Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immune interventions in stroke

Key Points

  • Recognition that immune mechanisms contribute to stroke and an increasing ability to manipulate the immune system have prompted suggestions that immunomodulation could be a feasible therapy for acute stroke

  • Immune interventions—including nonspecific anti-inflammatory drugs and approaches that target immune cells, inflammatory mediators and adhesion molecules—have been tested in patients with acute ischaemic stroke, with mixed outcomes

  • Proof-of-concept studies have demonstrated that fingolimod can attenuate brain inflammation and improve neurological outcomes in patients with acute stroke; a large international trial of natalizumab is nearly complete

  • Trials have shown that drugs that target multiple elements of the immune system, and that act quickly, could be viable candidates

  • Future success of immunomodulation as a therapy for stroke depends on further elucidation of immune interactions during stroke, and on the ability to limit immune-mediated tissue damage and promote tissue repair

Abstract

Approaches for the effective management of acute stroke are sparse, and many measures for brain protection fail. However, our ability to modulate the immune system and modify the progression of multiple sclerosis is increasing. As a result, immune interventions are currently being explored as therapeutic interventions in acute stroke. In this Review, we compare the immunological features of acute stroke with those of multiple sclerosis, identify unique immunological features of stroke, and consider the evidence for immune interventions. In patients with acute stroke, microglial activation and cell death products trigger an inflammatory cascade that damages vessels and the parenchyma within minutes to hours of the ischaemia or haemorrhage. Immune interventions that restrict brain inflammation, vascular permeability and tissue oedema must be administered rapidly to reduce acute immune-mediated destruction and to avoid subsequent immunosuppression. Preliminary results suggest that the use of drugs that modify disease in multiple sclerosis might accomplish these goals in ischaemic and haemorrhagic stroke. Further elucidation of the immune mechanisms involved in stroke is likely to lead to successful immune interventions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The effects of cross-talk between lymphocytes and ischaemic neurons on the time window for immune intervention.
Figure 2: The effects of fingolimod in patients with AIS and ICH.

Similar content being viewed by others

References

  1. Albers, G. W. et al. Intravenous tissue-type plasminogen activator for treatment of acute stroke: the Standard Treatment with Alteplase to Reverse Stroke (STARS) study. JAMA 283, 1145–1150 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Lees, K. R. et al. Time to treatment with intravenous alteplase and outcome in stroke: an updated pooled analysis of ECASS, ATLANTIS, NINDS, and EPITHET trials. Lancet 375, 1695–1703 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Fonarow, G. C. et al. Door-to-needle times for tissue plasminogen activator administration and clinical outcomes in acute ischemic stroke before and after a quality improvement initiative. JAMA 311, 1632–1640 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Prabhakaran, S., Ruff, I. & Bernstein, R. A. Acute stroke intervention: a systematic review. JAMA 313, 1451–1462 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Goyal, M. et al. Randomized assessment of rapid endovascular treatment of ischemic stroke. N. Engl. J. Med. 372, 1019–1030 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. Campbell, B. C. et al. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N. Engl. J. Med. 372, 1009–1018 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Kidwell, C. S. et al. A trial of imaging selection and endovascular treatment for ischemic stroke. N. Engl. J. Med. 368, 914–923 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Broderick, J. P. et al. Endovascular therapy after intravenous t-PA versus t-PA alone for stroke. N. Engl. J. Med. 368, 893–903 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ciccone, A. et al. Endovascular treatment for acute ischemic stroke. N. Engl. J. Med. 368, 904–913 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Berkhemer, O. A. et al. A randomized trial of intraarterial treatment for acute ischemic stroke. N. Engl. J. Med. 372, 11–20 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. O'Collins, V. E. et al. 1,026 experimental treatments in acute stroke. Ann. Neurol. 59, 467–477 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Macrez, R. et al. Stroke and the immune system: from pathophysiology to new therapeutic strategies. Lancet Neurol. 10, 471–480 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Iadecola, C. & Anrather, J. The immunology of stroke: from mechanisms to translation. Nat. Med. 17, 796–808 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang, J. Preclinical and clinical research on inflammation after intracerebral hemorrhage. Prog. Neurobiol. 92, 463–477 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chamorro, A. et al. The immunology of acute stroke. Nat. Rev. Neurol. 8, 401–410 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Mracsko, E. & Veltkamp, R. Neuroinflammation after intracerebral hemorrhage. Front. Cell. Neurosci. 8, 388 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Fu, Y. et al. Fingolimod for the treatment of intracerebral hemorrhage: a 2-arm proof-of-concept study. JAMA Neurol. 71, 1092–1101 (2014).

