Skip to main content

Advertisement

Log in

Blood flow distribution in an anatomically detailed arterial network model: criteria and algorithms

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

Development of blood flow distribution criteria is a mandatory step toward developing computational models and numerical simulations of the systemic circulation. In the present work, we (i) present a systematic approach based on anatomical and physiological considerations to distribute the blood flow in a 1D anatomically detailed model of the arterial network and (ii) develop a numerical procedure to calibrate resistive parameters in terminal models in order to effectively satisfy such flow distribution. For the first goal, we merge data collected from the specialized medical literature with anatomical concepts such as vascular territories to determine blood flow supply to specific (encephalon, kidneys, etc.) and distributed (muscles, skin, etc.) organs. Overall, 28 entities representing the main specific organs are accounted for in the detailed description of the arterial topology that we use as model substrate. In turn, 116 vascular territories are considered as the basic blocks that compose the distributed organs throughout the whole body. For the second goal, Windkessel models are used to represent the peripheral beds, and the values of the resistive parameters are computed applying a Newton method to a parameter identification problem to guarantee the supply of the correct flow fraction to each terminal location according to the given criteria. Finally, it is shown that, by means of the criteria developed, and for a rather standard set of model parameters, the model predicts physiologically realistic pressure and flow waveforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Ahlborg G, Jensen-Urstad M (1991) Arm blood flow at rest and during arm exercise. J Appl Physiol 70:928–933

    Google Scholar 

  • Alastruey J, Moore S, Parker K, David T, Peir J, Sherwin S (2008a) Reduced modelling of blood flow in the cerebral circulation: coupling 1-D, 0-D and cerebral auto-regulation models. Int J Numer Methods Fluids 56:1061–1067

    MATH  Google Scholar 

  • Alastruey J, Parker K, Peiró J, Sherwin S (2008b) Lumped parameter outflow models for 1D blood flow simulations: effects on pulse waves and parameter estimation. Commun Comput Phys 4:317–336

    MathSciNet  Google Scholar 

  • Alastruey J, Khir A, Matthys K, Segers P, Sherwin S, Verdonck P, Parker K, Peiró J (2011) Pulse wave propagation in a model human arterial network: assessment of 1-D visco-elastic simulations against in vitro measurements. J Biomech 44:2250–2258

    Google Scholar 

  • Anliker M, Rockwell R, Ogden E (1971a) Nonlinear analysis of flow pulses and shock waves in arteries. Part I: derivation and properties of mathematical model. ZAMP 22:217–246

    Google Scholar 

  • Anliker M, Rockwell R, Ogden E (1971b) Nonlinear analysis of flow pulses and shock waves in arteries. Part II: parametric study related to clinical problems. ZAMP 22:563–581

    Google Scholar 

  • Armentano R, Levenson J, Barra J, Cabrera E, Breitbart G, Pichel R, Simon A (1991) Assessment of elastin and collagen contribution to aortic elasticity in concious dogs. Am J Physiol Heart Circ Physiol 260:H1870–H1877

    Google Scholar 

  • Avolio A (1980) Multi-branched model of the human arterial system. Med Biol Eng Comput 18:709–718

    Google Scholar 

  • Bende M, Flisberg K (1985) Blood flow in nasal polyps. J Laryngol Otol 99:167–169

    Google Scholar 

  • Bergman S, Hoffman W, Gans B, Miletich D, Albrecht R (1982) Blood flow to oral tissues: an experimental study with enflurane, sodium nitroprusside, and nitroglycerin. J Oral Maxillofac Surg 40:13–17

    Google Scholar 

  • Bhatt S, Ghazale H, Dogra V (2007) Sonographic evaluation of the abdominal aorta. Ultrasound Clin 2:437–453

    Google Scholar 

  • Bilston L, Stoodley M, Fletcher D (2010) The influence of the relative timing of arterial and subarachnoid space pulse waves on spinal perivascular cerebrospinal fluid flow as a possible factor in syrinx development. J Neurosurg 112:808–813

    Google Scholar 

  • Blanco P, Pivello M, Urquiza S, Feijóo R (2009) On the potentialities of 3D–1D coupled models in hemodynamics simulations. J Biomech 42:919–930

