Mechanical thrombectomy
Over the last decade, the natural history of ischaemic stroke has been dramatically improved following the five pivotal trials that set the ground for MT as the standard of care. The first attempt was in 2013, when three RCTs (Interventional Management of Stroke III (IMS III), Mechanical Retrieval and Recanalization of Stroke Clots Using Embolectomy (MR Rescue) and A Randomized Controlled Trial on Intra-arterial vs Intravenous Thrombolysis in Acute Ischemic Stroke (SYNTHESIS)) failed to exhibit the superiority of mechanical thrombectomy compared with standard medical treatment.9–11 The main limitation present within these three RCTs was the use of old thrombectomy devices and the lack of uniform protocol for confirming LVO on CT angiography, which introduced bias against endovascular therapy.48 In IMS III, 20% of patients randomised to the endovascular arm did not have a LVO. As a result, the 2013 AHA/ASA guidelines for the early management of patients with acute ischaemic stroke advised that the “ability to improve patient outcomes has not yet been established” for thrombectomy devices.53 Two years later, The Multicenter Randomized Clinical trial of Endovascular treatment for Acute ischemic stroke in the Netherlands (MR Clean) RCT was published, showing the superiority of mechanical thrombectomy using newer thrombectomy devices compared with medically treated patients. In 2015, four other RCTs (Solitaire With the Intention For Thrombectomy as PRIMary Endovascular Treatment Trial (SWIFT PRIME), Endovascular Treatment for Small Core and Anterior Circulation Proximal Occlusion With Emphasis on Minimizing CT to Recanalization Times (ESCAPE), Randomized Trial of Revascularization With Solitaire FR Device vs Best Medical Therapy in the Treatment of Acute Stroke Due to Anterior Circulation Large Vessel Occlusion Presenting Within 8 hours of Symptom Onset (REVASCAT), and A Randomized Controlled Trial of Intra-arterial Reperfusion Therapy After Standard Dose Intravenous t-PA Within 4.5 hours of Stroke Onset Utilizing Dual Target Imaging Selection (EXTEND-IA)) that were running at the same time had to prematurely stop enrolling following MR Clean results, observing superiority of MT compared with intravenous tPA alone.13–16 A meta-analysis of the five trials by HERMES collaborators reported that MT for anterior circulation groups significantly reduced overall 90-day disability, with a number needed to treat of 2.6 to reduce the mRS in one patient by at least one point.8
More recently, the Clinical Mismatch in the Triage of Wake Up and Late Presenting Strokes Undergoing Neurointervention With Trevo (DAWN) and A multicentre RCT of endovascular therapy following imaging evaluation for ischaemic stroke (DEFUSE 3) trials showed functional benefit following MT in patients presenting after 6 hours from insult. Eligible patients for MT had a mismatch on perfusion imaging. The DAWN trial showed a benefit from 6 to 24 hours, and the DEFUSE 3 showed benefit from 6 to 16 hours.19 20 DEFUSE 3 found that MT along with standard medical therapy resulted in a higher percentage of functionally independent patients than standard medical treatment alone (45% vs 17%).20 The CT Perfusion to Predict Response to Recanalization in Ischemic Stroke Project (CRISP) trial results are consistent with DEFUSE 3 and DAWN. Perfusion scans were used to identify patients with perfusion mismatch, and results showed that a higher rate of improvement on the NIHSS of >8 points was observed in subjects with a significant mismatch (83% vs 44%).54 Importantly, this favourable rate of improvement remained regardless of whether patients were treated within or beyond 6 hours. Based on those five RCTs the AHA/ASA published updated guidelines in 2018, recommending that endovascular thrombectomy be considered for LVOs of the posterior circulation up to 6 hours from symptom onset and that intervention is recommended/can be considered up to 16 and 24 hours, respectively, in select patients with anterior circulation LVOs based on perfusion imaging. Also, the 2018 guidelines stress the need for perfusion scan as triaging imaging for patients presenting between 6 and 24 hours from symptom onset.38
The posterior circulation is still a grey zone, where perfusion is limited in stratifying patients that may be good candidates for mechanical intervention. Consequently, physician experience and judgement play a paramount role.55
We reviewed our cohort of mechanical thrombectomy for posterior circulation. Out of 453 thrombectomy procedures, 45 were located in the posterior circulation and were mainly a basilar artery occlusion (87%). A solumbra technique, which is the simultaneous use of a stent retriever and aspiration catheter, was used in more than half of the procedures, and an optimal recanalisation rate (TICI >2 b) was achieved in 69%. Revascularisation was achieved using a single pass in 44%. When compared with the anterior circulation, posterior thrombectomy procedures were associated with a significant higher rate of extravasation (9% vs 4%, p<0.01) and post-procedural symptomatic Intracerebral Hemorrhage (ICH) (13% vs 4 %, p<0.01). Mortality occurred in 38%, and only 20% achieved functional independence at 90 days. While the functional outcomes are lower in posterior circulation compared with the anterior circulation, the comparison should be made to tPA alone for acute basilar occlusion since the natural history of posterior circulation occlusion is worse compared with anterior circulation.55 When interpreted in this context, mechanical thrombectomy for posterior circulation results in superior outcomes.
We also reviewed our case series of distal thrombectomy procedures. The M2 was involved in 89%, and ~80% of thrombectomy procedures were performed using the Solumbra technique. Peri-procedural complications including distal emboli and subarachnoid hemorrhage (SAH)/ICH occurred at a rate of 7% and 8.5%, respectively. Compared with proximal occlusions, distal emboli occurred at a significantly higher incidence in the distal circulation occlusions (7% vs 2%, p=0.01). Effective recanalisation rates occurred in 89%, with no difference compared with proximal circulation. Favourable outcomes occurred in 64.7%, and mortality in 8%.