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of Sprague-Dawley rats; however, the rat cortex is much 
smaller, with much shorter arteries and fewer branches 
than in the human brain, so the drop in pressure would 
be expected to be much smaller in rats than in man. 
In another study comparing control mice to mice over-
expressing human renin and angiotensinogen, Baum-
bach et al33 found that systemic MAP dropped from 
117±4 to 40±1 mm Hg in cerebral arterioles of control 
mice and from 153±6 to 60+4 mm  Hg in hypertensive 
mice. Harper and Bohlen34 compared spontaneously 
hypertensive rats (SHR) and Wistar Kyoto rats (WKR), 
and found similar drops in pressure to what we predict. 
With systemic MAP of 173±14 mm  Hg in SHR and 
122±8 mm Hg in WKR, the MAP in small cerebral arte-
rioles (fourth-order arterioles either perfusing surface 
capillaries or descending into the cortical parenchyma) 
was ~12 mm Hg. We hope our study will stimulate 

investigators with the technical ability to make blood 
pressure measurements in small branches of human 
cerebral blood vessels to do so.

Insights from mathematical models
This work predicts a marked drop in blood pressure 
from the large arteries at the base of the brain, and the 
small arteries of the vascular centrencephalon, to the 
small arterioles over the convexity. The figures of the rich 
branching of the cerebral vasculature in the figures show 
why this happens.

From the fluid mechanics point of view, and in the light 
of model predictions, it is concluded that the strong differ-
ences in the values of blood pressure observed at the base of 
the brain and at cortical locations are caused by the differ-
ences in the resistance to flow opposed by the vasculature. 
Specifically, viscous dissipation in the small and lengthy 

Figure 3  Detail of the peripheral beds corresponding to the lenticulostriate artery and to the posterior parietal branch of 
the middle cerebral artery. Pressure waveforms are shown for the normotensive (N, dashed line) and hypertensive (H, solid 
line) cases. Right panels (top and bottom) display the pressure waveform in the feeding artery to the corresponding arteriolar 
networks. Middle and left panels show the pressure level in arterioles with diameter ranges between D � (190 μm, 210 μm) and 
D � (30 μm, 50 μm), respectively; n indicates the number of vessels taken to calculate the average and SD pressure waveforms 
(grey-shaded area). In brackets, the mean arterial pressure is reported. LsA, lenticulostriate artery; MCA, middle cerebral artery; 
PPB, posterior parietal branch.  on S
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vessels supplying blood to the cortical peripheral beds is 
responsible for the larger pressure drop from the central 
arterial pressure to prearteriolar blood pressure with respect 
to the pressure drop in the vessels supplying the arterioles 
at the base of the brain. This is also verified in the sensitivity 
analysis. In fact, from the geometrical point of view, resis-
tance to flow is proportional to vessel length and inversely 
proportional to the vessel radius to the power of four. Thus, 
it is the anatomical arrangement of the cerebral circula-
tion, which determines that lengthy vessels supplying the 

convexity preserve cortical peripheral beds from high blood 
pressure.

Concerning physical phenomena, in this work we were 
interested in the fluid-mechanical aspects of hypertension 
and, therefore, the model setting reflects this emphasis. 
In order to properly model the hypertensive condition, 
we have introduced changes to the model of the normo-
tensive condition that are related to structural changes in 
the systemic circulation. Blood pressure levels predicted 
by the present model in the normotensive condition 

Figure 4  Mean arterial pressure throughout the peripheral beds under analysis. Arteriolar regional pressure drop for the 
peripheral arterioles of the lenticulostriate artery (top row) and of the posterior parietal branch of the middle cerebral artery 
(bottom row), for the normotensive case (left column) and the hypertensive case (right column).

Table 2  Sensitivity analysis of the differential systolic and diastolic pressures (ie, pressure in the lenticulostriate vessels minus 
pressure in the posterior parietal vessels) with respect to modification of several model parameters

Variation of SBP/DBP (%)

Model parameters Feeding artery 190 and 210 μm arterioles 30 and 50 μm arterioles

ΔRo=−5% −18.6/–13.0 −17.9/–11.9 −16.9/–10.3

ΔRo=−15% 23.5/12.9 21.8/10.8 19.9/8.2

Δh=+25% −4.9/0.5 −3.5/2.0 −2.0/3.4

Δh=+75% 4.4/–3.1 3.3/–4.1 2.2/–5.0

ΔRW=+30% 2.9/–6.0 0.5/–8.7 −2.9/–12.0

ΔRW=+90% −2.8/–1.9 −2.0/–0.4 0.5/3.2

ΔCW=−10% 0.0/–0.2 −0.1/–0.1 −0.1/–0.1

ΔCW=−40% 0.0/0.2 0.1/0.1 0.1/0.1

Percentages are computed with respect to the differential pressure in the hypertensive scenario.
ΔR

W
, change in peripheral resistance; ΔC

W
, change in network compliance; *ΔR

o
, change in lumen radius; Δh change in arterial wall thickness.
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are in agreement with previous computational simula-
tions,35 which in turn were compared against measure-
ments in humans.36 In addition, predicted normotensive 
and hypertensive pressures in cortical arterioles are in 
agreement with measurements in animal models34 37 as 
discussed above. Experimental evidence of blood pres-
sure in vessels at the base of the brain is scarce. However, 
the estimated pressure in centrencephalic arterioles can 
be considered acceptable in view of the consistent pres-
sure estimation in cortical vessels, and given that the phys-
ical principles behind the simulations are the same.

