the Wnt signalling pathway.143 The
Wnt signalling pathway is involved in fibrosis in a variety
of tissues and, therefore, it may play a role in obstructive
non-communicating hydrocephalus formation following
haemorrhage. DFX reduced Wnt1/Wnt3a upregulation
following IVH most likely via iron chelation.143 These
findings strongly implicated iron as a key player in PHH.

Clinical trials
In 2011, a Phase-I dose-finding study assessed DFX treat-
ment in ICH and found it to be feasible and well toler-
ated.190 That led to a Phase-II trial of DFX in human
ICH patients, the High Dose Deferoxamine in
Intracerebral Hemorrhage (HI-DEF) trial.191 In that
trial, there were some concerns over the occurrence of
acute respiratory distress syndrome and currently, a
lower dose of DFX is being tested in the Intracerebral
Hemorrhage Deferoxamine Trial (iDEF; NCT02175225).
In addition, a recent 42 patients study investigating DFX
treatment for ICH concluded that DFX may slow haema-
toma absorption and inhibit oedema formation.192 Aside
from these trials, there have been no other large-scale
attempts to implement this treatment into human
patients in ICrH. In addition, there has been a lack of
DFX clinical trials that investigate any form of haemor-
rhage besides ICH. Given the preclinical effects of DFX
and similarities in the role of iron in SAH and IVH to
that ICH, advancement of DFX into large-scale clinical
trials for IVH and SAH should be considered.

Minocycline
Effect on brain injury in animal models
Minocycline is another iron chelator. A tetracycline
derivative, it has high lipophilicity allowing it to cross the
BBB.193 It was originally investigated for its therapeutic
potential as a macrophage/microglial inhibitor.194–196 It
decreases post-ICrH damage mediated by
thrombin-activated microglia197 by inhibiting matrix
metalloproteinase and PARP-1 activation.198 199 However,
more recently, minocycline has been investigated for its
potential as an iron chelator. In vitro, it reduces
iron-induced injury in cortical neuron with higher activ-
ity than DFX.200 In vivo, it reduces increases in serum
iron levels, reduces iron overload and neuronal death
and attenuates iron-induced brain oedema and BBB dis-
ruption following ICH.201 Coinjection of minocycline
+FeCl2 compared with FeCl2 alone decreased Ft, CP,
HO-1, Tf and TfR upregulation.202 Owing to its
iron-chelating abilities, as well as its ability to inhibit
harmful microglial activation, minocycline is a promising
therapeutic option for ICrH.

Clinical trials
Minocycline currently used clinically as an antibiotic.
There have, however, been few human pilot studies
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conducted that investigate the efficacy of minocycline
treatment following haemorrhage or TBI. A study con-
ducted with 152 patients saw a significant improvement
in patient outcome with minocycline treatment com-
pared with placebo.203 In the ongoing MINOS
(Minocycline to Improve Neurologic Outcome in
Stroke) trial, minocycline treatment has been shown to
be safe in 10 mg/kg intravenous dosages.204 That trial
has shown that minocycline decreases the expression of
the potentially harmful matrix metalloproteinase-9 and
the inflammatory cytokine IL-6 after stroke.205 206

However, it has yet to release results on the overall effi-
cacy of minocycline. However, a pilot study conducted in
2013 involving 95 participants investigated the effects of
minocycline in ischaemic and haemorrhagic stroke. It
found that minocycline is safe, but not particularly effi-
cacious.207 There is therefore significant controversy
about the efficacy of minocycline in human trials. Given
the concordance on the safety of the treatment,
however, it seems sensible to move forward into a larger
clinical trial.

Other iron chelators
Deferiprone
In addition to DFX and minocycline, there are several
other iron-chelating drugs that have therapeutic poten-
tial with respect to ICrH and TBI. Deferiprone (DFP) is
a bidentate chelator, requiring three molecules of DFP
per iron cation chelated208 as opposed to the hexaden-
tate DFX (1:1 ratio). DFP is effective at attenuating neu-
rodegeneration induced by brain iron overload in
Friedreich’s ataxia.209 However, it has not been investi-
gated as thoroughly as a treatment for ICrH damage.
The few studies that have performed so have had mixed
results; DFP administration at 8 hours post-SAH resulted
in significantly decreased cerebral vasospasm in a rabbit
model.210 However, in a rat ICH model, DFP failed to
decrease ROS generation, oedema formation and mor-
bidity, despite successfully reducing iron content.96 This
latter study used a high dosage of DFP (125 mg/kg,
which is above the 75–100 mg/kg typical dosage usually
used to treat thalassaemia), and found that a dosage of
200 mg/kg was highly toxic to the rats in the study. It
may therefore be of interest to reassess DFP’s abilities as
a treatment if used at a lower dose and possibly in con-
junction with DFX administration (as is performed com-
monly in thalassaemia and other iron overload
conditions).

Deferasirox
Deferasirox (DFS) is bidentate, requiring two equiva-
lents of chelator for every one iron equivalent.208 It is
delivered orally and is often used to treat anaemias or
thalassaemia when DFX treatment is insufficient. It has
only been cursorily investigated with respect to TBI.
Systemic administration of DFS allows for mild improve-
ments in hindlimb function following traumatic spinal
cord injury at the T8 vertebra.211 The link between this

improvement and any decrease in iron overload has not
been investigated, however. Moreover, there have been
no studies to the best of our knowledge investigating
DFS following TBI or ICrH within the brain itself.

