CCL17 exerts neuroprotection through activation of CCR4/mTORC2 axis in microglia after subarachnoid haemorrhage in rats

Anke Zhang,1,2 Yibo Liu,1,2 Houshi Xu,3 Zeyu Zhang,1,2 Xiaoyu Wang,1,2 Ling Yuan,3 Cameron Lenahan,4 Chuan Zhang,5 Junkun Jiang,5 Chaoyou Fang,3 Yuanjian Fang,1,2 Jianmin Zhang,1,2 Sheng Chen1,2

ABSTRACT

Background and purpose C-C motif chemokine ligand 17 (CCL17) presents an important role in immune regulation, which is critical in the pathophysiology of brain injury after subarachnoid haemorrhage (SAH). There is rare evidence to illustrate the function of CCL17 towards SAH. In this study, we try to reveal the therapeutic effects of CCL17 and its underlying mechanism in rat SAH model.

Methods SAH rat models were assigned to receive recombinant CCL17 (rCCL17) or phosphate buffer saline (PBS). AZD2098 and JR-AB2-011 were applied to investigate the C-C motif chemokine receptor 4 (CCR4)/mammalian target of rapamycin complex 2 (mTORC2) axis in CCL17-mediated neuroprotection. To elucidate the underlying mechanism, the in vitro kinase assay was performed in primary microglia. Microglial-specific Rictor knockdown was administered via intracerebroventricular injection of adeno-virus-associated virus. Brain water content, short-term neurobehavioural evaluation, western blot analysis, quantitative RT-PCR and histological staining were performed.

Results The expression of CCL17 was increased and secreted from neurons after oxysaehaglobin stimulation. Exogenous rCCL17 significantly alleviated neuronal apoptosis, and alleviated short-term neurofunction after SAH in rats. In addition, rCCL17 increased M2-like polarisation of microglia in rats post-SAH and in primary microglia culture. The neuroprotection of rCCL17 was abolished via inhibition of either CCR4 or mTORC2.

Conclusion CCL17 activated the CCR4/mTORC2 axis in microglia, which can alleviate SAH-induced neurological deficits by promoting M2-like polarisation of microglia.

INTRODUCTION

Subarachnoid haemorrhage (SAH), as a severe and devastating cerebrovascular disease, has a high rate of mortality and morbidity.1–3 Of note, nearly half of the survivors suffer from severe neurological dysfunction, which introduces a substantial burden to societal and familial burdens.4–6 Currently, researchers have proposed that the ‘early brain injury’ (EBI) may be an essential factor for neurological deficits after SAH.5 However, lacking effective pharmaceutical strategy for EBI made it a predominant challenge in clinical therapy.6,7

Microglia, as innate immune cells, are responsible for the early inflammation after SAH.7,8 Accumulating evidence has revealed that microglial polarisation to selectively activate microglial M2 phenotypes to assist in tissue repair under a variety of conditions, such as ischaemic stroke,9 traumatic brain injury10 and intracerebral haemorrhage (ICH).11,12 M2 microglia can promote haematoma clearance and neuronal survival, protect neurobehavioural function and attenuate apoptosis.13–16 Therefore, it is of utmost
importance to elucidate the regulation of M2 microglia infiltration in the brain after SAH.

CCL17 is known to participate in trafficking immune cells. In the central nervous system, CCL17 is reportedly expressed in hippocampal neurons in murine. Meanwhile, its specific receptor CCR4 was expressed on neurons, astrocytes and microglia. CCR4-deficient mice displayed distinct behavioural deficits, indicating its possible involvement in regulating neuronal or glial functions. Besides, we previously reported that CCR4 mediated the activation of the mTOR signal pathway in pituitary adenoma. However, the biological function of CCL17/CCR4 and the underlying mechanism of microglial regulation has not been systematically investigated in SAH.

In this study, we hypothesised that CCL17 might attenuate EBI by regulating microglia polarisation through CCR4, and may be a novel therapeutic strategy for SAH. Therefore, we investigated the therapeutic effects of recombinant CCL17 (rCCL17) administration and its underlying mechanism after SAH in a rat model.

METHODS

Experimental design

Online supplemental figure 1 provides an overview of the following four experiments and experimental groups. Assessment of images and behavioural scores were performed in a blinded manner.