    Article  PubMed  Google Scholar 

  18. Fu, Y. et al. Impact of an immune modulator fingolimod on acute ischemic stroke. Proc. Natl Acad. Sci. USA 111, 18315–18320 (2014).

    Article  CAS  PubMed  Google Scholar 

  19. Elkind, M. S. Inflammatory mechanisms of stroke. Stroke 41, S3–S8 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Marnane, M. et al. Plaque inflammation and unstable morphology are associated with early stroke recurrence in symptomatic carotid stenosis. Stroke 45, 801–806 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Courties, G., Moskowitz, M. A. & Nahrendorf, M. The innate immune system after ischemic injury: lessons to be learned from the heart and brain. JAMA Neurol. 71, 233–236 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hao, J. et al. Central nervous system (CNS)-resident natural killer cells suppress Th17 responses and CNS autoimmune pathology. J. Exp. Med. 207, 1907–1921 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hao, J. et al. Interleukin-2/interleukin-2 antibody therapy induces target organ natural killer cells that inhibit central nervous system inflammation. Ann. Neurol. 69, 721–734 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Stys, P. K., Zamponi, G. W., van Minnen, J. & Geurts, J. J. Will the real multiple sclerosis please stand up? Nat. Rev. Neurosci. 13, 507–514 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Lucas, S. M., Rothwell, N. J. & Gibson, R. M. The role of inflammation in CNS injury and disease. Br. J. Pharmacol. 147 (Suppl. 1), S232–S240 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen, G. Y. & Nunez, G. Sterile inflammation: sensing and reacting to damage. Nat. Rev. Immunol. 10, 826–837 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gan, Y. et al. Ischemic neurons recruit natural killer cells that accelerate brain infarction. Proc. Natl Acad. Sci. USA 111, 2704–2709 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Gelderblom, M. et al. Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke 40, 1849–1857 (2009).

    Article  PubMed  Google Scholar 

  29. Hammond, M. D. et al. CCR2+ Ly6Chi inflammatory monocyte recruitment exacerbates acute disability following intracerebral hemorrhage. J. Neurosci. 34, 3901–3909 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hammond, M. D., Ambler, W. G., Ai, Y. & Sansing, L. H. alpha4 integrin is a regulator of leucocyte recruitment after experimental intracerebral hemorrhage. Stroke 45, 2485–2487 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liesz, A. et al. Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat. Med. 15, 192–199 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Allan, S. M., Tyrrell, P. J. & Rothwell, N. J. Interleukin-1 and neuronal injury. Nat. Rev. Immunol. 5, 629–640 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Lambertsen, K. L. et al. A role for interferon-gamma in focal cerebral ischemia in mice. J. Neuropathol. Exp. Neurol. 63, 942–955 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Seifert, H. A. et al. Pro-inflammatory interferon gamma signalling is directly associated with stroke induced neurodegeneration. J. Neuroimmune Pharmacol. 9, 679–689 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yilmaz, G., Arumugam, T. V., Stokes, K. Y. & Granger, D. N. Role of T lymphocytes and interferon-gamma in ischemic stroke. Circulation 113, 2105–2112 (2006).

    Article  PubMed  Google Scholar 

  36. Doyle, K. P. et al. B-lymphocyte-mediated delayed cognitive impairment following stroke. J. Neurosci. 35, 2133–2145 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Becker, K. J. et al. Autoimmune responses to the brain after stroke are associated with worse outcome. Stroke 42, 2763–2769 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Romer, C. et al. Blocking stroke-induced immunodeficiency increases CNS antigen-specific autoreactivity but does not worsen functional outcome after experimental stroke. J. Neurosci. 35, 7777–7794 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Meisel, C. & Meisel, A. Suppressing immunosuppression after stroke. N. Engl. J. Med. 365, 2134–2136 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Sacco, R. L. et al. Aspirin and extended-release dipyridamole versus clopidogrel for recurrent stroke. N. Engl. J. Med. 359, 1238–1251 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Amarenco, P. et al. High-dose atorvastatin after stroke or transient ischemic attack. N. Engl. J. Med. 355, 549–559 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Zhang, R. L. et al. Anti-ICAM-1 antibody reduces ischemic cell damage after transient middle cerebral artery occlusion in the rat. Neurology 44, 1747–1751 (1994).

