Discussion
CSVD is an important public health problem that has attracted increasing attention, and may coexist with large artery atherosclerosis.9 The aim of this systematic review and meta-analysis was to provide evidence that biomarkers of large artery atherosclerosis, such as greater cIMT and arterial stenosis, may serve as clinical markers of subclinical haemorrhage-prone CSVD, reflected by CMBs. Previous studies have suggested that the incidence rate of CMBs in patients with large artery atherosclerosis was 9–41.3%.24 ,28 ,29 Different populations and detection methods may lead to different incidence of CMBs. Kwon et al reported 14 of 313 patients (9.0%) with intracranial arterial stenosis (ICAS) presented with CMBs on baseline MRI in the Stenting and Aggressive Medical Management for Preventing Recurrent Stroke in Intracranial Stenosis (SAMMPRIS) trial. However, they found no evidence linking CSVD with an increased risk of stroke in patients with ICAS.29
Large artery atherosclerosis and CSVD may share disease mechanisms, which are likely to be mediated via common vascular risk factors, such as older age, hypertension and diabetes mellitus.29 The prevalence of CMBs gradually increased with age.30 Advanced age and long-term hypertension may cause structural changes in microvessels, represented by fibrinoid necrosis and lipohyalinosis, thus increasing the risk of rupture and bleeding.31 Histopathological analyses have found hypertensive vasculopathy was specially associated with CMBs in the thalamus, basal ganglia, brainstem and cerebellum.32 Otherwise, Qiu et al33 indicated that diabetes was associated with markers of both cerebral macrovascular and microvascular diseases. Older age, hypertension and diabetes mellitus are risk factors that may lead to large artery atherosclerosis, thus giving rise to CMBs.
Previous studies have found that carotid stenosis, carotid plaque and cIMT were likely to be associated with WMH and cognitive decline in elderly people, even after accounting for vascular risk factors.7 ,34 In addition to the common risk factors, other mechanisms may explain the correlation. Factors that may influence cerebral blood flow especially at the origin of perforator arteries may also be involved. Gregg et al16 reported that the presence of incidental cortical CMBs is associated with significant and widespread reduction in resting-state cerebral blood flow (CBF), especially in the frontal, parietal and precuneus cortices. Moreover, Hashimoto et al17 found reduced CBF in the centrum semiovale in patients with five or more CMBs compared with those with <5 CMBs in patients with CSVD. Individuals with cortical or deep or infratentorial CMBs may be exposed to chronic cerebral hypoperfusion.16 ,17 ,35 Long-term hypoperfusion could accelerate the development of age-related ultrastructural aberrations of capillaries and cause blood-brain barrier (BBB) damage.36 ,37 Disruption of BBB has been suggested as a main initial pathogenic mechanism in CSVD.22 ,24 However, another possibility is that both CMBs and hypoperfusion are markers of small vessel diseases, and that no causal relationship between them should be considered. Further studies are needed before a conclusion can be drawn.
In this meta-analysis, we found a significant association between large artery stenosis and microbleeds in the included studies, with an OR 1.95 (95% CI 1.13 to 3.36). The results from the Framingham Heart Study demonstrated that carotid stenosis ≥25% was associated with presence of CMBs overall (OR 2.20, 95% CI 1.10 to 4.40), especially at deep and mixed locations (OR 3.60, 95% CI 1.23 to 10.5). Paradoxically, the study found that carotid stenosis ≥50% was not associated with CMBs. The study observed carotid stenosis ≥50% in only 1.5% of 1243 participants and the incidence rate of CMBs was 8.3%, which might be an underestimate.28 The evidence relating arterial stenosis to CMBs was inconsistent. This may be attributed to different inclusion criteria, different sample size, differences in demographic characteristics and different methodology for cerebral artery stenosis estimation. Some of the included studies defined arterial stenosis by ultrasonography, which may limit accuracy. In our study, we found evidence that arterial stenosis >50% was related to the incidence of CMBs. Large artery stenosis may lead to hypoperfusion, thus resulting in CMBs. Further research is needed for confirmation.
There may be other potential mechanisms that cause CMBs in patients with large artery atherosclerosis. CIMT is a non-invasive ultrasound marker of early atherosclerosis, and is increasingly used as a predictor of future clinical cardiovascular events including myocardial infarction and stroke.38–40 Previous studies considered cIMT as a marker of large-artery damage rather than CSVD. The Second Manifestations of Arterial disease study showed that mean cIMT was greater in patients with large vessel disease (1.08 mm) than in those with small vessel disease (0.92 mm) (SMD 0.11 mm, 95% CI 0.05 to 0.18).41 However, new research showed that patients with CSVD had greater cIMT compared with normal participants.42 The present systematic review and meta-analysis identified four studies focusing on the relationship between cIMT and CMBs. The result demonstrated that patients with CMBs were more likely to have a greater cIMT (SMD 0.20, 95% CI 0.11 to 0.28). Ding et al27 conducted a prospective population-based cohort study that included individuals aged >65 years without dementia and found that an increase in mean cIMT as a marker of arterial atherosclerosis was associated with an increased risk of CMBs, especially in the deep and infratentorial brain regions. All these findings suggest that there is a significant relationship between higher cIMT and CMBs risk.
One of the included studies in this review also explored the relationship between inflammation and CMBs in addition to increased cIMT. The results indicated that higher levels of circulating inflammatory markers, such as high-sensitivity C reactive protein (hsCRP), interleukin-6 (IL-6) and IL-18 were associated with CMBs, suggesting the involvement of inflammation.22 Inflammation is also implicated in the pathogenesis and development of atherosclerosis. Several studies have demonstrated that high levels of some inflammatory cytokines are important determinants in the pathogenesis of increased cIMT. Patients with higher cIMT have increased circulating levels of fibrinogen, tumour necrosis factor α, white cell count, hsCRP and IL-6.43 ,44 Moreover, Chung et al45 detected underlying intracranial atheroma in 60% of patients with lacunar infarction by high-resolution MRI and found potential intraplaque inflammation, suggesting the involvement of inflammation in both cerebral artery atherosclerosis and CSVD. We speculated that the link between CMBs and large artery atherosclerosis might be inflammation. Further studies are needed to confirm these findings.
There were some limitations in our study. First, only studies published in English were included, which may introduce publication bias. Second, the participants in the cross-sectional studies were consecutive patients, which may have introduced selection bias. Third, some of the studies were subject to bias because they did not involve blinded assessment of large artery atherosclerosis or blinded identification of CMBs. Fourth, the included studies varied in many aspects, such as study population, which resulted in a wide range of CMBs incidence rate (5% to 40.2%). Fifth, only one study demonstrated a significant relationship between cerebral large artery stenosis >50% and CMBs,23 using CTA to define arterial stenosis. The included studies used CDUS or transcranial Doppler to detect arterial stenosis may introduce bias due to limited accuracy. Moreover, most of the included studies assessed CMBs using T2*GRE or 1.5 T MRI machines. The use of higher-field MRI and SWI are known to increase CMBs detection. The variety of different techniques used in the assessment of artery atherosclerosis or CMBs in the included studies should be considered a source of heterogeneity. The accuracy of the methodology needs to be established in future studies.