Discussion
Currently, improved endovascular techniques such as balloon-assisted coiling, stent-assisted coiling, and intra-saccular and extra-saccular flow diversion have facilitated the treatment of WNBA.13 However, due to the thrombogenic surface of vascular implants, DAPT is needed to prevent thromboembolic complications. Although DAPT has been shown to reduce thromboembolic events, it also leads to increased bleeding risk in patients with acutely ruptured aneurysms or in patients with pre-existing conditions, such as gastric ulcers, which is associated not only with higher mortality but also patient distress, inconvenience and premature discontinuation. Similarly, there is a requirement for patients to maintain their APT as well as potential drug interactions, which may interfere with the effectiveness.14
An individual selection of the APT is essential to reduce the risk of both thromboembolic and hemorrhagic complications as the individual variability of platelet reactivity is recognised as a risk factor for vascular events.15 16 Resistance to clopidogrel has been observed in approximately one-third of patients, and therefore there has been increasing interest in the efficacy of newer antiaggregation drugs, such as ticagrelor or prasugrel.17–19 These new drugs inhibit platelet aggregation more effectively and rapidly than clopidogrel, with lower rates of individual variability. However, the cost of medication (especially with prasugrel) and patient compliance (twice a day in the case of ticagrelor) have to be kept in mind.
The use of platelet function testing has been proposed as a possible solution to guarantee an appropriate level of platelet inhibition. VerifyNow (Accriva), Multiplate (Roche Diagnostics) and the Platelet Function Analyzer (PFA-100, Siemens, Erlangen, Germany) are the most widely used methods.20 Its clinical value, however, remains controversial.21
Therefore, the development of low-thrombogenic implants that would minimise the need for APT could be a milestone for the use of vascular implants. Although the coating materials developed to date for stents and FDS have shown biocompatible and hemocompatible properties, DAPT is still necessary.22 pHPC is a glycan-based hydrophilic polymer coating which can be applied to nitinol surfaces. It is intended to simulate the glycocalyx, a covering that can be found on the luminal surface of the endothelium, making the coated device hydrophilic and less thrombogenic.6 pHPC is a biocompatible coating that has no pharmaceutical effect, no evidence of acute inflammatory response, and does not interact with the physical properties of the metallic implant underneath.23 24
Until now, only the series of Aguilar-Perez et al have reported the use of this device in treating 15 ruptured aneurysms using ASA monotherapy. They reported three instances of intraprocedural thrombus formation and no hemorrhagic complications.8 In this series, all but two patients required increased doses of ASA to maintain adequate platelet inhibition. This preliminary data suggests that pHPC may play a role in the treatment of selected aneurysms which are not suitable for other interventions, but that adequate management of the SAPT prior to and after treatment must be meticulous. The increased platelet turnover created as a consequence of a stressful state may lead to increased dosages needed to maintain adequate platelet inhibition, as described in the series by Aguilar-Perez et al. Manning et al
25 reported the use of a twice-daily aspirin regimen since this may reduce complications due to platelet function recovery. Keeping this data in mind, we also used twice-daily 100 mg ASA in our series for at least for 3 months following treatment. One of our patients showed in-stent stenosis at angiographic follow-up. The patient was an active smoker and continued smoking after treatment. This state likely increased the platelet turnover as shown by the insufficient platelet inhibition at a daily dose of 100 mg ASA PO. We suggest that the dose of ASA should be kept at twice a day in patients with higher anticipated turnover, such as smokers or diabetics.26 27
Although the overall incidence of HSI on DWI following treatment of intracranial aneurysms is approximately 50%,28 this rate was higher in our series after the first intervention, ergo during stent implantation (82.8%). In contrast, we found a lower rate of DWI lesions after the second setting (61.5%), although four patients showed thrombus formation directly associated with the coil occlusion. A possible explanation for the higher rate of silent ischemic events during the stent implantation might be the lack of full heparinisation during our procedures. However, heparin alone is limited in preventing thromboembolic events following aneurysm coiling.29 Hahnemann et al