    Article  CAS  PubMed  Google Scholar 

  43. Enlimomab Acute Stroke Trial, I. Use of anti-ICAM-1 therapy in ischemic stroke: results of the Enlimomab Acute Stroke Trial. Neurology 57, 1428–1434 (2001).

  44. Furuya, K. et al. Examination of several potential mechanisms for the negative outcome in a clinical stroke trial of enlimomab, a murine anti-human intercellular adhesion molecule-1 antibody: a bedside-to-bench study. Stroke 32, 2665–2674 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Emsley, H. C. et al. A randomised phase II study of interleukin-1 receptor antagonist in acute stroke patients. J. Neurol. Neurosurg. Psychiatry 76, 1366–1372 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shyu, K. G., Chang, H. & Lin, C. C. Serum levels of intercellular adhesion molecule-1 and E-selectin in patients with acute ischemic stroke. J. Neurol. 244, 90–93 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. US National Library of Medicine. ClinicalTrials.gov[online] (2010).

  48. US National Library of Medicine. ClinicalTrials.gov[online] (2015).

  49. Lampl, Y. et al. Minocycline treatment in acute stroke: an open-label, evaluator-blinded study. Neurology 69, 1404–1410 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Fagan, S. C. et al. Minocycline to improve neurologic outcome in stroke (MINOS): a dose-finding study. Stroke 41, 2283–2287 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. US National Library of Medicine. ClinicalTrials.gov[online] (2013).

  52. Schwab, S. R. et al. Lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients. Science 309, 1735–1739 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Massberg, S. & von Andrian, U. H. Fingolimod and sphingosine-1-phosphate—modifiers of lymphocyte migration. N. Engl. J. Med. 355, 1088–1091 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Cannon, R. E., Peart, J. C., Hawkins, B. T., Campos, C. R. & Miller, D. S. Targeting blood-brain barrier sphingolipid signalling reduces basal P-glycoprotein activity and improves drug delivery to the brain. Proc. Natl Acad. Sci. USA 109, 15930–15935 (2012).

    Article  PubMed  Google Scholar 

  55. Cohen, J. A. & Chun, J. Mechanisms of fingolimod's efficacy and adverse effects in multiple sclerosis. Ann. Neurol. 69, 759–777 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Budde, K. et al. First human trial of FTY720, a novel immunomodulator, in stable renal transplant patients. J. Am. Soc. Nephrol. 13, 1073–1083 (2002).

    CAS  PubMed  Google Scholar 

  57. Wei, Y. et al. Fingolimod provides long-term protection in rodent models of cerebral ischemia. Ann. Neurol. 69, 119–129 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Zhu, Z. et al. Combination of an immune modulator fingolimod with alteplase in acute ischemic stroke: a randomized multi-centre study. Circulation (in press). http://dx.doi.org/10.1161/CIRCULATIONAHA.115.016371.

  59. Liesz, A. et al. Inhibition of lymphocyte trafficking shields the brain against deleterious neuroinflammation after stroke. Brain 134, 704–720 (2011).

    Article  PubMed  Google Scholar 

  60. Langhauser, F. et al. Blocking of α4 integrin does not protect from acute ischemic stroke in mice. Stroke 45, 1799–1806 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Schabitz, W. R. & Dirnagl, U. Are we ready to translate T-cell transmigration in stroke? Stroke 45, 1610–1611 (2014).

    Article  PubMed  Google Scholar 

  62. US National Library of Medicine. ClinicalTrials.gov[online] (2015).

  63. Liu, X. et al. Cell based therapies for ischemic stroke: from basic science to bedside. Prog. Neurobiol. 115, 92–115 (2014).