    Google Scholar 

  • Blanco P, Urquiza S, Feijóo R (2010) Assessing the influence of heart rate in local hemodynamics through coupled 3D-1D-0D models. Int J Numer Methods Biomed Eng 26:890–903

    MATH  Google Scholar 

  • Blanco P, Trenhago P, Fernandes L, Feijóo R (2012a) On the integration of the baroreflex control mechanism in a heterogeneous model of the cardiovascular system. Int J Numer Methods Biomed Eng 28:412–433

    MathSciNet  Google Scholar 

  • Blanco P, Watanabe S, Feijóo R (2012b) Identification of vascular territory resistances in one-dimensional hemodynamics simulations. J Biomech 45:2066–2073

    Google Scholar 

  • Blanco P, Queiroz R, Feijóo R (2013) A computational approach to generate concurrent arterial networks in vascular territories. Int J Numer Methods Biomed Eng 29:601–614

    MathSciNet  Google Scholar 

  • Bollinger A, Barras J, Mahler F (1976) Measurement of foot artery blood pressure by micromanometry in normal subjects and in patients with arterial occlusive disease. Circulation 53:506–512

    Google Scholar 

  • Bovendeerd P, Borsje P, Arts T, van De Vosse F (2006) Dependence of intramyocardial pressure and coronary flow on ventricular loading and contractility: a model study. Ann Biomed Eng 34:1833–1845

    Google Scholar 

  • Burton A (1954) Relation of structure to function of the tissues of the wall of blood vessels. Physiol Rev 34:619–642

    Google Scholar 

  • Caro C (2009) Discovery of the role of wall shear in atherosclerosis. Arterioscler Thromb Vasc Biol 29:158–161

    Google Scholar 

  • Caro C, Fitz-Gerald J, Schroter R (1969) Arterial wall shear and distribution of early atheroma in man. Nature 223:1159–1160

    Google Scholar 

  • Caro C, Fitz-Gerald J, Schroter R (1971) Atheroma and arterial wall shear. Observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis. Proc R Soc 177:109–159

    Google Scholar 

  • Caro C, Doorly D, Tarnawski M, Scott K, Long Q, Dumoulin C (1996) Non-planar curvature and branching of arteries and non-planar-type flow. Proc R Soc Lond A Math Phys Eng Sci 452:185–197

    MathSciNet  MATH  Google Scholar 

  • Chen P, Quarteroni A, Rozza G (2013) Simulation-based uncertainty quantification of human arterial network hemodynamics. Int J Numer Methods Biomed Eng 29:698–721

    MathSciNet  Google Scholar 

  • Chen S, Xu D, Tang M, Ding H, Sheng W, Peng T (2009) Measurement and analysis of the perforator arteries in upper extremity for the flap design. Surg Radiol Anat 31:687–693

    Google Scholar 

  • Cormack G, Lamberty B (1986) Cadaver studies of correlation between vessel size and anatomical territory of cutaneous supply. Br J Plas Surg 39:300–306

    Google Scholar 

  • Coskun A, Chenb C, Stonec P, Feldman C (2006) Computational fluid dynamics tools can be used to predict the progression of coronary artery disease. Phys A 362:182–190

    Google Scholar 

  • Dauber W (2007) Pocket atlas of human anatomy by Feneis, 5th edn. Thieme, Stuttgart

    Google Scholar 

  • Denton T, Trento L, Cohen M, Kass R, Blanche C, Raissi S, Cheng W, Fontana G, Trento A (2001) Radial artery harvesting for coronary bypass operations: neurologic complications and their potential mechanisms. J Thorac Cardiovasc Surg 121:951–956

    Google Scholar 

  • Duggal N, Lach B (2002) Selective vulnerability of the lumbosacral spinal cord after cardiac arrest and hypotension. Stroke 33:116–121

    Google Scholar 

  • Elliott N, Lockerby D, Brodbelt A (2011) A lumped-parameter model of the cerebrospinal system for investigating arterial-driven flow in posttraumatic syringomyelia. Med Eng Phys 33:874–882