Experiment 1: time course of endogenous CCL17 and CCR4 and their cellular localisation after SAH

In this section, 24 rats were randomly assigned to 6 groups: sham, 3 hours, 6 hours, 12 hours, 24 hours, 72 hours post-SAH. The expression of endogenous CCL17 and CCR4 after SAH was detected (n=3). Additional rats were used for immunofluorescence (IF) staining in sham and 24 hours groups (n=3). The extent of CCR4 expression was explored in primary neurons, astrocytes and microglia of rats in vitro after treatment of oxyhaemoglobin (OxyHb).

Experiment 2: the effects of rCCL17 treatment on EBI after SAH

To determine the appropriate treatment dosage for rCCL17, a total of 95 rats were assigned to 5 groups: sham, 30 μg/kg, 60 μg/kg, 100 μg/kg, or 200 μg/kg. Modified Garcia scores, forelimb placement tests and brain water content (BWC) were assessed at 24 hours and 72 hours after SAH (samples were shared, n=5/group/time point). IF staining (n=3) and qPCR (n=4) were performed. To explore the efficacy of rCCL17 on EBI and microglial morphology, TdT-mediated dUTP nick end labeling (TUNEL), Fluoro-Jade C (FJC) staining and IF were performed at 24 hours post-SAH (n=3).

Experiment 3: the role of the CCR4/mTORC2 axis in microglia post-SAH

In this experiment, we investigated the effects of rCCL17 on EBI and microglial morphology. Adeno-associated virus (AAV) was administrated via intracerebroventricular injection 21 days before SAH induction. The activation of mTORC2 and ERK signalling was examined (n=3) and the M2-like microglia biomarkers were examined by qPCR (n=4). Neurobehavioural functions and BWC were evaluated at 24 hours and 72 hours after SAH (samples were shared, n=5/group/time point). IF staining (n=3) and qPCR (n=4) were performed. To explore the efficacy of rCCL17 on EBI and microglial morphology, TUNEL, FJC staining and IF were performed at 24 hours post-SAH (n=3). The regulatory function of CCL17 on M2-like polarisation of microglia was demonstrated in rat primary microglia in vitro.

Statistical analysis

SPSS V.22.0 (IBM, USA) or Prism V.9 software program (GraphPad Software, USA) was used for statistical analysis. The normality of data was examined by Shapiro-Wilk test (Gaussian distribution). Based on the distribution of normality, multiple groups were compared via one-way analysis of variance with Tukey’s post hoc test. The difference of data in Gaussian distribution was evaluated using unpaired (two-sided) Student’s t-test, while the difference of data in non-Gaussian distribution was evaluated with Kruskal-Wallis test. Statistically significant differences were considered when p values were <0.05. For in vitro study, each experiment was repeated three times independently with similar results.

RESULTS

Animal use

In this study, a total of 323 rats were used and the mortality of SAH rats was 14.0% (37/264), but no rats died in the sham group (59 rats) (online supplemental figure 1).
CCL17 expression was enhanced in neuron after acute SAH
To investigate the dynamic changes of CCL17 expression, we performed western blot analysis of the left hemisphere of rat models from sham, 3 hours, 6 hours, 12 hours, 24 hours and 72 hours post-SAH. The level of endogenous CCL17 was markedly increased at 12 hours, peaked at 24 hours and then decreased at day 7 after SAH (figure 1A). In addition, IF further revealed increased neuronal CCL17 expression in the basal ganglia, temporal cortex and hippocampus region at 24 hours after SAH (figure 1B). CCL17 levels of the hippocampus after SAH were significantly higher than the basal ganglia and temporal cortex regions (figure 1B–C). Furthermore, CCL17 expression was greatly higher in the dentate gyrus, as well as in the CA1 and CA3 regions following SAH when compared with sham group (online supplemental figure 2).

Notably, under stimulation of OxyHb, CCL17 expression in rat primary neurons was significantly increased (online supplemental figure 3A). Similarly, the CCL17 in supernatant was markedly increased (online supplemental figure 3B). These findings suggested that the expression of CCL17 was increased after haemorrhage and then secreted into the intracerebral environment.

rCCL17 reduced neuronal apoptosis and BWC, but improved short-term neurobehavioural scores after SAH
Neurobehavioural scores, brain oedema, cell apoptosis and neuronal degeneration are important indicators of EBI, which is responsible for the poor prognosis of SAH. To determine the biological function of CCL17 on EBI in rat SAH model, rCCL17 was administered intranasally after SAH. There were no statistical significance in SAH scores among groups (online supplemental figure 4A). The neurological scores were markedly improved and the BWC in the left hemisphere was observably reduced with rCCL17 treatment at 24 hours and 72 hours post-SAH (figure 2B–D). Based on the above results, administration of rCCL17 (60 μg/kg) was selected for further studies.

