Skip to main content
Log in

Behavioral animal models of depression

抑郁症动物模型的研究进展

  • Minireview
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Depression is a chronic, recurring and potentially life-threatening illness that affects up to 20% of the population across the world. Despite its prevalence and considerable impact on human, little is known about its pathogenesis. One of the major reasons is the restricted availability of validated animal models due to the absence of consensus on the pathology and etiology of depression. Besides, some core symptoms such as depressed mood, feeling of worthlessness, and recurring thoughts of death or suicide, are impossible to be modeled on laboratory animals. Currently, the criteria for identifying animal models of depression rely on either of the 2 principles: actions of known antidepressants and responses to stress. This review mainly focuses on the most widely used animal models of depression, including learned helplessness, chronic mild stress, and social defeat paradigms. Also, the behavioral tests for screening antidepressants, such as forced swimming test and tail suspension test, are also discussed. The advantages and major drawbacks of each model are evaluated. In prospective, new techniques that will be beneficial for developing novel animal models or detecting depression are discussed.

摘要

抑郁症是一种慢性的、 具有高复发率的精神性疾病, 往往会危及到病人的生命。 尽맜其全球发病率高达 20%, 但人们对其病理生理机制了解甚少, 这主要归因于缺乏有效可靠的动物模型。 此外, 抑郁症的核心症状, 例如抑郁心境、 无价值感和反复出现自杀念头等, 均无法在实验动物上得以模拟。 目前, 大部分动物模型的建立 主要参照以下两个原则之一: 对于已知抗抑郁药的作用或者是对应激的反应。 本综述主要介绍目前最常用的几个 抑郁症动物模型, 包括获得性无助、 慢性温和应激和社会失败应激, 以及一些用于筛选有抗抑郁活性药物的行为 学检测方法(如强迫游泳实验和悬尾实验), 并对它们的优点与不足进行讨论。 最后, 对动物模型和行为学检测 方法的发展方向进行展望。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Berton O, Nestler EJ. New approaches to antidepressant drug discovery: beyond monoamines. Nat Rev Neurosci 2006, 7: 137–151.

    Article  PubMed  CAS  Google Scholar 

  2. Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM. Neurobiology of depression. Neuron 2002, 34: 13–25.

    Article  PubMed  CAS  Google Scholar 

  3. Krishnan V, Nestler EJ. The molecular neurobiology of depression. Nature 2008, 455: 894–902.

    Article  PubMed  CAS  Google Scholar 

  4. Murray CJ, Lopez AD. Alternative projections of mortality and disability by cause 1990–2020: Global Burden of Disease Study. Lancet 1997, 349: 1498–1504.

    Article  PubMed  CAS  Google Scholar 

  5. Han D, Wang EC. Remission from depression: a review of venlafaxine clinical and economic evidence. Pharmacoeconomics 2005, 23: 567–581.

    Article  PubMed  CAS  Google Scholar 

  6. Willner P, Mitchell PJ. The validity of animal models of predisposition to depression. Behav Pharmacol 2002, 13: 169–188.

    PubMed  CAS  Google Scholar 

  7. Anisman H, Matheson K. Stress, depression, and anhedonia: caveats concerning animal models. Neurosci Biobehav Rev 2005, 29: 525–546.

    Article  PubMed  Google Scholar 

  8. Vollmayr B, Mahlstedt MM, Henn FA. Neurogenesis and depression: what animal models tell us about the link. Eur Arch Psychiatry Clin Neurosci 2007, 257: 300–303.

    Article  PubMed  Google Scholar 

  9. Cryan JF, Markou A, Lucki I. Assessing antidepressant activity in rodents: recent developments and future needs. Trends Pharmacol Sci 2002, 23: 238–245.

    Article  PubMed  CAS  Google Scholar 

  10. Urani A, Chourbaji S, Gass P. Mutant mouse models of depression: candidate genes and current mouse lines. Neurosci Biobehav Rev 2005, 29: 805–828.

    Article  PubMed  CAS  Google Scholar 

  11. Overmier JB, Seligman ME. Effects of inescapable shock upon subsequent escape and avoidance responding. J Comp Physiol Psychol 1967, 63: 28–33.

    Article  PubMed  CAS  Google Scholar 

  12. Hitzemann R. Animal models of psychiatric disorders and their relevance to alcoholism. Alcohol Res Health 2000, 24: 149–158.

