Discussion
Overall, our findings suggest that the use of a larger-bore DAC may lead to improved efficacy of the combined MT technique compared with medium-bore DACs. By applying this technical modification, the rate of FPE was further increased, as the use of Catalyst 7 was the only predictor of FPE after multivariable analysis adjustment.
Catalyst 7 is currently the DAC with the largest distal inner diameter available that is fully compatible with the most widely used BGC, the FlowGate2. The suction force on the DAC tip is the product of the applied pressure and the cross-sectional area of the catheter; therefore, the catheter with the largest tip diameter will apply the greatest force.24 Since the distal inner diameters of Catalyst 5, 6 and 7 are 1.47, 1.52 and 1.73 mm, respectively, Catalyst 7 generates approximately 38% more aspiration force than Catalyst 5% and 30% higher than Catalyst 6, which may explain its increased efficacy.
The performance of larger-diameter DACs in ADAPT has already been evaluated. The work of Delgado Almandoz et al
17 showed that the use of the large-bore ACE 68 (Penumbra, Alameda, California, USA) DAC was associated with shorter groin puncture to reperfusion time, higher rate of successful reperfusion and lower rate of stent retriever rescue compared with ACE 60 and ACE 64. Alawieh et al
18 also compared multiple DACs with various inner diameters employing ADAPT, and although there were no differences in the reperfusion rates, they found a trend towards a gradual decrease in the use of rescue therapy and procedure times moving from smallest to largest catheter. However, these studies did not analyse FPE rates but rather employed the modified FPE (mTICI 2b/3 after the first pass), and they did not fully provide the rate of failure to advance the DAC to the point of occlusion. One major concern about the use of large-bore DACs is navigability, especially in case of significant tortuosity in the carotid siphon. In our study, we managed to reach the thrombus with both the stent retriever and the DAC in all patients with the intention to apply PROTECT-PLUS, with no differences between groups in terms of the type of arch or cervical or intracranial vascular tortuosity. One of the advantages of employing combined MT techniques is the possibility of using larger-calibre DACs, regardless of vascular tortuosity, since deploying the stent retriever serves as an anchor to advance the DAC more easily to the face of the thrombus.
A potential drawback of the combined use of large-bore DACs with BGC is that the gap between the catheter lumen of the BGC and the aspiration catheter is too small, limiting the proximal aspiration force from the BGC. Nevertheless, it is at least possible to obtain local stasis in the ICA during the manoeuvre by inflating the balloon, and flow reversal is obtained immediately on withdrawal of the DAC and stent retriever to remove possible debris in the ICA and the risk of ENT.
By applying the larger-bore DAC, there was a significantly lower need of rescue therapy as well as a lower number of thrombectomy passes as compared with the medium-bore DACs. Concerning the latter point, recent data indicate that an increased number of thrombectomy attempts may have a negative impact on patients’ clinical outcome.25 An advantage of fewer manoeuvres is that an increased number of passes can result in a higher rate of vessel dissections and haemorrhagic complications both by a potential perforation with the microwire or vessel stretching when performing an MT pass with stent retriever, which may explain the higher rate of subarachnoid haemorrhage in the Catalyst 5 group. In addition, a higher number of manoeuvres is associated with lengthy procedures, with a higher risk of microembolisms formation, which is another aspect that is not or not fully reflected in the current TICI-based grading scheme. In our study, we found shorter procedural times (from groin puncture to recanalisation) in the Catalyst 7 group compared with the Catalyst 5 group.
Concerning the safety outcomes, fewer overall procedure-related complications were encountered with the use of Catalyst 7, probably due to the higher aspiration force and the need for fewer thrombectomy passes. An important aspect addressed was the reduction of ENT, a complication consequence of thrombus fragmentation with the risk of occluding an artery that may be providing leptomeningeal collateral circulation to the ischaemic territory. Moreover, there is an added risk of producing new infarcts in a previously unaffected territory, with a significant worsening of the patient’s clinical outcomes.26 Although the difference was not statistically significant, we found a tendency to a lower rate of ENT using Catalyst 7 compared with using the Catalyst 5 and 6.
Recent evidence shows that improving the rate of complete first-pass reperfusion and decreasing the number of thrombectomy passes in total as well as the procedure time will ultimately result in clinical improvement and benefit for the patients.2 3 5 27 28 In our study, considering all patients treated with PROTECT-PLUS, the achievement of an FPE was associated with better clinical outcomes. Interestingly, although nearly all the aforementioned aspects of ‘really successful’ reperfusion were satisfactorily accomplished with the use of Catalyst 7, no statistically significant differences between groups were observed in terms of functional independence at 3 months. However, there was a trend towards a higher rate of mRS score of 0–2 as the diameter of the DAC increased, 46% with Catalyst 5, 50% with Catalyst 6% and 55% with Catalyst 7. We believe that controlled clinical trials with a larger number of patients would more clearly address the clinical implications of using larger DACs in combined MT techniques.
Our work has limitations, which need to be considered when interpreting the results. First, as an observational retrospective study, it suffers from inherent methodological restrictions and a degree of selection bias may have been incurred; nonetheless, the study was conducted in two different comprehensive stroke centres and the cases included were consecutive patients with the intention to apply PROTECT-PLUS. We believe that the selection bias is of minor importance as the catheter selections were primarily driven by the availability in the department and not by the anatomy or vessel size. Furthermore, while both comprehensive stroke centres that included patients in this study carried out the same technique with the same main devices, there are intangible details regarding the working methods of both groups that could have influenced the results. In order to address this issue, we included the stroke centre as an independent variable in the logistic regression analysis. Finally, while the fact that different models and sizes of stent retrievers were employed should be mentioned as a possible bias, all stent retrievers were state-of-the-art devices with a balanced distribution of the type of stent retriever used among groups and also included in the logistic regression analysis.