Cell apoptosis was assessed by TUNEL staining to evaluate in the ipsilateral cortex after SAH, and neuronal degeneration in the hippocampus was examined by FJC staining. Additionally, TUNEL-positive cells and...
FJC-positive neurons were both increased in the vehicle-treated SAH group than the sham group, which was alleviated by administration of rCCL17 (figure 2A).

The expression level and cellular localization of CCR4 after SAH

We further investigated the dynamic changes in CCR4, CCL17-specific receptor, expression in sham as well as 3 hours, 6 hours, 12 hours, 24 hours and 72 hours after SAH. Compared with the sham group, CCR4 expression was also markedly increased and peaked at 24 hours post-SAHS (figure 3A). IF staining showed that CCR4 was located on microglia, neurons and astrocytes at 24 hours post-SAHS (figure 3B).

To determine the main target cell of CCL17, we compared the level of CCR4 in various cell types after OxyHb stimulation. Interestingly, the results indicated that CCR4 expression was higher in rat primary microglia than in primary neurons and primary astrocytes in vitro (figure 3C). Above findings suggest that CCL17 may present a critical role in post-SAHS microglial regulation.

Microglia exhibit an altered morphology after rCCL17 administration

To clarify the regulatory function of CCL17 on microglia in rats after SAH, we observed the morphology of microglia at 24 hours post-SAHS with rCCL17 administration. As depicted in figure 4A, visual inspection of histological images suggested that the microglia of SAH rats have an altered morphology in ipsilateral cortex after rCCL17 administration. Therefore, we performed an in-depth analysis of microglial morphology in the ipsilateral cortex. The quantification of various parameters of microglial morphology in fluorescently labelled brain sections was analysed with a set of custom-written ImageJ plugins. Figure 4A depicts the representative images of individual microglia cells from each group. The respective cells were skeletonised and extracted to calculate the number of branches, end points and the process lengths. Morphological analysis demonstrated that after SAH induction, microglia present with fewer branches and end points, which were shorter in length than the
rCCL17 promoted M2-like polarisation of microglia via mTORC2 signalling

To explore the function and underlying mechanisms of CCL17 on microglia polarisation, we stimulated the primary microglia with rCCL17. According to the analysis of messenger RNA (mRNA) expression of M2-like microglia-associated markers (CD301, MRC1 and ARG1), we revealed that rCCL17 can markedly promote the M2-like polarisation of microglia (p<0.05, figure 5A). Similarly, the IF also suggested that microglia tend to exert M2-like polarisation with treatment of rCCL17 (figure 5B).

It has been demonstrated that M2-like phenotype of macrophages/microglia are maintained primarily via IL4-STAT6 and MCSF-mTORC2 signalling. To investigate the mechanism of rCCL17 on M2-like microglia regulation, we first examined the influence of rCCL17 on these two pathways in primary microglia. Surprisingly, rCCL17 (100ng/mL) did not activate IL4-induced STAT6 phosphorylation, but it greatly promoted mTORC2 activation, as shown by the increased phosphorylation of mTORC2 downstream targets, pAKT (Ser473), pPKC(Ser657) and pPKC(Ser657).
pERK, but not mTORC1 targets, p4EBP (Thr37/46), in a dose-dependent manner (figure 5C and D).

CCL17 is the specific ligand of CCR4. Therefore, we administered the CCR4 antagonist, AZD2098, to the rCCL17-stimulated primary microglia. As shown in figure 5E, the biomarkers of M2-like polarisation were significantly increased in rCCL17-treated microglia, which was abrogated by AZD2098 (p<0.05, figure 5E). Furthermore, to directly evaluate the influence of rCCL17 on mTORC2 activity, we performed an in vitro kinase assay. The results demonstrated that rCCL17-induced phosphorylation of purified AKT at Ser473 by mTORC2 was reduced by CCR4 antagonist, whereas the mTORC1 complex did not show such significance (figure 5F). Taken together, we demonstrated that CCL17 can directly activate mTORC2 signalling through binding to CCR4 and participating in regulation of microglial functions.