    PubMed  CAS  Google Scholar 

  13. Willner P. The validity of animal models of depression. Psychopharmacology (Berl) 1984, 83: 1–16.

    Article  CAS  Google Scholar 

  14. Seligman ME, Maier SF. Failure to escape traumatic shock. J Exp Psychol 1967, 74: 1–9.

    Article  PubMed  CAS  Google Scholar 

  15. O’Neil MF, Moore NA. Animal models of depression: are there any? Hum Psychopharmacol 2003, 18: 239–254.

    Article  PubMed  Google Scholar 

  16. Nestler EJ, Gould E, Manji H, Buncan M, Duman RS, Greshenfeld HK, et al. Preclinical models: status of basic research in depression. Biol Psychiatry 2002, 52: 503–528.

    Article  PubMed  Google Scholar 

  17. Drugan RC, Basile AS, Ha JH, Healy D, Ferland RJ. Analysis of the importance of controllable versus uncontrollable stress on subsequent behavioral and physiological functioning. Brain Res Brain Res Protoc 1997, 2: 69–74.

    Article  PubMed  CAS  Google Scholar 

  18. Grahn RE, Watkins LR, Maier SF. Impaired escape performance and enhanced conditioned fear in rats following exposure to an uncontrollable stressor are mediated by glutamate and nitric oxide in the dorsal raphe nucleus. Behav Brain Res 2000, 112: 33–41.

    Article  PubMed  CAS  Google Scholar 

  19. Durgam RC. Rodent models of depression: learned helplessness using a triadic design in rats. Curr Protoc Neurosci 2001, Chapter 8: Unit 8 10B.

  20. Hajszan T, Dow A, Warner-Schmidt JL, Szigeti-Buck K, Sallam NL, Parducz A, et al. Remodeling of hippocampal spine synapses in the rat learned helplessness model of depression. Biol Psychiatry 2009, 65: 392–400.

    Article  PubMed  Google Scholar 

  21. Chourbaji S, Zacher C, Sanchis-Segura C, Dormann C, Vollmayr B, Gass P. Learned helplessness: validity and reliability of depressive-like states in mice. Brain Res Brain Res Protoc 2005, 16: 70–78.

    Article  PubMed  CAS  Google Scholar 

  22. Vollmayr B, Henn FA. Learned helplessness in the rat: improvements in validity and reliability. Brain Res Brain Res Protoc 2001, 8: 1–7.

    Article  PubMed  CAS  Google Scholar 

  23. Adrien J, Dugovic C, Martin P. Sleep-wakefulness patterns in the helpless rat. Physiol Behav 1991, 49: 257–262.

    Article  PubMed  CAS  Google Scholar 

  24. Dess NK, Raizer J, Chapman CD, Garcia J. Stressors in the learned helplessness paradigm: effects on body weight and conditioned taste aversion in rats. Physiol Behav 1988, 44: 483–490.

    Article  PubMed  CAS  Google Scholar 

  25. Greenberg L, Edwards E, Henn FA. Dexamethasone suppression test in helpless rats. Biol Psychiatry 1989, 26: 530–532.

    Article  PubMed  CAS  Google Scholar 

  26. Henn F, Edwards E, Muneyyirci J. Animal models of depression. Clin Neurosci 1993, 1: 152–156.

    Google Scholar 

  27. Vollmayr B, Bachteler D, Vengeliene V, Gass P, Spanagel R, Henn F. Rats with congenital learned helplessness respond less to sucrose but show no deficits in activity or learning. Behav Brain Res 2004, 150: 217–221.

    Article  PubMed  CAS  Google Scholar 

  28. Sherman AD, Sacquitne JL, Petty F. Specificity of the learned helplessness model of depression. Pharmacol Biochem Behav 1982, 16: 449–454.

    Article  PubMed  CAS  Google Scholar 

  29. McKinney WT. Electroconvulsive therapy and animal models of depression. Ann N Y Acad Sci 1986, 462: 65–69.

    Article  PubMed  CAS  Google Scholar 

  30. Vollmayr B, Henn FA. Stress models of depression. Clin Neurosci Res 2003, 3: 245–251.

    Article  Google Scholar 

  31. Fadda P, Pani L, Porcella A, Fratta W. Chronic imipramine, L-sulpiride and mianserin decrease corticotropin releasing factor levels in the rat brain. Neurosci Lett 1995, 192: 121–123.

    Article  PubMed  CAS  Google Scholar 

  32. Takamori K, Yoshida S, Okuyama S. Availability of learned helplessness test as a model of depression compared to a forced swimming test in rats. Pharmacology 2001, 63: 147–153.

    Article  PubMed  CAS  Google Scholar 

  33. Ridder S, Chourbaji S, Hellweg R, Urani A, Zacher C, Schmid W, et al. Mice with genetically altered glucocorticoid receptor expression show altered sensitivity for stress-induced depressive reactions. J Neurosci 2005, 25: 6243–6250.

