Skip to main content
Log in

A Transient Decrease in Spleen Size Following Stroke Corresponds to Splenocyte Release into Systemic Circulation

  • Perspective
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

The splenic response to stroke is a proinflammatory reaction to ischemic injury resulting in expanded neurodegeneration. Splenectomy reduces neural injury in rodent models of hemorrhagic and ischemic stroke, however the exact nature of this response has yet to be fully understood. This study examines the migration of splenocytes after brain ischemia utilizing carboxyfluorescein diacetate succinimidyl ester (CFSE) to label them in vivo. The spleen was found to significantly decrease in size from 24 to 48 h following middle cerebral artery occlusion (MCAO) in rats compared to sham operated controls. By 96 h post-MCAO the spleen size returned to levels not different from sham operated rats. To track splenocyte migration following MCAO, spleens were injected with CFSE to label cells. CFSE positive cell numbers were significantly reduced in the 48 h MCAO group versus 48 h sham and CFSE labeled cells were equivalent in 96 h MCAO and sham groups. A significant increase of labeled lymphocyte, monocytes, and neutrophils was detected in the blood at 48 h post-MCAO when compared to the other groups. CFSE labeled cells migrated to the brain following MCAO but appear to remain within the vasculature. These cells were identified as natural killer cells (NK) and monocytes at 48 h and at 96 h post-MCAO NK cells, T cells and monocytes. After ischemic injury, splenocytes enter into systemic circulation and migrate to the brain exacerbating neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1

Similar content being viewed by others

References

  • Ajmo CT Jr, Vernon DO, Collier L, Pennypacker KR, Cuevas J (2006) Sigma receptor activation reduces infarct size at 24 hours after permanent middle cerebral artery occlusion in rats. Curr Neurovasc Res 3(2):89–98

    Article  PubMed  CAS  Google Scholar 

  • Ajmo CT Jr, Vernon DO, Collier L, Hall AA, Garbuzova-Davis S, Willing A, Pennypacker KR (2008) The spleen contributes to stroke-induced neurodegeneration. J Neurosci Res 86:2227–2234

    Article  PubMed  CAS  Google Scholar 

  • Ajmo CT Jr., Collier LA, Leonardo CC, Hall AA, Green SM, Womble TA, Cuevas J, Willing AE, Pennypacker KR (2009) Blockade of adrenoreceptors inhibits the splenic response to stroke. Exp Neurol

  • Bakovic D, Eterovic D, Saratlija-Novakovic Z, Palada I, Valic Z, Bilopavlovic N, Dujic Z (2005) Effect of human splenic contraction on variation in circulating blood cell counts. Clin Exp Pharmacol Physiol 32(11):944–951

    Article  PubMed  CAS  Google Scholar 

  • Bao Y, Kim E, Bhosle S, Mehta H, Cho S (2010) A role for spleen monocytes in post-ischemic brain inflammation and injury. J Neuroinflammation 7:92

    Article  PubMed  CAS  Google Scholar 

  • Chang L, Chen Y, Li J, Liu Z, Wang Z, Chen J, Cao W, Xu Y (2011) Cocaine-and amphetamine-regulated transcript modulates peripheral immunity and protects against brain injury in experimental stroke. Brain Behav Immun

  • Chopp M, Li Y, Jiang N, Zhang RL, Prostak J (1996) Antibodies against adhesion molecules reduce apoptosis after transient middle cerebral artery occlusion in rat brain. J Cereb Blood Flow Metab 16(4):578–584

    Article  PubMed  CAS  Google Scholar 

  • Das M, Leonardo CC, Rangooni S, Mohapatra SS, Mohapatra S, Pennypacker KR (2011) Lateral fluid percussion injury of the brain induces CCL20 inflammatory chemokine expression in rats. J Neuroinflammation 8:148

    Article  PubMed  CAS  Google Scholar 

  • Duckworth EA, Butler TL, De Mesquita D, Collier SN, Collier L, Pennypacker KR (2005) Temporary focal ischemia in the mouse: technical aspects and patterns of Fluoro-Jade evident neurodegeneration. Brain Res 1042(1):29–36

    Article  PubMed  CAS  Google Scholar 

  • Gendron A, Teitelbaum J, Cossette C, Nuara S, Dumont M, Geadah D, du Souich P, Kouassi E (2002) Temporal effects of left versus right middle cerebral artery occlusion on spleen lymphocyte subsets and mitogenic response in Wistar rats. Brain Res 955(1–2):85–97