Figure 4 Altered morphology and M2-like polarisation of microglia with recombinant C-C motif chemokine ligand 17 (rCCL17) treatment after subarachnoid haemorrhage (SAH) in rats. (A) Altered morphology of microglia in the ipsilateral cortex with a concentration gradient treatment of rCCL17 at 24 hours after SAH. Right panel: representative cell subjected to image analysis combined with three-dimensional representation of the determined skeleton. Magnification: 200×, scale bar=20 μm, n=3. (B) Quantification of branches, process length and end points per single cell. (C) Relative messenger RNA expression of M2-like associated genes (CD301, MRC1 and ARG1) in brain tissue post-SAH (n=4). **p < 0.01, ***p < 0.001.
rCCL17 treatment participates in neuroprotection and immune regulatory functions via CCR4/mTORC2 axis

To further clarify the role of CCL17 in the CCR4/mTORC2 signalling pathway in the neuroprotective and immune regulatory functions post-SAH, CCR4 inhibitor AZD2098 and mTORC2 inhibitor JR-AB2-011 were administered via intraperitoneal injection 1 hour before SAH. There were no statistical differences in SAH scores among groups (online supplemental figure 4B). TUNEL-positive cells and FJC-positive neurons were significantly decreased in the rCCL17-treated SAH group compared with the vehicle group, which was abolished in the SAH+rCCL17+AZD2098 group when compared with SAH+rCCL17 and SAH+rCCL17+DMSO group (figure 6A). Additionally, pretreatment with the CCR4 antagonist or the mTORC2 selective inhibitor abrogated the neurobehavioural benefits of rCCL17 in EBI post-SAH (figure 6B and C). Western blot analysis revealed that after rCCL17 administration, the mTORC2 signalling pathway was activated, compared with both the vehicle-stimulated and sham group, which was markedly inhibited after treatment with either AZD2098 or JR-AB2-011 (figure 6D-G).

Due to the regulatory function of CCL17 on microglia, we also analysed the altered morphology and M2-like polarisation of microglia in the ipsilateral cortex. Visual inspection of the Iba-1 staining sections indicated that the microglia possessed fewer branches and end points.
which were also shorter in length after treatment with AZD2098 or JR-AB2-011 (figure 7A and B). Furthermore, the biomarkers of M2-like polarisation was also markedly decreased after administration with both inhibitors (p<0.05, figure 7C). Together, the above results illustrated the neuroprotective role and immune regulatory functions of the CCL17/CCR4/mTORC2 signalling pathway post-SAH.

CCL17-regulated microglia promoted neuronal apoptosis and neurobehavioural deficits via CCR4/mTORC2 signalling

According to the above results, we demonstrated that rCCL17 treatment alleviated EBI via CCR4/mTORC2 signalling. However, the application of targeted protein antagonists could not exclude off-target effects, nor could the targeting of the specific cells because of the complex network in the brain. Thus, due to the significant rise of CCR4 in microglia after SAH and its immune regulatory functions on microglia, we hypothesised as to whether rCCL17-regulated microglia could mediate the benefits of rCCL17 treatment. Rictor is a component of the mTORC2 complex and mediates the activity of mTORC2. Therefore, we pre-injected AAV-CD68-Control and AAV-CD68-shRictor before SAH induction to target and knockdown the expression of Rictor and inhibit the function of the mTORC2 complex in microglia/macrophages in the brain. There were no statistic significance in SAH scores among groups (online supplemental figure 4C).

As shown in figure 8, microglia possessed significantly fewer branches and end points, which were shorter in length after knockdown of Rictor expression in microglia in ipsilateral cortex (figure 8A and B). Furthermore, the M2-like polarisation biomarkers were also markedly decreased after intracerebroventricular injection of adeno-associated virus (figure 8C). Similarly, the TUNEL-positive cells and FJC-positive neurons were both decreased by rCCL17 treatment in...
the AAV-CD68-Control-treated group, whereas the AAV-CD68-shRictor-treated group did not demonstrate such tendency (figure 9A). Moreover, consistent with the above results, in the AAV-CD68-Control-treated group, the neurobehavioural score was improved and the BWC in the left hemisphere was significantly augmented with rCCL17 treatment at 24 hours and 72 hours compared with the SAH+vehicle group. However, the beneficial effect of rCCL17 treatment was abolished in the AAV-CD68-shRictor-treated group (figure 9B-H). These results demonstrated that by targeting and inhibiting the CCR4/mTORC2 axis in microglia, the neuroprotective effects of CCL17 can be abrogated.

In summary, these data (figure 10) illustrated that CCL17 secreted from neurons in the setting of haemorrhage can promote the M2-like polarisation of microglia to then exert neuroprotective functions post-SAH.