    Article  PubMed  CAS  Google Scholar 

  34. Mitchell PJ, Redfern PH. Animal models of depressive illness: the importance of chronic drug treatment. Curr Pharm Des 2005, 11: 171–203.

    Article  PubMed  CAS  Google Scholar 

  35. Henn FA, Vollmayr B. Stress models of depression: forming genetically vulnerable strains. Neurosci Biobehav Rev 2005, 29: 799–804.

    Article  PubMed  Google Scholar 

  36. Anisman H, Merali Z. Rodent models of depression: learned helplessness induced in mice. Curr Protoc Neurosci 2001, Chapter 8: Unit 8 10C.

  37. Katz RJ, Roth KA, Carroll BJ. Acute and chronic stress effects on open field activity in the rat: implications for a model of depression. Neurosci Biobehav Rev 1981, 5: 247–251.

    Article  PubMed  CAS  Google Scholar 

  38. Katz RJ, Roth KA, Schmaltz K. Amphetamine and tranylcypromine in an animal model of depression: pharmacological specificity of the reversal effect. Neurosci Biobehav Rev 1981, 5: 259–264.

    Article  PubMed  CAS  Google Scholar 

  39. Willner P, Towell A, Sampson D, Sophokleous S, Muscat R. Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology (Berl) 1987, 93: 358–364.

    Article  CAS  Google Scholar 

  40. Willner P. Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacology (Berl) 1997, 134: 319–329.

    Article  CAS  Google Scholar 

  41. Katz RJ. Animal model of depression: pharmacological sensitivity of a hedonic deficit. Pharmacol Biochem Behav 1982, 16: 965–968.

    Article  PubMed  CAS  Google Scholar 

  42. Katz RJ, Baldrighi G. A further parametric study of imipramine in an animal model of depression. Pharmacol Biochem Behav 1982, 16: 969–972.

    Article  PubMed  CAS  Google Scholar 

  43. Katz RJ. Animal model of depression: effects of electroconvulsive shock therapy. Neurosci Biobehav Rev 1981, 5: 273–277.

    Article  PubMed  CAS  Google Scholar 

  44. Willner P, Muscat R, Papp M. Chronic mild stress-induced anhedonia: a realistic animal model of depression. Neurosci Biobehav Rev 1992, 16: 525–534.

    Article  PubMed  CAS  Google Scholar 

  45. Monleon S, D’Aquila P, Parra A, Simon VM, Brain PF, Willner P. Attenuation of sucrose consumption in mice by chronic mild stress and its restoration by imipramine. Psychopharmacology (Berl) 1995, 117: 453–457.

    Article  CAS  Google Scholar 

  46. Pothion S, Bizot JC, Trovero F, Belzung C. Strain differences in sucrose preference and in the consequences of unpredictable chronic mild stress. Behav Brain Res 2004, 155: 135–146.

    Article  PubMed  Google Scholar 

  47. Stemmelin J, Cohen C, Yalcin I, Keane P, Griebel G. Implication of [beta]3-adrenoceptors in the antidepressant-like effects of amibegron using Adrb3 knockout mice in the chronic mild stress. Behav Brain Res 2010, 206: 310–312.

    Article  PubMed  CAS  Google Scholar 

  48. Zhu XH, Yan HC, Qu HD, Chen L, Li SJ, Cao X, et al. Antidepressant effects of intermittent hypoxia by promoting hippocampal neurogenesis in adult rats. Annual Meeting of the Society of Neuroscience 2009, Chicago.

  49. Willner P. Chronic mild stress (CMS) revisited: consistency and behavioural-neurobiological concordance in the effects of CMS. Neuropsychobiology 2005, 52: 90–110.

    Article  PubMed  CAS  Google Scholar 

  50. Brown GW, Prudo R. Psychiatric disorder in a rural and an urban population: 1. Aetiology of depression. Psychol Med 1981, 11: 581–599.

    Article  PubMed  CAS  Google Scholar 

  51. Yan HC, Qu HD, Sun LR, Li SJ, Cao X, Fang YY, et al. Fuzi polysaccharide-1 produces antidepressant-like effects in mice. Int J Neuropsychopharmacol 2010, 13: 623–633.

    Article  PubMed  CAS  Google Scholar 

  52. Berton O, McClung CA, Dileone RJ, Krishnan V, Renthal W, Russo SJ, et al. Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science 2006, 311: 864–868.

    Article  PubMed  CAS  Google Scholar 

  53. Krishnan V, Han MH, Graham DL, Berton O, Renthal W, Russo SJ, et al. Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell 2007, 131: 391–404.