    Article  PubMed  CAS  Google Scholar 

  • Hall AA, Guyer AG, Leonardo CC, Ajmo CT Jr, Collier LA, Willing AE, Pennypacker KR (2009) Human umbilical cord blood cells directly suppress ischemic oligodendrocyte cell death. J Neurosci Res 87(2):333–341

    Article  PubMed  CAS  Google Scholar 

  • Hurn PD, Subramanian S, Parker SM, Afentoulis ME, Kaler LJ, Vandenbark AA, Offner H (2007) T- and B-cell-deficient mice with experimental stroke have reduced lesion size and inflammation. J Cereb Blood Flow Metab 27(11):1798–1805

    Article  PubMed  CAS  Google Scholar 

  • Jiang H, Meng F, Li W, Tong L, Qiao H, Sun X (2007) Splenectomy ameliorates acute multiple organ damage induced by liver warm ischemia reperfusion in rats. Surgery 141(1):32–40

    Article  PubMed  Google Scholar 

  • Kanemoto Y, Nakase H, Akita N, Sakaki T (2002) Effects of anti-intercellular adhesion molecule-1 antibody on reperfusion injury induced by late reperfusion in the rat middle cerebral artery occlusion model. Neurosurgery 51(4):1034–1041, discussion 1041-1032

    PubMed  Google Scholar 

  • Karrer FM, Reitz BL, Hao L, Lafferty KJ (1992) Fluorescein labeling of murine hepatocytes for identification after intrahepatic transplantation. Transplant Proc 24(6):2820–2821

    PubMed  CAS  Google Scholar 

  • Lee ST, Chu K, Jung KH, Kim SJ, Kim DH, Kang KM, Hong NH, Kim JH, Ban JJ, Park HK, Kim SU, Park CG, Lee SK, Kim M, Roh JK (2008) Anti-inflammatory mechanism of intravascular neural stem cell transplantation in haemorrhagic stroke. Brain 131(Pt 3):616–629

    Article  PubMed  Google Scholar 

  • Leuschner F, Panizzi P, Chico-Calero I, Lee WW, Ueno T, Cortez-Retamozo V, Waterman P, Gorbatov R, Marinelli B, Iwamoto Y, Chudnovskiy A, Figueiredo JL, Sosnovik DE, Pittet MJ, Swirski FK, Weissleder R, Nahrendorf M (2010) Angiotensin-converting enzyme inhibition prevents the release of monocytes from their splenic reservoir in mice with myocardial infarction. Circ Res 107(11):1364–1373

    Article  PubMed  CAS  Google Scholar 

  • Li M, Li F, Luo C, Shan Y, Zhang L, Qian Z, Zhu G, Lin J, Feng H (2011) Immediate splenectomy decreases mortality and improves cognitive function of rats after severe traumatic brain injury. J Trauma

  • Liesz A, Suri-Payer E, Veltkamp C, Doerr H, Sommer C, Rivest S, Giese T, Veltkamp R (2009) Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat Med 15(2):192–199

    Article  PubMed  CAS  Google Scholar 

  • Liesz A, Zhou W, Mracsko E, Karcher S, Bauer H, Schwarting S, Sun L, Bruder D, Stegemann S, Cerwenka A, Sommer C, Dalpke AH, Veltkamp R (2011) Inhibition of lymphocyte trafficking shields the brain against deleterious neuroinflammation after stroke. Brain 134(Pt 3):704–720

    Article  PubMed  Google Scholar 

  • Longa E, Weinstein P, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20:84–91

    Article  PubMed  CAS  Google Scholar 

  • Lyons AB (2000) Analysing cell division in vivo and in vitro using flow cytometric measurement of CFSE dye dilution. J Immunol Methods 243(1–2):147–154

    Article  PubMed  CAS  Google Scholar 

  • Meyer S, Strittmatter M, Fischer C, Georg T, Schmitz B (2004) Lateralization in autonomic dysfunction in ischemic stroke involving the insular cortex. Neuroreport 15(2):357–361

    Article  PubMed  CAS  Google Scholar 

  • Newcomb JD, Ajmo CT, Sanberg CD, Sanberg PR, Pennypacker KR, Willing AE (2006) Timing of cord blood treatment after experimental stroke determine therapeutic efficacy. Cell Transplant 15(3):213–223