Clioquinol
The iron chelator Clioquinol (CQ) has attracted interest
in the treatment of Alzheimer’s and Parkinson’s disease
due to its ability to chelate a variety of metals, including
copper, zinc and iron.212 213 Its hydrophobic nature
allows it to pass through the BBB. In a rat model of
ICH, CQ administration ameliorated motor dysfunction
due to its ability to reduce ROS production in oligoden-
drocytes.214 In addition, CQ improved neurological
outcome, reduced brain oedema and improved mortal-
ity rates in a different rat model while enhancing expres-
sion of the iron exporting protein FP1.96 These findings
suggest CQ as a promising upcoming treatment option
for ICH. However, its ability to treat other forms of ICrH
has yet to be investigated, nor has it been clearly demon-
strated that its effects are due to iron chelation.

2,20-Dipyridyl
Findings on 2,20-dipyridyl (DP) have been mixed. A
lipid-soluble ferrous chelator that acts intracellularly and
can bypass the BBB, it showed promise in treating
SAH-induced cerebral vasospasm, as it was shown to be
effective in a primate model.215 In addition, DP has
been shown to have greater cell membrane permeation
and intracellular iron sequestering ability than DFX.61

However, to the best of our knowledge, there has been
no subsequent research on its effectiveness in SAH since
the turn of the century. In ICH, its effectiveness is con-
troversial. Wu et al216 found that DP pretreatment
decreased iron deposition and neurodegeneration fol-
lowing ICH, while additionally attenuating ROS produc-
tion and microglial activation. Furthermore, this study
found that DP post-treatment ameliorated neurobeha-
vioral deficits and brain oedema formation while not
affecting mortality rates. However, more recently,
Caliaperumal et al217 performed a series of experiments
assessing DP’s effect following ICH and found that it
failed to chelate non-haem iron levels following ICH,
failed to reduce oedema in the ipsilateral cortex and
failed to lessen tissue loss or decrease neurodegenera-
tion. These somewhat contradictory findings could be
partly explained by the difference in experimental setup
(the first was more focused on a pretreatment vs post-
treatment administration while the second was simply
assessing post-treatment in a variety of circumstances),
but they still warrant further investigation and
clarification.

FUTURE DIRECTIONS
Over the past few decades, there has been an absence of
improvements to the therapeutic approaches available
for ICrH. Mortality and incident rates have been
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remained largely unchanged. This review stresses the
extent and severity of the roles that iron may play in all
types of ICrH. It is therefore imperative that more investi-
gation into all types of iron-related brain damage be con-
ducted. Current upcoming treatment options such as
DFX and minocycline are promising in animal models
and preliminary human studies. Despite this, advance-
ment into clinical trials for these drugs has been slow.
Additional therapeutic targets should be investigated

as well. It may not be sufficient to simply chelate extra-
cellular iron, as iron can act via the plethora of signal-
ling pathways as discussed in this review. Therefore,
investigation into additional iron-related pathways would
be prudent. For example, there has been an absence of
investigations finding ways to target specific iron-related
proteins after injury. Targets such as hepcidin, IRP-1 and
IRP-2, FP1 and Ft are well understood in terms of
normal function, but methods to treat dysfunction fol-
lowing ICrH are lacking. Ferroptosis, the iron-dependent
form of cell death, has yet to be investigated with respect
to ICrH.
Additionally, the interplay between ICrH and neurode-

generative diseases merits continued investigation. While
amyloid angiopathy is a major cause of ICH, proteins
such as APP and phenomena such as neurofibrillary
tangles suggest that there are further links between neu-
rodegenerative diseases and haemorrhage/iron.
The recent identification of neuronal CD163 is a

promising area of research. It provides a pathway by
which Hb-bound iron may significantly enter neurons
and thereby cause neuronal iron overload and death.
Investigation into neuronal CD163 as a therapeutic
target is currently being undertaken in this and other
laboratories. Identification of ways to increase Hb
reuptake by non-neuronal cells, decrease iron uptake by
neurons and/or increase neuronal ability to sequester
excess iron influx are important areas of study.
As with all neurological conditions, the delivery of

therapeutics is a concern. Most therapeutics developed
by the pharmaceutical industry do not cross the BBB.
For example, DFX has limited BBB permeability. Strides
are being made in delivery systems designed to deliver
therapeutics to the brain and alternative routes of
administration (eg, intranasal) are being investigated.
Hopefully, those strides can be used to develop thera-
peutics for ICrH.

CONCLUSION
Iron has beneficial and detrimental actions. While it is
essential to countless critical cellular functions, it can be
harmful if concentrations overwhelm the defence
mechanisms of the brain. Following haemorrhage, the
brain is exposed to iron-rich Hb which can be disastrous
should the existing homeostatic mechanisms be insuffi-
cient. Iron is a popular topic in a variety of neurodegen-
erative diseases, and indeed, it is gaining attention as a
therapeutic target in ICrH and TBI, yet there are many

iron-related therapies and experiments that have not yet
been investigated. This review stresses the importance of
iron in the secondary damage following ICrH. It is clear
that the oxidative damage is a key factor in the poor
prognosis associated with ICrH and TBI. Current treat-
ment options have not seen a decrease in morbidity or
mortality, and so it is of critical importance that we con-
tinue to seek out new therapies that are centred on the
role of iron following ICH, IVH and SAH.
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