    Google Scholar 

  • Fowkes F, Murray G, Butcher I, Heald C, Lee R, Chambless L, Folsom A, Hirsch A, Dramaix M, deBacker G, Wautrecht J, Kornitzer M, Newman A, Cushman M, Sutton-Tyrrell K, Fowkes F, Lee A, Price J, d’Agostino R, Murabito J, Norman P, Jamrozik K, Curb J, Masaki K, Rodríguez B, Dekker J, Bouter L, Heine R, Nijpels G, Stehouwer C, Ferrucci L, McDermott M, Stoffers H, Hooi J, Knottnerus J, Ogren M, Hedblad B, Witteman J, Breteler M, Hunink M, Hofman A, Criqui M, Langer R, Fronek A, Hiatt W, Hamman R, Resnick H, Guralnik J, McDermott M (2008) Ankle brachial index combined with Framingham Risk Score to predict cardiovascular events and mortality: a meta-analysis. Ankle Brachial Index collaboration. JAMA 300:197–208

    Google Scholar 

  • Francis C, Frederic L, Sylvie L, Prasanna P, Henri D (2009) Scaling laws for branching vessels of human cerebral cortex. Microcirculation 16:331–344

    Google Scholar 

  • Friedman M, Deters O, Bargeron C, Hutchins G, Mark F (1986) Shear-dependent thickening of the human arterial intima. Atherosclerosis 60:161–171

    Google Scholar 

  • Fry D (1968) Acute vascular endothelial changes associated with increased blood velocity gradients. Circ Res 22:165–197

    Google Scholar 

  • Gaddum N, Alastruey J, Beerbaum P, Chowienczyk P, Schaeffter T (2013) A technical assessment of pulse wave velocity algorithms applied to non-invasive arterial waveforms. Ann Biomed Eng 41:2617–2629

    Google Scholar 

  • Grinberg L, Karniadakis G (2008) Outflow boundary conditions for arterial networks with multiple outlets. Ann Biomed Eng 36:1496–1514

    Google Scholar 

  • Gwilliam M, Hoggard N, Capener D, Singh P, Marzo A, Verma P, Wilkinson I (2009) MR derived volumetric flow rate waveforms at locations within the common carotid, internal carotid, and basilar arteries. J Cereb Blood Flow Metab 29:1975–1982

    Google Scholar 

  • Halls J, Bydawell G, Patel U (2009) Erectile dysfunction: the role of penile Doppler ultrasound in diagnosis. Abdom Imaging 34:712–725

    Google Scholar 

  • Hughes T (1973) On the one-dimensional theory of blood flow in the larger vessels. Math Biosci 18:161–170

    MATH  Google Scholar 

  • Isnard R, Lechat P, Kalotka H, Chikr H, Fitoussi S, Salloum J, Golmard J, Thomas D, Komajda M (1996) Muscular blood flow response to submaximal leg exercise in normal subjects and in patients with heart failure. J Appl Physiol 81:2571–2579

    Google Scholar 

  • Johnson K, Sharma P, Oshinski J (2008) Coronary artery flow measurement using navigator echo gated phase contrast magnetic resonance velocity mapping at 3.0T. J Biomech 41:595–602

    Google Scholar 

  • Karch R, Neumann F, Neumann M, Schreiner W (1999) A three-dimensional model for arterial tree representation, generated by constrained constructive optimization. Comput Biol Med 29:19–38

    Google Scholar 

  • Kim H, Vignon-Clementel I, Figueroa C, LaDisa J, Jansen K, Feinstein J, Taylor C (2009) On coupling a lumped parameter heart model and a three-dimensional finite element aorta model. Ann Biomed Eng 37:2153–2169

    Google Scholar 

  • Kim H, Jansen K, Taylor C (2010) Incorporating autoregulatory mechanisms of the cardiovascular system in three-dimensional finite element models of arterial blood flow. Ann Biomed Eng 38:2314–2330

    MATH  Google Scholar 

  • Kornet L, Hoeks A, Lambregts J, Reneman R (1999) In the femoral artery bifurcation, differences in mean wall shear stress within subjects are associated with different intima-media thicknesses. Arterioscler Thromb Vasc Biol 19:2933–2939

    Google Scholar 

  • Lee HS, Chang BC, Heo Y (2004) Digital blood flow after radial artery harvest for coronary artery bypass grafting. Ann Thorac Surg 77:2071–2074