    Article  PubMed  Google Scholar 

  • Offner H, Subramanian S, Parker SM, Afentoulis ME, Vandenbark AA, Hurn PD (2006a) Experimental stroke induces massive, rapid activation of the peripheral immune system. J Cereb Blood Flow Metab 26(5):654–665

    Article  PubMed  CAS  Google Scholar 

  • Offner H, Subramanian S, Parker SM, Wang C, Afentoulis ME, Lewis A, Vandenbark AA, Hurn PD (2006b) Splenic atrophy in experimental stroke is accompanied by increased regulatory T cells and circulating macrophages. J Immunol 176(11):6523–6531

    PubMed  CAS  Google Scholar 

  • Okuaki Y, Miyazaki H, Zeniya M, Ishikawa T, Ohkawa Y, Tsuno S, Sakaguchi M, Hara M, Takahashi H, Toda G (1996) Splenectomy-reduced hepatic injury induced by ischemia/reperfusion in the rat. Liver 16(3):188–194

    PubMed  CAS  Google Scholar 

  • Savas MC, Ozguner M, Ozguner IF, Delibas N (2003) Splenectomy attenuates intestinal ischemia-reperfusion-induced acute lung injury. J Pediatr Surg 38(10):1465–1470

    Article  PubMed  Google Scholar 

  • Savitz SI, Erhardt JA, Anthony JV, Gupta G, Li X, Barone FC, Rosenbaum DM (2000) The novel beta-blocker, carvedilol, provides neuroprotection in transient focal stroke. J Cereb Blood Flow Metab 20(8):1197–1204

    Article  PubMed  CAS  Google Scholar 

  • Schmued LC, Albertson C, Slikker W Jr (1997) Fluoro-Jade: a novel fluorochrome for the sensitive and reliable histochemical localization of neuronal degeneration. Brain Res 751(1):37–46

    Article  PubMed  CAS  Google Scholar 

  • Schroeter M, Jander S, Witte OW, Stoll G (1994) Local immune responses in the rat cerebral cortex after middle cerebral artery occlusion. J Neuroimmunol 55(2):195–203

    Article  PubMed  CAS  Google Scholar 

  • Schwarting S, Litwak S, Hao W, Bahr M, Weise J, Neumann H (2008) Hematopoietic stem cells reduce postischemic inflammation and ameliorate ischemic brain injury. Stroke 39(10):2867–2875

    Article  PubMed  CAS  Google Scholar 

  • Seifert HA, Leonardo CC, Hall AA, Rowe DD, Collier LA, Benkovic SA, Willing AE, Pennypacker KR (2012) The spleen contributes to stroke induced neurodegeneration through interferon gamma signaling. Metab Brain Dis 27(2):131–141

    Article  PubMed  CAS  Google Scholar 

  • Stevens SL, Bao J, Hollis J, Lessov NS, Clark WM, Stenzel-Poore MP (2002) The use of flow cytometry to evaluate temporal changes in inflammatory cells following focal cerebral ischemia in mice. Brain Res 932(1–2):110–119

    Article  PubMed  CAS  Google Scholar 

  • Swirski FK, Nahrendorf M, Etzrodt M, Wildgruber M, Cortez-Retamozo V, Panizzi P, Figueiredo JL, Kohler RH, Chudnovskiy A, Waterman P, Aikawa E, Mempel TR, Libby P, Weissleder R, Pittet MJ (2009) Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325(5940):612–616

    Article  PubMed  CAS  Google Scholar 

  • Vendrame M, Gemma C, Pennypacker KR, Bickford PC, Davis Sanberg C, Sanberg PR, Willing AE (2006) Cord blood rescues stroke-induced changes in splenocyte phenotype and function. Exp Neurol 199(1):191–200

    Article  PubMed  CAS  Google Scholar 

  • Weston SA, Parish CR (1990) New fluorescent dyes for lymphocyte migration studies. Analysis by flow cytometry and fluorescence microscopy. J Immunol Methods 133(1):87–97

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Lisa Muma Weitz Laboratory for Advanced Microscopy & Cell Imaging for their assistance with acquiring the confocal microscopy images. This study was funded by the National Institutes of Health grant RO1 NS052839.

Conflict of interest

The authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith R. Pennypacker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seifert, H.A., Hall, A.A., Chapman, C.B. et al. A Transient Decrease in Spleen Size Following Stroke Corresponds to Splenocyte Release into Systemic Circulation. J Neuroimmune Pharmacol 7, 1017–1024 (2012). https://doi.org/10.1007/s11481-012-9406-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-012-9406-8

Keywords

Navigation