30 reported no significant difference in the incidence of DWI lesions in patients with and those without heparinisation in their series of 75 aneurysms treated with stent-assisted coiling under DAPT. Another explanation might be the deployment of the stent under ASA as SAPT. Although ASA has shown efficacy in reducing the risk of intraoperative thrombotic complications,31 32 Matsumoto et al
33 suggested that clopidogrel has a significant potential to inhibit platelet function more effectively. By extrapolating from Matsumoto’s paper we can suggest that any P2Y12 inhibitor has a greater potential to inhibit platelet function than ASA alone. In order to compare our recent pCONUS HPC data, we retrospectively reviewed our database and identified 15 patients that were treated with the uncoated pCONUS device for incidental WNBA in a sequential way. Microembolic lesions were noted in 10 of 15 patients (66.6%) after the first treatment and in 5 of 12 patients (three did not have postprocedural MRI) after the second setting (41.6%). However, all these procedures, as well as any stent-assisted coiling, were performed under DAPT, which has been demonstrated to significantly reduce the risk of thromboembolic complications associated with all kind of endovascular procedures.31 32
In a recently publicised study, pHPC has been shown to significantly reduce the thrombogenicity of the p48 FDS in an in vitro flow model.7 Similarly, we saw neither evidence of thrombus formation on the surface of the pCONUS HPC intraoperatively nor at follow-up angiography, suggesting that the origin of these HSI spots is more likely related to the deployment technique itself rather than the device’s thrombogenicity. However, the higher rate of DWI lesions observed in our series cannot be fully explained by the available data.
In view of the rate of intraprocedural thrombus formation and periprocedural DWI lesions in our series, we may assume that the use of the pCONUS HPC under DAPT or under a P2Y12 inhibitor such as Ticagrelor or Prasugel as SAPT might have less risk of thromboembolic complications than under ASA monotherapy. From this initial experience, we suggest the use of the device under DAPT during the perioperative period followed by ASA monotherapy, and keeping its use under SAPT for cases at higher risk under DAPT.
Bhogal et al
34 reported the use of the p48MW HPC FDS in treating five patients with unruptured aneurysms using prasugrel monotherapy. There were no thromboembolic complications but one patient suffered a minor hemorrhage from the aneurysm 2 weeks postoperatively.34 On the other hand, Aguilar Perez et al
35 reported the use of the p48MW in eight ruptured aneurysms using either ASA or prasugrel. They observed four intraprocedural thrombus formation and one stent-thrombosis on day 3, but none of the aneurysms rebled after treatment. They concluded that thromboembolic complications were a potential problem that may be more likely to occur under ASA rather than prasugrel since patients who received prasugrel showed less variability and failure in platelet inhibition before and after treatment.35
Regarding the pCONUS itself, it is unclear whether the device offers a benefit with respect to other treatment modalities such as microsurgery or other endovascular options, since the nature of the study does not allow for comparison. In our series, the rate of adequate occlusion (mRRC I or II) at follow-up was 80%. That our rate is higher than in Sorensen et al’s meta-analysis (60%) may be secondary to the staged treatment. However, our data do not allow us to conclude that a staged approach is superior as there was a higher rate of thromboembolic complications in our series than in others where the treatment was performed in a single session.1 8 Additionally, only 10 of our 15 patients were available for follow-up and this follow-up period was too short to provide any insight into whether residual or recurrent aneurysm formation can occur. Nevertheless, recurrent aneurysm perfusion prompting retreatment has been observed after coiling36 and has not been overcome with newer implants like the Woven EndoBridge (WEB; MicroVention, Aliso Viejo, California, USA).37 However, it is critical to continue to advance endovascular technology, as not all patients are candidates for microsurgery.
Our study has several limitations, including the single-centre retrospective design as well as the relatively small number of patient and the short follow-up period. There were no ruptured aneurysms included and all patients in our series were treated in a staged way, which was a potential source of increased complications. This data are considered preliminary, and further investigation is required to evaluate the safety of SAPT in the context of pCONUS HPC-assisted coiling in selected cases of unruptured aneurysms.