    Google Scholar 

  • Liang YL, Teede H, Kotsopoulos D, Shiel L, Cameron J, Dart A, McGrath B (1998) Non-invasive measurements of arterial structure and function: repeatability, interrelationships and trial sample size. Clin Sci 95:669–679

    Google Scholar 

  • Loukas M, Hullett J, Wagner T (2005) Clinical anatomy of the inferior phrenic artery. Clin Anat 18:357–365

    Google Scholar 

  • Manchot C (2011) Die Hautarterien des menschlichen Körpers [Reprint of the Original from 1889]. EOD Network

  • Martin B, Reymond P, Novy J, Balédent O, Stergiopulos N (2012) A coupled hydrodynamic model of the cardiovascular and cerebrospinal fluid system. Am J Physiol Heart Circ Physiol 302:H1492–H1509

    Google Scholar 

  • Matthys K, Alastruey J, Peiró J, Khir A, Segers P, Verdonck P, Parker K, herwin S (2007) Pulse wave propagation in a model human arterial network: assessment of 1-D numerical simulations against in vitro measurements. J Biomech 40:3476–3486

    Google Scholar 

  • McIntosh R, Anderson V (2010) A comprehensive tissue properties database provided for the thermal assessment of a human at rest. Biophys Rev Lett 5:129–151

    Google Scholar 

  • Migliavacca F, Balossino R, Pennati G, Dubini G, Hsia TY, de Leval M, Bove E (2006) Multiscale modelling in biofluidynamics: application to reconstructive paediatric cardiac surgery. J Biomech 39:1010–1020

    Google Scholar 

  • Mohrman D, Heller L (2006) Cardiovascular physiology. McGraw-Hill, New York

    Google Scholar 

  • Morris S, Tang M, Geddes C (2006) Vascular anatomical basis of perforator skin flaps. Cirurgia Plástica Ibero-Latinoamericana 32:3–7

    Google Scholar 

  • Morris S, Tang M, Almutari K, Geddes C, Yang D (2010) The anatomic basis of perforator flaps. Clin Plast Surg 37:553–570

    Google Scholar 

  • Murgo J, Westerhof N, Giolma J, Altobelli S (1980) Aortic input impedance in normal man: relationship to pressure wave forms. Circulation 62:105–116

    Google Scholar 

  • Murray C (1926) The physiological principle of minimum work. I. The vascular system and the cost of blood volume. Physiology 12:207–214

    Google Scholar 

  • Netter F (2011) Atlas of human anatomy, 5th edn. Elsevier, Amsterdam

    Google Scholar 

  • Noordergraaf A, Verdouw D, Boom H (1963) The use of an analog computer in a circulation model. Prog Cardiovasc Dis 5:419–439

    Google Scholar 

  • Novy J, Carruzzo A, Maeder P, Bogousslavsky J (2006) Spinal cord ischemia: clinical and imaging patterns, pathogenesis, and outcomes in 27 patients. Arch Neurol 63:1113–1120

    Google Scholar 

  • Olufsen M (1999) Structured tree outflow condition for blood flow in larger systemic arteries. Am J Physiol 276:H257–H268

    Google Scholar 

  • Olufsen M, Peskin C, Kim W, Pedersen E, Nadim A, Larsen J (2000) Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions. Ann Biomed Eng 28:1281–1299

    Google Scholar 

  • O’Rourke M, Hashimoto J (2007) Mechanical factors in arterial aging: a clinical perspective. J Am Coll Cardiol 50:1–13

    Google Scholar 

  • Pavol M, Owings T, Grabiner M (2002) Body segment inertial parameter estimation for the general population of older adults. J Biomech 35:707–712

    Google Scholar 

  • Reymond P, Merenda F, Perren F, Rüfenacht D, Stergiopulos N (2009) Validation of a one-dimensional model of the systemic arterial tree. Am J Physiol Heart Circ Physiol 297:H208–H222

    Google Scholar 

  • Reymond P, Westerhof N, Stergiopulos N (2012) Systolic hypertension mechanisms: effect of global and local proximal aorta stiffening on pulse pressure. Ann Biomed Eng 40:742–749

    Google Scholar 

  • Rozen W, Ashton M, Le Roux C, Pan W, Corlett R (2010) The perforator angiosome: a new concept in the design of deep inferior epigastric artery perforator flaps for breast reconstruction. Microsurgery 30:1–7