    Article  PubMed  CAS  Google Scholar 

  54. Tsankova NM, Berton O, Renthal W, Kumar A, Neve RL, Nestler EJ. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci 2006, 9: 519–525.

    Article  PubMed  CAS  Google Scholar 

  55. Buwalda B, Kole MH, Veenema AH, Huininga M, de Boer SF, Korte SM, et al. Long-term effects of social stress on brain and behavior: a focus on hippocampal functioning. Neurosci Biobehav Rev 2005, 29: 83–97.

    Article  PubMed  Google Scholar 

  56. Von Frijtag JC, Reijmers LG, Van der Harst JE, Leus IE, Van den Bos R, Spruijt BM. Defeat followed by individual housing results in long-term impaired reward- and cognition-related behaviours in rats. Behav Brain Res 2000, 117: 137–146.

    Article  Google Scholar 

  57. Meerlo P, Overkamp GJ, Benning MA, Koolhaas JM, Van den Hoofdakker RH. Long-term changes in open field behaviour following a single social defeat in rats can be reversed by sleep deprivation. Physiol Behav 1996, 60: 115–119.

    Article  PubMed  CAS  Google Scholar 

  58. Fuchs E, Kramer M, Hermes B, Netter P, Hiemke C. Psychosocial stress in tree shrews: clomipramine counteracts behavioral and endocrine changes. Pharmacol Biochem Behav 1996, 54: 219–228.

    Article  PubMed  CAS  Google Scholar 

  59. Cryan JF, Slattery DA. Animal models of mood disorders: Recent developments. Curr Opin Psychiatry 2007, 20: 1–7.

    Article  PubMed  Google Scholar 

  60. Kalueff AV, Avgustinovich DF, Kudryavtseva NN, Murphy DL. BDNF in anxiety and depression. Science 2006, 312: 1598–1599; author reply 1598–1599.

    Article  PubMed  CAS  Google Scholar 

  61. Kudryavtseva NN, Bakshtanovskaya IV, Koryakina LA. Social model of depression in mice of C57BL/6J strain. Pharmacol Biochem Behav 1991, 38: 315–320.

    Article  PubMed  CAS  Google Scholar 

  62. Bjorkqvist K. Social defeat as a stressor in humans. Physiol Behav 2001, 73: 435–442.

    Article  PubMed  CAS  Google Scholar 

  63. Holmes A, Yang RJ, Murphy DL, Crawley JN. Evaluation of antidepressant-related behavioral responses in mice lacking the serotonin transporter. Neuropsychopharmacology 2002, 27: 914–923.

    Article  PubMed  CAS  Google Scholar 

  64. Mayorga AJ, Dalvi A, Page ME, Zimov-Levinson S, Hen R, Lucki I. Antidepressant-like behavioral effects in 5-hydroxytryptamine(1A) and 5-hydroxytryptamine(1B) receptor mutant mice. J Pharmacol Exp Ther 2001, 298: 1101–1107.

    PubMed  CAS  Google Scholar 

  65. Schramm NL, McDonald MP, Limbird LE. The alpha(2a)-adrenergic receptor plays a protective role in mouse behavioral models of depression and anxiety. J Neurosci 2001, 21: 4875–4882.

    PubMed  CAS  Google Scholar 

  66. Pliakas AM, Carlson RR, Neve RL, Konradi C, Nestler EJ, Carlezon WA Jr. Altered responsiveness to cocaine and increased immobility in the forced swim test associated with elevated cAMP response element-binding protein expression in nucleus accumbens. J Neurosci 2001, 21: 7397–7403.

    PubMed  CAS  Google Scholar 

  67. Gourley SL, Taylor JR. Recapitulation and reversal of a persistent depression-like syndrome in rodents. Curr Protoc Neurosci 2009, Chapter 9: Unit 9 32.

  68. Gourley SL, Wu FJ, Kiraly DD, Ploski JE, Kedves AT, Duman RS, et al. Regionally specific regulation of ERK MAP kinase in a model of antidepressant-sensitive chronic depression. Biol Psychiatry 2008, 63: 353–359.

    Article  PubMed  CAS  Google Scholar 

  69. Gourley SL, Kiraly DD, Howell JL, Olausson P, Taylor JR. Acute Hippocampal Brain-Derived Neurotrophic Factor Restores Motivational and Forced Swim Performance After Corticosterone. Biological Psychiatry 2008, 64: 884–890.

    Article  PubMed  CAS  Google Scholar 

  70. Brummelte S, Galea LAM. Chronic high corticosterone reduces neurogenesis in the dentate gyrus of adult male and female rats. Neuroscience 2010, 168: 680–690.