DISCUSSION

The highlights of this study are listed as follows: (a) rCCL17 treatment improved EBI after SAH and promotes M2-like polarisation of microglia through the CCR4/mTORC2 signal pathway in rats; (b) inhibition of CCR4 in microglia will abolish the neuroprotective effects of rCCL17. In this study, we demonstrated that administration of rCCL17 can alleviate nervous system lesions, at least in part, through the CCR4/mTORC2 signalling pathway, and improved outcomes after SAH.
CCL17 has recently received substantial attention due to its role in a wide range of physiological processes. In a previous study, homozygous CCL17/EGFP knockout mice (CCL17+/−) revealed the location of Ccl17 expression in the murine brain. Notably, CCL17+ cells were clearly observed in the region of hippocampus and the result of co-staining with neuronal marker NeuN revealed that CCL17 is located in neurons within the CA1 region. Consistently, according to the in vitro experiments of rat primary neurons, CCL17 expression in neurons was significantly increased and secreted into the microenvironment. The evidence above implied that neurons may be the partial source of secreted CCL17 after SAH. In addition, we demonstrated that rCCL17 administration notably alleviated the SAH-induced neurological deficits and brain oedema.

Accumulative evidence have illustrated that activated microglia/macrophages can induce neuronal apoptosis in the early period following SAH. Microglial polarisation to selectively activate M2-like phenotypes facilitated tissue repair on acute brain injury and spinal cord injury. Additionally, it has also been demonstrated...
that microglia presented a crucial role in several complications following SAH, including cerebral vasospasm and symptomatic epilepsy. Recent studies have revealed that anti-inflammatory M2 microglia exerted neuroprotective functions and alleviated brain oedema. In a previous study, IL-4-induced M2 microglia markedly alleviated neurological damage (including neuronal death and brain oedema) after ICH via the JAK1/STAT6 pathway. It has also been demonstrated that M2 microglia-derived exosomes promoted neuronal survival and attenuated ischaemic brain injury. Moreover, in terms of SAH, accumulative evidence have revealed that inducing shift towards M2 phenotype or inhibiting M1-like polarisation could ameliorate EBI and improve neurological functions in SAH models. Thus, targeting M2 microglia may present a promising strategy to ameliorate brain injury after SAH. We observed that the M2-like microglia-associated genes were significantly decreased after SAH induction, which was reversed with administration of rCCL17.

To study the underlying mechanism of rCCL17 on M2-like microglia regulation, we found that rCCL17 greatly promoted activation of mTORC2 signalling. Combined with the direct in vitro kinase assay, we examined the direct influence of CCR4/mTORC2 axis in microglia. Consistently, targeting microglia via AAV can also abrogate the promoting function of CCL17. Taken together, we demonstrated that CCL17 can directly activate mTORC2 signalling through binding to CCR4 and regulating microglial functions.

Figure 9
Activation of C-C motif chemokine receptor 4 (CCR4)/mammalian target of rapamycin complex 2 (mTORC2) axis in microglia mediated the neuroprotective function of recombinant C-C motif chemokine ligand 17 (rCCL17). Sprague-Dawley rats were intracerebroventricularly pretreated with AAV-CD68-Control or AAV-CD68-shRictor before surgery to target and knockdown the Rictor expression in microglia. (A) Representative image of the TUNEL in the ipsilateral cortex and FJC staining in the hippocampal area at 24 hours postsubarachnoid haemorrhage (SAH). Magnification: 200×, scale bar=20 µm, n=3. Modified Garcia test (B), beam balance score (C) and brain water content at 24 or 72 hours after SAH showed that the neuroprotective effect of rCCL17 was mediated through the activation of CCR4/mTORC2 axis in microglia, n=5/group. (D) Western blot analysis of the quantification of Rictor (E), phosphorylation of AKT (F), PKC (G) and ERK (H) were performed. ns, not significant. *p < 0.05, **p < 0.01, ***p < 0.001.
However, there are several shortcomings in this study: (1) CCR4 was localised in various cells. We only clarified the role of CCL17 in regulation of microglia-mediated neuroinflammation post-SAH; (2) although this article indicated that binding to CCR4 changes the activity of mTORC2 complex and regulates M2-like polarisation, the mechanism remains to be unveiled, and further experimentation is warranted; (3) the expression and secretion levels of CCL17 are not measured in other types of neural cells. Therefore, neuron-derived CCL17 may be the partial source of CCL17 after SAH. The dominant source of endogenous CCL17 following SAH requires further investigation and more in-depth exploration in subsequent studies.