    Google Scholar 

  • Saint-Cyr M, Schaverien M, Arbique G, Brown S, Rohrich R (2008) Three- and four-dimensional computed tomographic angiography and venography for the investigation of the vascular anatomy and perfusion of perforator flaps. Plast Reconstr Surg 121:772–780

    Google Scholar 

  • Saint-Cyr M, Wong C, Schaverien M, Mojallal A, Rohrich R (2009) The perforasome theory: vascular anatomy and clinical implications. Plast Reconstr Surg 124:1529–1544

    Google Scholar 

  • Salmon M, Taylor G, Tempest M (1988) Arteries of the skin. Churchill Livingstone, New York

    Google Scholar 

  • Sato K, Ogoh S, Hirasawa A, Oue A, Sadamoto T (2011) The distribution of blood flow in the carotid and vertebral arteries during dynamic exercise in humans. J Physiol 589:2847–2856

    Google Scholar 

  • Sauerbier M, Unglaub F (2010) Perforator flaps in the upper extremity. Clin Plast Surg 37:667–676

    Google Scholar 

  • Schaaf B, Abbrecht P (1972) Digital computer simulation of human systemic arterial pulse wave transmission: a nonlinear model. J Biomech 5:345–364

    Google Scholar 

  • Schreiner W, Buxbaum P (1993) Computer-optimization vascular trees. IEEE Trans Biomed Eng 40:482–491

    Google Scholar 

  • Sherwin S, Franke V, Peiró J, Parker K (2003) One-dimensional modelling of a vascular network in space-time variables. J Eng Math 47:217–250

    MATH  Google Scholar 

  • Sinna R, Boloorchi A, Mahajan A, Qassemyar Q, Robbe M (2010) What should define a “perforator flap”? Plast Reconstr Surg 126:2258–2263

    Google Scholar 

  • Slutskii MGL, Purinya B (1974) Comparison of the mechanical and biochemical characteristics of human brain arteries. Polym Mech 6:941–949

    Google Scholar 

  • Spencer M, Deninson A (1959) The square-wave electro-magnetic flowmeter. Theory of operation and design of magnetic probes for clinical and experimental applications. IRE Trans Med Elect 6:220–228

    Google Scholar 

  • Steele B, Wan J, Ku J, Hughes T, Taylor C (2003) In vivo validation of a one-dimensional finite-element method for predicting blood flow in cardiovascular bypass grafts. IEEE Trans Biomed Eng 50:649–656

    Google Scholar 

  • Stergiopulos N, Young D, Rogge T (1992) Computer simulation of arterial flow with applications to arterial and aortic stenoses. J Biomech 25:1477–1488

    Google Scholar 

  • Stergiopulos N, Westerhof B, Westerhof N (1998) Physical basis of pressure transfer from periphery to aorta: a model-based study. Am J Physiol 274:H1386–H1392

    Google Scholar 

  • Stettler J, Niederer P, Anliker M (1981a) Theoretical analysis of arterial hemodynamics including the influence of bifurcations. Part I: mathematical model and prediction of normal pulse patterns. Ann Biomed Eng 9:145–164

    Google Scholar 

  • Stettler J, Niederer P, Anliker M, Casty M (1981b) Theoretical analysis of arterial hemodynamics including the influence of bifurcations. Part II: critical evaluation of theoretical model and comparison with noninvasive measurements of flow patterns in normal and pathological cases. Ann Biomed Eng 9:165–175

    Google Scholar 

  • Sugawara J, Hayashi K, Yokoi T, Cortez-Cooper M, DeVan A, Anton M, Tanaka H (2005) Brachial-ankle pulse wave velocity: an index of central arterial stiffness? J Hum Hypertens 19:401–406

    Google Scholar 

  • Taylor G (2003) The angiosomes of the body and their supply to perforator flaps. Clin Plas Surg 30:331–342

    Google Scholar 

  • Taylor G, Palmer J (1987) The vascular territories (angiosomes) of the body: experimental study and clinical applications. Br J Plast Surg 40:113–141

    Google Scholar 

  • Taylor G, Corlett R, Dhar S, Ashton M (2011) The anatomical (angiosome) and clinical territories of cutaneous perforating arteries: development of the concept and designing safe flaps. Plast Reconstr Surg 127:1447–1459