    Article  PubMed  CAS  Google Scholar 

  71. Porsolt RD, Le Pichon M, Jalfre M. Depression: a new animal model sensitive to antidepressant treatments. Nature 1977, 266: 730–732.

    Article  PubMed  CAS  Google Scholar 

  72. Porsolt RD, Bertin A, Jalfre M. Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 1977, 229: 327–336.

    PubMed  CAS  Google Scholar 

  73. Petit-Demouliere B, Chenu F, Bourin M. Forced swimming test in mice: a review of antidepressant activity. Psychopharmacology (Berl) 2005, 177: 245–255.

    Article  CAS  Google Scholar 

  74. Cryan JF, Mombereau C. In search of a depressed mouse: utility of models for studying depression-related behavior in genetically modified mice. Mol Psychiatry 2004, 9: 326–357.

    Article  PubMed  CAS  Google Scholar 

  75. Lucki I. The forced swimming test as a model for core and component behavioral effects of antidepressant drugs. Behav Pharmacol 1997, 8: 523–532.

    Article  PubMed  CAS  Google Scholar 

  76. Cryan JF, Valentino RJ, Lucki I. Assessing substrates underlying the behavioral effects of antidepressants using the modified rat forced swimming test. Neurosci Biobehav Rev 2005, 29: 547–569.

    Article  PubMed  CAS  Google Scholar 

  77. Porsolt RD, Anton G, Blavet N, Jalfre M. Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol 1978, 47: 379–391.

    Article  PubMed  CAS  Google Scholar 

  78. Porsolt RD, Bertin A, Jalfre M. “Behavioural despair” in rats and mice: strain differences and the effects of imipramine. Eur J Pharmacol 1978, 51: 291–294.

    Article  PubMed  CAS  Google Scholar 

  79. Lucki I, Dalvi A, Mayorga AJ. Sensitivity to the effects of pharmacologically selective antidepressants in different strains of mice. Psychopharmacology (Berl) 2001, 155: 315–322.

    Article  CAS  Google Scholar 

  80. Dalvi A, Lucki I. Murine models of depression. Psychopharmacology (Berl) 1999, 147: 14–16.

    Article  CAS  Google Scholar 

  81. David DJ, Renard CE, Jolliet P, Hascoet M, Bourin M. Antidepressant-like effects in various mice strains in the forced swimming test. Psychopharmacology (Berl) 2003, 166: 373–382.

    CAS  Google Scholar 

  82. Steru L, Chermat R, Thierry B, Simon P. The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology (Berl) 1985, 85: 367–370.

    Article  CAS  Google Scholar 

  83. Cryan JF, Mombereau C, Vassout A. The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev 2005, 29: 571–625.

    Article  PubMed  CAS  Google Scholar 

  84. Bai F, Li X, Clay M, Lindstrom T, Skolnick P. Intra- and interstrain differences in models of “behavioral despair”. Pharmacol Biochem Behav 2001, 70: 187–192.

    Article  PubMed  CAS  Google Scholar 

  85. Whishaw IQ, Tomie J. Of mice and mazes: similarities between mice and rats on dry land but not water mazes. Physiol Behav 1996, 60: 1191–1197.

    Article  PubMed  CAS  Google Scholar 

  86. Dulawa SC, Hen R. Recent advances in animal models of chronic antidepressant effects: the novelty-induced hypophagia test. Neurosci Biobehav Rev 2005, 29: 771–783.

    Article  PubMed  CAS  Google Scholar 

  87. Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 2003, 301: 805–809.

    Article  PubMed  CAS  Google Scholar 

  88. Alonso R, Griebel G, Pavone G, Stemmelin J, Le Fur G, Soubrie P. Blockade of CRF(1) or V(1b) receptors reverses stress-induced suppression of neurogenesis in a mouse model of depression. Mol Psychiatry 2004, 9: 278–286, 224.

    Article  PubMed  CAS  Google Scholar 

  89. Griebel G, Simiand J, Serradeil-Le Gal C, Wagnon J, Pascal M, Scatton B, et al. Anxiolytic- and antidepressant-like effects of the non-peptide vasopressin V1b receptor antagonist, SSR149-415, suggest an innovative approach for the treatment of stressrelated disorders. Proc Natl Acad Sci U S A 2002, 99: 6370–6375.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian-Ming Gao  (高天明).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, HC., Cao, X., Das, M. et al. Behavioral animal models of depression. Neurosci. Bull. 26, 327–337 (2010). https://doi.org/10.1007/s12264-010-0323-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-010-0323-7

Keywords

关键词

Navigation