Introduction
Although subarachnoid haemorrhage (SAH) represents a minority of strokes, it is a devastating disease associated with high rates of mortality (40% at 1 month) and morbidity (only 50% of survivors return to work).1 SAH also tends to occur at a younger age than ischaemic stroke2 and is thus associated with high personal and societal costs. Ultimately, functional outcomes following aneurysmal SAH are influenced by many factors, including the development of delayed cerebral ischaemia (DCI).2 3 Although the exact pathophysiology of DCI remains incompletely understood, DCI is associated with changes in the cerebral vasculature, including a proliferative angiopathy associated with smooth muscle and endothelial proliferation, vasospasm and microthrombosis. Vasospasm-related delayed ischaemic neurological deficits have been estimated to account for 40% of deaths in people surviving initial aneurysm rupture and are strongly associated with unfavourable outcomes.4 It has been suggested that mechanisms that activate within minutes after SAH lead to early secondary brain injury and may play an important role in the pathogenesis of delayed ischaemic injury and poor outcome.5
Unfortunately, although great advances have been made with regard to early endovascular ablation of cerebral aneurysms, the medical treatment of cerebral vasospasm and management of secondary brain injury remains largely supportive. In particular, there are no pharmacological interventions that have been demonstrated to reduce the incidence of delayed ischaemic deficit due to vasospasm. Treatment with nimodipine, an L-type calcium channel blocker, has been associated with incremental improvement in functional outcomes and is widely regarded as standard of care, although it has not been demonstrated to reduce angiographic vasospasm.6 7 Similarly, recent clinical trials evaluating pharmacological therapies designed to reduce vascular changes associated with SAH have failed to improve outcomes.8–11
One innovative approach to improve outcomes following aneurysmal SAH is administration of apolipoprotein E-mimetic drugs. Apolipoprotein E (apoE) is the primary apolipoprotein produced within the brain, where its secretion is upregulated after injury. ApoE has three common human isoforms (apoE2, apoE3 and apoE4) which differ by single cysteine to arginine interchanges at residues 112 and 15812. In addition to its role in cholesterol transport, several studies have suggested that apoE may exert isoform-specific modulations of the inflammatory response of the injured central nervous system (CNS). In particular, presence the APOE4 allele has been associated with poor functional outcome in a number of acute brain injuries, including SAH.13–16 One plausible explanation for these isoform-specific effects is that apoE modulates glial activation and neuroinflammatory cascades in an isoform-specific fashion. Indeed, the apoE4 isoform is associated with reduced neuroprotective and immunomodulatory properties as compared with apoE3.16–21
Thus, given the role of inflammation and secondary brain injury in SAH, one therapeutic strategy is to harness the beneficial effects of endogenous apoE. Unfortunately, due to its size, systemically administered apoE does not readily cross the blood brain barrier. To address this problem, we created small apoE peptides derived from the receptor binding region that maintained the neuroprotective and anti-inflammatory effects of the intact protein.22 23 In fact, as proof of principle, we have demonstrated that these apoE peptides reduce histological evidence of vasospasm and improve functional outcome in a preclinical models of SAH.24–26
Recently, we have created CN-105, a 5 amino acid peptide derived from the receptor binding face of the apoE receptor binding region. This second generation apoE mimetic is associated with increased potency and CNS penetration27 and improves outcome in several acute CNS pathologies that contribute to secondary cerebral injury following SAH, including ischaemia,28 mechanical brain injury29 and intraparenchymal haemorrhage.27 Moreover, CN-105 has recently been translated to phase I clinical trials, where it was demonstrated to be safe, well tolerated and possessed favourable pharmacokinetics.30 We now test the hypothesis that systemic administration of CN-105 will reduce the vasculopathy and functional deficits associated with a validated preclinical model of aneurysmal SAH.