    Google Scholar 

  • Troianowski G, Taylor C, Feinstein J, Vignon-Clementel I (2011) Three-dimensional simulations in Glenn patients: clinically based boundary conditions, hemodynamic results and sensitivity to input data. J Biomech Eng 133(111):006

    Google Scholar 

  • Urquiza S, Desimone H, Goñi M, Introzzi A, Clara F (1995) Prediction of human arterial pulse wave shape changes in aging and hypertension. In: Power H, Hart RT, Hosoda S et al (eds) Computer simulations in biomedicine. Milan, Italy, pp 131–138

    Google Scholar 

  • Uylings H (1977) Optimization of diameters and bifurcation angles in lung and vascular tree structures. Bull Math Biol 39:509–520

    MATH  Google Scholar 

  • Valentin J (2002) Basic anatomical and physiological data for use in radiological protection: reference values: ICRP Publication 89. Ann ICRP 32:1–277

    Google Scholar 

  • Vance G, Prazma J (1984) Measurement of cochlear blood flow—new technique. Hear Res 14:21–28

    Google Scholar 

  • Vardoulis O, Coppens E, Martin B, Reymond P, Tozzi P, Stergiopulos N (2011) Impact of aortic grafts on arterial pressure: a computational fluid dynamics study. Eur J Vasc Endovasc Surg 42:704–710

    Google Scholar 

  • Verbraecken J, Van de Heyning P, De Backer W, Van Gaal L (2006) Body surface area in normal-weight, overweight, and obese adults. A comparison study. Metab Clin Exp 55:515–524

    Google Scholar 

  • Vlachopoulos C, O’Rourke M (2000) Genesis of the normal and abnormal arterial pulse. Curr Probl Cardiol 25:303–367

    Google Scholar 

  • Van de Vosse F, Stergiopulos N (2011) Pulse wave propagation in the arterial tree. Annu Rev Fluid Mech 43:467–499

    Google Scholar 

  • Watanabe S (2013) Adan—an anatomically detailed arterial network model for computational hemodynamics (in portuguese). PhD thesis, Laboratório Nacional de Computação Científica, Petrópolis, Brazil

  • Watanabe S, Blanco P, Feijóo R (2013) Mathematical model of blood flow in an anatomically detailed arterial network of the arm. Math Model Numer Anal 47:961–985

    MATH  Google Scholar 

  • Weizsacker H, Pinto J (1988) Isotropy and anisotropy of the arterial wall. J Biomech 21:477–487

    Google Scholar 

  • West G, Brown J, Enquist B (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122–126

    Google Scholar 

  • Westerhof N, Westerhof B (2013) A review of methods to determine the functional arterial parameters stiffness and resistance. J Hypertens 31:1769–1775

    Google Scholar 

  • Westerhof N, Bosman F, de Vries C, Noordergraaf A (1969) Analog studies of the human systemic arterial tree. J Biomech 2:121–143

    Google Scholar 

  • Williamson T, Harris A (1994) Ocular blood flow measurement. Br J Ophthalmol 78:939–945

    Google Scholar 

  • Yoon M, Kim E, Lee S, Bae Y, Kim S, Park S (2010) Pulpal blood flow measurement with ultrasound Doppler imaging. J Endod 36:419–422

    Google Scholar 

  • Yu WC, Chuang SY, Lin YP, Chen CH (2008) Brachial-ankle vs carotid-femoral pulse wave velocity as a determinant of cardiovascular structure and function. J Hum Hypertens 22:24–31

    Google Scholar 

  • Yurdakul M, Tola M, Özdemir E, Bayazit M, Cumhur T (2006) Internal thoracic artery-inferior epigastric artery as a collateral pathway in aortoiliac occlusive disease. J Vasc Surg 43:707–713

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Brazilian agencies CNPq and FAPERJ. The support of these agencies is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo J. Blanco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blanco, P.J., Watanabe, S.M., Dari, E.A. et al. Blood flow distribution in an anatomically detailed arterial network model: criteria and algorithms. Biomech Model Mechanobiol 13, 1303–1330 (2014). https://doi.org/10.1007/s10237-014-0574-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-014-0574-8

Keywords

Navigation