    Article  PubMed  Google Scholar 

  64. Moniche, F. et al. Intra-arterial bone marrow mononuclear cells in ischemic stroke: a pilot clinical trial. Stroke 43, 2242–2244 (2012).

    Article  PubMed  Google Scholar 

  65. Hess, D. C. et al. A double-blind placebo-controlled clinical evaluation of MultiStem for the treatment of ischemic stroke. Int. J. Stroke 9, 381–386 (2014).

    Article  PubMed  Google Scholar 

  66. van Asch, C. J., Oudendijk, J. F., Rinkel, G. J. & Klijn, C. J. Early intracerebral hematoma expansion after aneurysmal rupture. Stroke 41, 2592–2595 (2010).

    Article  PubMed  Google Scholar 

  67. Steiner, T. et al. Recommendations for the management of intracranial hemorrhage—part I: spontaneous intracerebral hemorrhage. The European Stroke Initiative Writing Committee and the Writing Committee for the EUSI Executive Committee. Cerebrovasc. Dis. 22, 294–316 (2006).

    Article  PubMed  Google Scholar 

  68. Trabert, J. & Steiner, T. Deep vein thrombosis and lung embolisms in patients with stroke: prevention and therapy [German]. Nervenarzt 85, 1315–1325 (2014).

    Article  CAS  PubMed  Google Scholar 

  69. Mayer, S. A. & Rincon, F. Treatment of intracerebral haemorrhage. Lancet Neurol. 4, 662–672 (2005).

    Article  PubMed  Google Scholar 

  70. Sutherland, G. R. & Auer, R. N. Primary intracerebral hemorrhage. J. Clin. Neurosci. 13, 511–517 (2006).

    Article  PubMed  Google Scholar 

  71. Graham, D. I., McIntosh, T. K., Maxwell, W. L. & Nicoll, J. A. Recent advances in neurotrauma. J. Neuropathol. Exp. Neurol. 59, 641–651 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Lusardi, T. A., Wolf, J. A., Putt, M. E., Smith, D. H. & Meaney, D. F. Effect of acute calcium influx after mechanical stretch injury in vitro on the viability of hippocampal neurons. J. Neurotrauma 21, 61–72 (2004).

    Article  PubMed  Google Scholar 

  73. Qureshi, A. I. et al. Extracellular glutamate and other amino acids in experimental intracerebral hemorrhage: an in vivo microdialysis study. Crit. Care Med. 31, 1482–1489 (2003).

    Article  CAS  PubMed  Google Scholar 

  74. Wang, J. & Dore, S. Inflammation after intracerebral hemorrhage. J. Cereb. Blood Flow Metab. 27, 894–908 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Aronowski, J. & Hall, C. E. New horizons for primary intracerebral haemorrhage treatment: experience from preclinical studies. Neurol. Res. 27, 268–279 (2005).

    Article  PubMed  Google Scholar 

  76. Lin, S. et al. Haem activates TLR4-mediated inflammatory injury via MyD88/TRIF signalling pathway in intracerebral hemorrhage. J. Neuroinflammation 9, 46 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Matsushita, H. et al. Suppression of CXCL2 upregulation underlies the therapeutic effect of the retinoid Am80 on intracerebral hemorrhage in mice. J. Neurosci. Res. 92, 1024–1034 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Li, N. et al. Association of molecular markers with perihematomal edema and clinical outcome in intracerebral hemorrhage. Stroke 44, 658–663 (2013).

    Article  CAS  PubMed  Google Scholar 

  79. Schellinger, P. D. et al. Stroke MRI in intracerebral hemorrhage: is there a perihemorrhagic penumbra? Stroke 34, 1674–1679 (2003).

    Article  PubMed  Google Scholar 

  80. Zazulia, A. R. et al. Hypoperfusion without ischemia surrounding acute intracerebral hemorrhage. J. Cereb. Blood Flow Metab. 21, 804–810 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Tapia-Perez, H. et al. Use of statins for the treatment of spontaneous intracerebral hemorrhage: results of a pilot study. Cent. Eur. Neurosurg. 70, 15–20 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Flint, A. C. et al. Effect of statin use during hospitalization for intracerebral hemorrhage on mortality and discharge disposition. JAMA Neurol. 71, 1364–1371 (2014).