CONCLUSIONS

In this study, we confirmed that CCL17 attenuated neurological deficits after SAH via activation of the CCR4/mTORC2 axis in microglia. These findings offer novel insight into the critical role of CCL17 in M2-like polarisation of microglia, which provide a novel approach to the clinical strategy targeting microglial polarisation in early SAH management.

Author affiliations

1Department of Neurosurgery, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang, China
2Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, Zhejiang, China
3Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
4Department of Biomedical Sciences, Burrell College of Osteopathic Medicine, Las Cruces, New Mexico, USA
5Department of Biology, Tongji University, Shanghai, China

Contributors SC, JZ and YF are the principal investigators and designed the study. AZ, YL, HX and ZZ contributed to the study design, experiment implementation and manuscript draft. XW, LY, CL and CZ summarised and analysed the experimental data and made suggestions to improve the study. JJ and CF revised the manuscript and polished the language. The author(s) read and approved the final manuscript. AZ is responsible for the overall content as the guarantor.

Funding This work was supported by the National Natural Science Foundation of China (81870916 and 81971107) and the Fundamental Research Funds for the Central Universities, China (2019QNA7038).

Competing interests None declared.

Patient consent for publication Not applicable.

Figure 10 Schematic model showing the mechanism of C-C motif chemokine ligand 17 (CCL17)-mediated crosstalk between neuron and microglia attenuate neurological injury after subarachnoid haemorrhage (SAH). Overproduction of CCL17 presents an essential role in neuroprotection and immune regulation. Following SAH onset, CCL17 secreted by neuron promotes microglia towards M2-like phenotype polarisation via the C-C motif chemokine receptor 4 (CCR4)/mammalian target of rapamycin complex 2 (mTORC2) axis. In return, the M2-like microglia present neuroprotective functions and attenuate neurological injury.
REFERENCES

Supplementary Table 1. PCR primers.

<table>
<thead>
<tr>
<th>Genes</th>
<th>Primer-forward</th>
<th>Primer-reverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat</td>
<td>AGATGAAGCTGGCCAAGGAC</td>
<td>GAGGAGTCCAAACTCCAGGC</td>
</tr>
<tr>
<td>Cd301</td>
<td>GGACATCGTGTACATCGGCT</td>
<td>CTTCCTTCCCAGCAGGTAGC</td>
</tr>
<tr>
<td>Arg1</td>
<td>AACTTCATCTGCCAGCGACA</td>
<td>CGTGCCTTTCCAGGTCCTT</td>
</tr>
<tr>
<td>Mrc1</td>
<td>GCAGGAGTACGATGATCCCG</td>
<td>ACGCAGCTCAGTAACAGTCC</td>
</tr>
</tbody>
</table>
Methods

Animals and Drug administration

Adult male Sprague-Dawley rats (10-week-old, 300-320g) were housed in a temperature- and humidity-controlled environment with ad libitum access to food and water. The light in the room was controlled in a 12-h light/dark cycle. All experimental protocols were approved by the Institutional Animal Care and Use Committee and in accordance with the National Institutes of Health guide for the care and use of laboratory animals.

AZD2098 and JR-AB2-011 were dissolved in 10% DMSO and administered via i.p. injection. The rCCL17 was dissolved in sterile deionized water and administered via i.n. administration. Three different dosages of rCCL17 (10, 30, and 60 μg/kg) were given to rats at 1 h after SAH.

Modified Garcia Score and Beam balance test

The modified Garcia Score and Beam balance test were used to assess short-term neurological deficits at 24 h and 72 h post-SAH as previously described. Briefly, the modified Garcia test with a 21-point score was conducted to evaluate spontaneous activity, axial sensation, symmetry of limb movement, vibrissae proprioception, and forelimb walking. Beam balance test is used to assess the rat’s ability to walk on the wooden beam for 1 min. The evaluation was as follows: 0 = not walk and fall; 1 = not walk but remain on beam; 2 = walk but fall; 3 = walk < 20 cm; and 4 = walk beyond 20 cm.

Brain water content measurement

The wet/dry method was used to measure BWC according to previous study. The rats were sacrificed and the brains were collected immediately at 24 h after surgery and cut into four sections: left cerebral hemisphere, right cerebral hemisphere, cerebellum and brain stem. Each section was weighed immediately after removal to obtain the wet weight (WW). Subsequently, each part of the brain was baked at 100 °C for 48 h and record the dry weight (DW). The BWC was measured using the following formula: (WW-DW)/WW×100%.