The sensitivity of differential systolic and diastolic 
pressures to variations in the parameters that define 
the hypertensive condition proved to be higher when 
different remodelling of the lumen radius takes place. 
However, the differences found with respect to the hyper-
tensive scenario defined here are always <25%. When the 
hypertensive remodelling is more pronounced (larger 
decrease of the lumen radius and increase of wall thick-
ness), the pressure difference between lenticulostriate 
and posterior parietal beds increases. This implies that 
the results obtained in this study are conservative in the 
sense that any further alteration of model parameters 
(stressing the hypertensive condition) tend to increase 
the pressure difference between cortical and centren-
cephalic arterioles.

Therapeutic implications
Thus, small WMI over the convexity are probably not 
attributable to hypertensive small vessel disease (lipohy-
alinosis), but are more likely to be due to amyloid degen-
eration or other arteriolar pathologies as discussed by 
Caplan, and to low diastolic blood pressure in the setting 
of impaired autoregulation. As discussed above, this is 
particularly a problem in patients with stiff arteries whose 
cuff pressures are much higher than their true intra-arte-
rial pressures.38 39

Therapeutic implications of these findings are clear for 
hypertensive small vessel disease in the vascular centren-
cephalon. Söros et al40 recently summarised the evidence 
that treating hypertension reduces the risk of dementia, 
by preventing lacunar infarctions.

Whereas in the past approximately 20% of strokes were 
due to intracranial haemorrhage, strict blood pressure 
control in the North American Symptomatic Carotid 
Endarterectomy Trial reduced intracranial haemorrhage 
to 0.4% of strokes.41 The Systolic Blood Pressure Interven-
tion Trial (SPRINT) recently showed that intensive blood 
pressure lowering to <120 mm  Hg systolic reduced the 
risk of stroke significantly compared with a more usual 
blood pressure target of <140 mm Hg.42 Interestingly, 
they assessed only clinically symptomatic strokes.

Wardlaw’s group43 reported that lacunar infarctions in 
the vascular centrencephalon were more likely to be symp-
tomatic than small subcortical WMI over the convexity; 
it is possible that in SPRINT, lower blood diastolic pres-
sures may have prevented hypertensive strokes, while an 
increase in subcortical WMI may have gone undetected.

However, if WMI over the convexity and periventricular 
WMI are due to other forms of small vessel disease, then 
different approaches will be needed to prevent them.

Wardlaw’s group44 found that a wide pulse pressure 
(which lowers diastolic pressure, for a given MAP) was 
particularly a risk factor for small subcortical WMI over 
the convexity. Webb et al reported45 that arterial stiffness 
and increased pulsatility in the middle cerebral artery 
were associated with leucoaraiosis. In the setting of arte-
rial stiffness with a wide pulse pressure, treatment to 
lower the blood pressure may reduce the diastolic blood 
pressure excessively, particularly when drugs that slow the 
heart rate (thus widening pulse pressure) are used. False 
elevation of the cuff blood pressure by stiff arteries38 may 
account for the observed J curve with low blood pressure 
in the elderly.

Factors such as amyloid angiopathy in small cortical arteri-
oles, or other pathophysiological mechanisms, by impairing 
cerebral vascular reactivity and thus cerebral blood flow auto-
regulation, might aggravate ischaemia due to low diastolic 
pressure in small convexity arterioles. An example of this is 
the ‘earthen pipe’ phenomenon in CADASIL.46

Limitations
The principal limitation of this study is that it is based 
on a mathematical model, with no confirmatory blood 
pressure measurements. A previous modelling study33 
predicted a similar drop in pressure from the aortic root 
to the middle cerebral artery  and a drop in MAP from 
94 to 81 mm Hg. However, that study did not extend to 
smaller more distal branches.

We stress that models are a simplification of reality. 
However, this simplification must contain all relevant 
aspects of the modelled phenomenon. The ADAN model 
is, currently, the most complete model of the human 
arterial network, including almost all arteries acknowl-
edged by the medical literature. To this complex network 
we have added arteriolar networks for small portions of 
the brain, those irrigated by the lenticulostriate artery 
and the posterior parietal branch of the middle cerebral 
artery. No differentiation between white and grey matter 
has been made. These microvascular networks contain 
8040 and 24 040 vessels, respectively, and from the fluid 
mechanics point of view, they can be considered as repre-
sentative units of the cerebral microvasculature. Thus, 
the simulations and analysis presented here are represen-
tative for other microvascular beds in both the centren-
cephalon and the cortex.

Conclusion
Predicted blood pressure gradients in the cerebral vascu-
lature may contribute to the understanding of cerebral 
small vessel disease. Lacunar infarctions in the vascular 
centrencephalon may be directly attributable to arteri-
olar damage from high blood pressure, but small WMI 
in the convexity are more likely to be due to low diastolic 
blood pressure in the setting of wide pulse pressure from 
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stiff arteries, and impaired autoregulation due to vascu-
lopathy of a different nature, such as amyloid angiop-
athy. Periventricular WMI may be due to venous conges-
tion. These distinctions have important implications for 
elucidating the pathophysiology of cerebral small vessel 
disease, in order to develop approaches to preventing 
the consequences of small vessel disease, including stroke 
and dementia.
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