    Article  PubMed  Google Scholar 

  83. Chu, K. et al. Celecoxib induces functional recovery after intracerebral hemorrhage with reduction of brain edema and perihematomal cell death. J. Cereb. Blood Flow Metab. 24, 926–933 (2004).

    Article  CAS  PubMed  Google Scholar 

  84. Lee, S. H. et al. Effects of celecoxib on hematoma and edema volumes in primary intracerebral hemorrhage: a multicentre randomized controlled trial. Eur. J. Neurol. 20, 1161–1169 (2013).

    Article  PubMed  Google Scholar 

  85. US National Library of Medicine. ClinicalTrials.gov[online] (2013).

  86. Wu, J. et al. Minocycline attenuates brain edema, brain atrophy and neurological deficits after intracerebral hemorrhage. Acta Neurochir. Suppl. 106, 147–150 (2010).

    Article  CAS  PubMed  Google Scholar 

  87. Szymanska, A., Biernaskie, J., Laidley, D., Granter-Button, S. & Corbett, D. Minocycline and intracerebral hemorrhage: influence of injury severity and delay to treatment. Exp. Neurol. 197, 189–196 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Wasserman, J. K. & Schlichter, L. C. Minocycline protects the blood-brain barrier and reduces edema following intracerebral hemorrhage in the rat. Exp. Neurol. 207, 227–237 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. US National Library of Medicine. ClinicalTrials.gov[online] (2015).

  90. Rolland, W. B. et al. Fingolimod reduces cerebral lymphocyte infiltration in experimental models of rodent intracerebral hemorrhage. Exp. Neurol. 241, 45–55 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Rolland, W. B. 2nd et al. FTY720 is neuroprotective and improves functional outcomes after intracerebral hemorrhage in mice. Acta Neurochir. Suppl. 111, 213–217 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Li, Y. J. et al. Fingolimod alters inflammatory mediators and vascular permeability in intracerebral hemorrhage. Neurosci. Bull. http://dx.doi.org/10.1007/s12264-015-1532-2.

  93. Ajmo, C. T. Jr et al. Blockade of adrenoreceptors inhibits the splenic response to stroke. Exp. Neurol. 218, 47–55 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sahota, P. et al. Changes in spleen size in patients with acute ischemic stroke: a pilot observational study. Int. J. Stroke 8, 60–67 (2013).

    Article  PubMed  Google Scholar 

  95. Hug, A. et al. Infarct volume is a major determiner of post-stroke immune cell function and susceptibility to infection. Stroke 40, 3226–3232 (2009).

    Article  PubMed  Google Scholar 

  96. Mracsko, E. et al. Differential effects of sympathetic nervous system and hypothalamic-pituitary-adrenal axis on systemic immune cells after severe experimental stroke. Brain Behav. Immun. 41, 200–209 (2014).

    Article  CAS  PubMed  Google Scholar 

  97. Wong, C. H., Jenne, C. N., Lee, W. Y., Leger, C. & Kubes, P. Functional innervation of hepatic iNKT cells is immunosuppressive following stroke. Science 334, 101–105 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Prass, K. et al. Stroke-induced immunodeficiency promotes spontaneous bacterial infections and is mediated by sympathetic activation reversal by poststroke T helper cell type 1-like immunostimulation. J. Exp. Med. 198, 725–736 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Westendorp, W. F., Nederkoorn, P. J., Vermeij, J. D., Dijkgraaf, M. G. & van de Beek, D. Post-stroke infection: a systematic review and meta-analysis. BMC Neurol. 11, 110 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Dziedzic, T., Slowik, A., Pera, J. & Szczudlik, A. Beta-blockers reduce the risk of early death in ischemic stroke. J. Neurol. Sci. 252, 53–56 (2007).

    Article  CAS  PubMed  Google Scholar 

  101. Chamorro, A. et al. The Early Systemic Prophylaxis of Infection After Stroke study: a randomized clinical trial. Stroke 36, 1495–1500 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. Harms, H. et al. Preventive antibacterial therapy in acute ischemic stroke: a randomized controlled trial. PLoS ONE 3, e2158 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  103. van de Beek, D. et al. Preventive antibiotics for infections in acute stroke: a systematic review and meta-analysis. Arch. Neurol. 66, 1076–1081 (2009).