Western blotting analysis

At each post-SAH time point, the brain samples were collected and prepared for western blot
analysis. The left hemisphere sample was prepared using RIPA lysis buffer. 40 ng of protein sample was loaded onto an SDS-PAGE gel and transferred to a nitrocellulose membrane. The membrane was blocked with 5% non-fat milk and incubated with the following primary antibodies: rabbit anti-CCR4 (1:1000, GTX53474, Gene Tex); rabbit anti-CCL17 (1:1000, ab182793, Abcam); rabbit anti-Akt (1:1000, 9272S, Cell Signaling Technology); rabbit anti-phosphorylated AKT ser473 (1:1000, 4060S, Cell Signaling Technology); rabbit anti-PKCα (1:1000, 2056S, Cell Signaling Technology); rabbit anti-phosphorylated PKCα (1:1000, ab180848, Abcam); rabbit anti-PKC (1:1000, ab179522, Abcam); rabbit anti-phosphorylated 4EBP1 (1:1000, 2855S, Cell Signaling Technology), rabbit anti-4EBP1 (1:1000, 9644S, Cell Signaling Technology); rabbit anti-phosphorylated STAT6 (1:1000, 5397S, Cell Signaling Technology); rabbit anti-STAT6 (1:1000, 56554S, Cell Signaling Technology); and rabbit anti-β-actin (1:1000, Santa Cruz; 1:5000, Abcam) overnight at 4 °C. Membranes were incubated with corresponding secondary antibody (1:10000, Santa Cruz; 1:5000, Abcam) for 2 h at room temperature.

RNA isolation and quantitative PCR

Preparation of mRNA and real-time quantitative PCR was previously described. Total RNA was extracted from left hemisphere samples and cells using TRIzol reagent (Invitrogen) after washing with PBS. cDNA was synthesized from purified RNA using a SuperScript III First-Strand cDNA synthesis system (18080051, Life Technologies) according to the manuscript’s instructions. SYBR Green PCR Master Mix (Applied Biosystem, CA, USA) was used for PCR amplification and a real-time PCR machine (iQ5, Bio-Rad Laboratories) was used to quantify the expression of mRNAs. β-actin was used as an endogenous control and the expression levels were quantified using 2-△△Ct method. All prime sequences are listed in Supplementary Table 1, and detection of each primer was performed in the triplicate.

SAH Model and SAH Grading

The endovascular perforation SAH model was conducted as previously described. Briefly, isoflurane-anesthetized rats were intubated with mechanical ventilation. A sharp 4–0 monofilament was inserted from the left external carotid artery to the internal carotid artery and perforated the bifurcation of the anterior and middle cerebral arteries. Rats in the sham group underwent the same
procedures without vessel puncture. Measurements of respiration, heart rate, skin pigmentation, and pedal reflex were recorded intraoperatively every 5 min to confirm the anesthetic status and prevent distress.

The SAH grading was blindly evaluated by two independent investigators according to the previous study. Briefly, the basal cistern was divided into six segments and scored from 0 to 3 based on the subarachnoid blood clot. The final score combined all segments and ranged from 0 to 18. If there was no blood present, a score of 0 was assigned. Rats with a score under 9 were excluded from this study.

Primary hippocampal neuron, microglia and astrocytes cultures

Within two days after birth, newborn Wistar rat pups were anesthetized and decapitated. The brain was quickly removed, soaked in Hank’s solution, and stored at 4 ºC. The hippocampus was dissected rapidly under a microscope ice bath, and the tissue was cleaned three times with 5mL refrigerated DMEM/F12 medium. The hippocampal tissue was digested with 2 mL pectinase and gently agitated twice. The cell suspension was removed to repeat the process with pectinase until complete digestion was achieved. After digestion, the cells were evenly mixed with the culture medium from hippocampal neurons and counted for lamination. Half-volume of medium was replaced every other day 24 h, the neuronal state was observed for 9 days and subsequent experiments were carried out. Simultaneously, cerebral cortices were enzymatically and mechanically dissociated and cells were seeded in DMEM/F12 medium supplemented with 10% FBS, 1% penicillin-streptomycin, 1 mM sodium pyruvate. The medium was replaced every 4 days. On day 14, the medium was removed, and cultures were trypsinized to isolate the monolayer of astrocytes and adherent microglia. Oxygenated hemoglobin (OxyHb, 10 μM, Sigma-Aldrich, USA) was introduced into the medium for 24 h to simulate SAH insult in vitro as previously described.

Elisa assay for CCL17

The rat primary neuron was treated with or without OxyHb (10 μM, Sigma-Aldrich, USA) to simulate SAH for 24 h. The supernatant was collected for quantitative analysis of endogenous CCL17 using ELISA kit (LifeSpan BioSciences, LS-F4911) following the manufacturer’s instruction.
shRictor adeno-associated virus vector construction

To knockdown the expression of Rictor (a composition of mTORC2) in microglia in vivo, we constructed adeno-associated virus (AAV)-CD68 mediated Rictor interference virus vector pHBAAV2/9-CD68-shRictor (AAV-CD68-shRictor) (Hanbio Technology). The sequences were GGCTGTGATATTCTAAAGT (sense) and ACTTTAGAATATCACAGCC (anti-sense). The verification of the inhibitory effects was conducted 3 weeks later after stereotaxic injection to the cerebral ventricle.

Immunofluorescence staining

Animals were anesthetized and perfused with 200 ml PBS followed by 50 mL10% formalin transcardially at 24 h after SAH. Brain samples were fixed in 10% formalin for 2 days. 30% sucrose was used to dehydrate the brain for a further 3 days. Brain sections were prepared as 10 μm slices. Samples were co-incubated with primary antibodies at 4 ℃ overnight anti-CCL17 (1:100, LS-C198166, LifeSpan BioSciences), anti-CCR4 (1:100, ab59550, Abcam), anti-CD206 (1:100, sc58986, Santa cruz biotechnology), anti-Iba-1 (1:100, ab178847, Abcam), anti-GFAP (1:200, ab53554, Abcam), and anti-NeuN (1:200, ab177487, Abcam). Slides were incubated with the appropriate secondary antibodies and observed using a fluorescence microscope (Leica Microsystems, USA).

TUNEL staining

According to the manufacturer’s instruction, staining of TUNEL was applied to quantify cell apoptosis with in situ Apoptosis Detection Kit (Roche, Indianapolis, USA) at 24 h post-SAH. The number of TUNEL-positive cells was analyzed in the hemorrhagic region. Four random visual fields per slide were observed by a blinded observer using a microscope at 200x magnification.

FJC staining

The number of degenerating neurons was assessed by FJC staining using a modified FJC Ready-to Dilute Staining Kit (Millipore, Billerica, MA, USA) at 24 h post-SAH. In accordance with the manufacturer’s instructions, slides were washed with PBS incubated with the FJC working solution.
for 20 min, and then visualized using a fluorescence microscope. The FJC-positive neurons in four parts of the hippocampus of each brain were manually counted using a microscope at 200x magnification and the ImageJ software (ImageJ 1.5, NIH, USA).

Stereotaxic cerebroventricular AAV-Rictor injection

Rats were anesthetized and then mounted onto a stereotaxic apparatus (Stoelting Instruments, Wood Dale, IL, USA). The AAV-CD68-shRictor (1.3×10^{12} TU/ml) was injected into both of the lateral cerebral ventricles (0.5 μl each; AP: -1.5 mm, ML:+/-1.1 mm, DV:-4.5 mm, relative to Bregma). The injection speed was 0.1 μl/min using an injection pump (Harvard Apparatus, Holliston, MA, USA) equipped with a 1-μl Hamilton syringe. Before withdrawing the syringe, it remained in place for at least five minutes. SAH induction was performed 3 weeks after injection.
Supplementary Figure 1. Experimental design and animal groups.

SAH, subarachnoid hemorrhage; rCCL17, recombination C-C chemokine ligand17; CCR4, C-C chemokine receptor 4; WB, western blot; IF, immunofluorescence; BWC, brain water content; DMSO, dimethyl sulfoxide; i.n., intranasally; intracerebroventricularly.
Supplementary Figure 2. The expression of CCL17 in CA1, CA3, and DG region at 24 post-SAH.

CCL17 (green) co-localized with NeuN (red) in sham animals an in animals in CA1, CA3, and DG region at 24 post-SAH. Nuclei were stained with DAPI (blue), scale bar = 20 μm. n=3/group. All t-tests were two-tailed. Mean ± SEM. ***P < 0.001.
Supplementary Figure 3. CCL17 secreted from neuron after OxyHb stimulation.

(A) With stimulation of OxyHb (10 μM) for 24 h, the expression of CCL17 in rat primary neurons was examined by Western blot. n=3/group. (B) The level of CCL17 in the supernatant after stimulation was tested with ELISA assay. n=8/group. All t-tests were two-tailed. Mean ± SEM. ***P < 0.001.
Supplementary Figure 4. SAH grade of rats SAH model.