    Article  PubMed  Google Scholar 

  104. Westendorp, W. F. et al. The Preventive Antibiotics in Stroke Study (PASS): a pragmatic randomised open-label masked endpoint clinical trial. Lancet 385, 1519–1526 (2015).

    Article  CAS  PubMed  Google Scholar 

  105. BioMed Central. ISRCTN registry[online] (2014).

  106. Zhang, L. et al. Estrogen stimulates microglia and brain recovery from hypoxia-ischemia in normoglycemic but not diabetic female mice. J. Clin. Invest. 113, 85–95 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Neumann, J. et al. Microglia cells protect neurons by direct engulfment of invading neutrophil granulocytes: a new mechanism of CNS immune privilege. J. Neurosci. 28, 5965–5975 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Yousry, T. A. et al. Evaluation of patients treated with natalizumab for progressive multifocal leukoencephalopathy. N. Engl. J. Med. 354, 924–933 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Bloomgren, G. et al. Risk of natalizumab-associated progressive multifocal leukoencephalopathy. N. Engl. J. Med. 366, 1870–1880 (2012).

    Article  CAS  PubMed  Google Scholar 

  110. Trampe, A. K. et al. Anti-JC virus antibodies in a large German natalizumab-treated multiple sclerosis cohort. Neurology 78, 1736–1742 (2012).

    Article  CAS  PubMed  Google Scholar 

  111. Ribeiro, M. J. et al. Could 18F-DPA-714 PET imaging be interesting to use in the early post-stroke period? EJNMMI Res. 4, 28 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Santillo, A. F. et al. In vivo imaging of astrocytosis in Alzheimer's disease: an 11C-L-deuteriodeprenyl and PIB PET study. Eur. J. Nucl. Med. Mol. Imaging 38, 2202–2208 (2011).

    Article  PubMed  Google Scholar 

  113. Doerfler, A. et al. MR contrast agents in acute experimental cerebral ischemia: potential adverse impacts on neurologic outcome and infarction size. J. Magn. Reson. Imaging 11, 418–424 (2000).

    Article  CAS  PubMed  Google Scholar 

  114. Rausch, M. et al. Dynamic patterns of USPIO enhancement can be observed in macrophages after ischemic brain damage. Magn. Reson. Med. 46, 1018–1022 (2001).

    Article  CAS  PubMed  Google Scholar 

  115. Saleh, A. et al. In vivo MRI of brain inflammation in human ischaemic stroke. Brain 127, 1670–1677 (2004).

    Article  PubMed  Google Scholar 

  116. Chamorro, A., Urra, X. & Planas, A. M. Infection after acute ischemic stroke: a manifestation of brain-induced immunodepression. Stroke 38, 1097–1103 (2007).

    Article  PubMed  Google Scholar 

  117. Hao, J. et al. Nicotinic receptor β2 determines NK cell-dependent metastasis in a murine model of metastatic lung cancer. PLoS ONE 8, e57495 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank members of their laboratories and clinical teams for their passionate work in immunology and stroke. They would also like to thank C. Iadecola (Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA), D. Huang (Neurology and Neuroscience Associates, Unity Health Network, Akron, OH, USA), T. Vollmer (Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA) and A. La Cava (Department of Medicine, University of California at Los Angeles, CA, USA) for fruitful discussions and advice, and P. Minick and K. Wood (Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA) for editorial assistance. The authors' research programmes are supported in part by the National Basic Research Program of China (2013CB966900), National Natural Science Foundation of China (81230,028), National Key Clinical Speciality Construction Project of China, NIH (R01AI083294, R01NS34179 and R01NS081179), the American Heart Association (14GRNT18970031) and the Foundation Leducq. This paper is dedicated to our families.

Author information

Authors and Affiliations

Authors

Contributions

Y.F. and F.-D.S. researched data for the article, and Y.F., Q.L., J.A. and F.-D.S. wrote the article. F.-D.S. made a substantial contribution to the discussion of content, and all authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Fu-Dong Shi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Y., Liu, Q., Anrather, J. et al. Immune interventions in stroke. Nat Rev Neurol 11, 524–535 (2015). https://doi.org/10.1038/nrneurol.2015.144

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneurol.2015.144

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing