Skip to main content

Advertisement

Log in

Lymphatic drainage of the brain and the pathophysiology of neurological disease

  • Review
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Abstract

There are no conventional lymphatics in the brain but physiological studies have revealed a substantial and immunologically significant lymphatic drainage from brain to cervical lymph nodes. Cerebrospinal fluid drains via the cribriform plate and nasal mucosa to cervical lymph nodes in rats and sheep and to a lesser extent in humans. More significant for a range of human neurological disorders is the lymphatic drainage of interstitial fluid (ISF) and solutes from brain parenchyma along capillary and artery walls. Tracers injected into grey matter, drain out of the brain along basement membranes in the walls of capillaries and cerebral arteries. Lymphatic drainage of antigens from the brain by this route may play a significant role in the immune response in virus infections, experimental autoimmune encephalomyelitis and multiple sclerosis. Neither antigen-presenting cells nor lymphocytes drain to lymph nodes by the perivascular route and this may be a factor in immunological privilege of the brain. Vessel pulsations appear to be the driving force for the lymphatic drainage along artery walls, and as vessels stiffen with age, amyloid peptides deposit in the drainage pathways as cerebral amyloid angiopathy (CAA). Blockage of lymphatic drainage of ISF and solutes from the brain by CAA may result in loss of homeostasis of the neuronal environment that may contribute to neuronal malfunction and dementia. Facilitating perivascular lymphatic drainage of amyloid-β (Aβ) in the elderly may prevent the accumulation of Aβ in the brain, maintain homeostasis and provide a therapeutic strategy to help avert cognitive decline in Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abbott NJ (2004) Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem Int 45:545–552

    PubMed  CAS  Google Scholar 

  2. Alcolado R, Weller RO, Parrish EP, Garrod D (1988) The cranial arachnoid and pia mater in man: anatomical and ultrastructural observations. Neuropathol Appl Neurobiol 14:1–17

    PubMed  CAS  Google Scholar 

  3. Beach TG (2008) Physiologic origins of age-related beta-amyloid deposition. Neurodegener Dis 5:143–145

    PubMed  CAS  Google Scholar 

  4. Beach TG, Potter PE, Kuo YM, Emmerling MR, Durham RA, Webster SD, Walker DG, Sue LI, Scott S, Layne KJ, Roher AE (2000) Cholinergic deafferentation of the rabbit cortex: a new animal model of Abeta deposition. Neurosci Lett 283:9–12

    PubMed  CAS  Google Scholar 

  5. Bechmann I, Galea I, Perry VH (2007) What is the blood-brain barrier (not)? Trends Immunol 28:5–11

    PubMed  CAS  Google Scholar 

  6. Bechmann I, Kwidzinski E, Kovac AD, Simbürger E, Horvath T, Gimsa U, Dirnagl U, Priller J, Nitsch R (2001) Turnover of rat brain perivascular cells. Exp Neurol 168:242–249

    PubMed  CAS  Google Scholar 

  7. Bergsneider M (2001) Evolving concepts of cerebrospinal fluid. Neurosurg Clin N Am 36:631–638

    Google Scholar 

  8. Bilbao JM, Schmidt R, Hawkins C (2008) Diseases of peripheral nerve. In: Love S, Louis DN, Ellison DW (eds) Greenfield’s neuropathology, 8th edn. Hodder Arnold, London, pp 1609–1724

    Google Scholar 

  9. Boulton M, Flessner M, Armstrong D, Hay J, Johnston M (1998) Determination of volumetric cerebrospinal fluid absorption into extracranial lymphatics in sheep. Am J Physiol 274:R88–R96

    PubMed  CAS  Google Scholar 

  10. Bradbury MW, Cserr HF, Westrop RJ (1981) Drainage of cerebral interstitial fluid into deep cervical lymph of the rabbit. Am J Physiol 240:F329–F336

    PubMed  CAS  Google Scholar 

  11. Brody DL, Magnoni S, Schwetye KE, Spinner ML, Esparza TJ, Stocchetti N, Zipfel GJ, Holtzman DM (2008) Amyloid-beta dynamics correlate with neurological status in the injured human brain. Science 321:1221–1224

    PubMed  CAS  Google Scholar 

  12. Calhoun ME, Burgermeister P, Phinney AL, Stalder M, Tolnay M, Wiederhold KH, Abramowski D, Sturchler Pierrat C, Sommer B, Staufenbiel M, Jucker M (1999) Neuronal overexpression of mutant amyloid precursor protein results in prominent deposition of cerebrovascular amyloid. Proc Natl Acad Sci USA 96:14088–14093

    PubMed  CAS  Google Scholar 

  13. Carare RO, Bernardes-Silva M, Newman TA, Page AM, Nicoll JAR, Perry VH, Weller RO (2008) Solutes, but not cells, drain from the brain parenchyma along basement membranes of capillaries and arteries. Significance for cerebral amyloid angiopathy and neuroimmunology. Neuropathol Appl Neurobiol 34:131–144

    PubMed  CAS  Google Scholar 

  14. Casley-Smith JR, Foldi-Borsok E, Foldi M (1976) The prelymphatic pathways of the brain as revealed by cervical lymphatic obstruction and the passage of particles. Br J Exp Pathol 57:179–188

    PubMed  CAS  Google Scholar 

  15. Neuropathology Group of the Medical Research Council Cognitive Function and Ageing Study (MRC CFAS) (2001) Pathological correlates of late-onset dementia in a multicentre, community-based population in England and Wales. Lancet 357:169–175

    Google Scholar 

  16. Constantinescu R, Zetterberg H, Holmberg B, Rosengren L (2008) Levels of brain related proteins in cerebrospinal fluid: an aid in the differential diagnosis of parkinsonian disorders. Parkinsonism Relat Disord. 16 June 2008 [Epub ahead of print]

  17. Cserr HF, Harling-Berg CJ, Knopf PM (1992) Drainage of brain extracellular fluid into blood and deep cervical lymph and its immunological significance. Brain Pathol 2:269–276

    PubMed  CAS  Google Scholar 

  18. Cserr HF, Knopf PM (1992) Cervical lymphatics, the blood-brain barrier and the immunoreactivity of the brain: A new view. Immunol Today 13:507–512

    PubMed  CAS  Google Scholar 

  19. Davson H, Welch K, Segal MB (1987) Physiology and pathophysiology of the cerebrospinal fluid. Churchill Livingstone, Edinburgh

    Google Scholar 

  20. de Vos AF, van Meurs M, Brok HP, Boven LA, Hintzen RQ, van der Valk P, Ravid R, Rensing S, Boon L, ‘t Hart BA, Laman JD (2002) Transfer of central nervous system autoantigens and presentation in secondary lymphoid organs. J Immunol 169:5415–5423

    PubMed  Google Scholar 

  21. Del Bigio MR, Enno TL (2008) Effect of hydrocephalus on rat brain extracellular compartment. Cerebrospinal Fluid Res 5:12

    PubMed  Google Scholar 

  22. Djuanda E, Lee R, Weller RO (1998) A search for the lymphatic drainage of the human brain? Neuropath Appl Neurobiol 24:132

    Google Scholar 

  23. Engelhardt B (2008) Immune cell entry into the central nervous system: involvement of adhesion molecules and chemokines. J Neurol Sci 274(1/2):23–26

    PubMed  CAS  Google Scholar 

  24. Fabriek BO, Zwemmer JN, Teunissen CE, Dijkstra CD, Polman CH, Laman JD, Castelijns JA (2005) In vivo detection of myelin proteins in cervical lymph nodes of MS patients using ultrasound-guided fine-needle aspiration cytology. J Neuroimmunol 161:190–194

    PubMed  CAS  Google Scholar 

  25. Ferrer I, Kaste M, Kalimo H (2008) Vascular diseases. In: Love S, Louis DN, Ellison DW (eds) Greenfield’s neuropathology, 8th edn. Hodder Arnold, London, pp 121–240

    Google Scholar 

  26. Feurer DJ, Weller RO (1991) Barrier functions of the leptomeninges: a study of normal meninges and meningiomas in tissue culture. Neuropathol Appl Neurobiol 17:391–405

    PubMed  CAS  Google Scholar 

  27. Frankfort SV, Tulner LR, van Campen JP, Verbeek MM, Jansen RW, Beijnen JH (2008) Amyloid beta protein and tau in cerebrospinal fluid and plasma as biomarkers for dementia: a review of recent literature. Curr Clin Pharmacol 3:123–131

    PubMed  CAS  Google Scholar 

  28. Galea I, Bechmann I, Perry VH (2007) What is immune privilege (not)? Trends Immunol 28:12–18

    PubMed  CAS  Google Scholar 

  29. Goldman EE (1909) Die aussere und innere Sekretion des gesunden und kranken Organismus im Lichte der “vitalen Farbung”. Beitr Klin Chirug 64:192–265

    Google Scholar 

  30. Goldman EE (1913) Vitalfarbung am Zentralnervensystem. Abh preuss Akad Wiss Phys-Math K1 No 1:1–60

  31. Goldmann J, Kwidzinski E, Brandt C, Mahlo J, Richter D, Bechmann I (2006) T cells traffic from brain to cervical lymph nodes via the cribroid plate and the nasal mucosa. J Leukoc Biol 80:797–801

    PubMed  CAS  Google Scholar 

  32. González Cámpora R, Otal Salaverri C, Vázquez Ramirez F, Salguero Villadiego M, Galera Davidson H (1993) Metastatic glioblastoma multiforme in cervical lymph nodes. Report of a case with diagnosis by fine needle aspiration. Acta Cytol 37:938–942

    PubMed  Google Scholar 

  33. Greitz D (2007) Paradigm shift in hydrocephalus research in legacy of Dandy’s pioneering work: rationale for third ventriculostomy in communicating hydrocephalus. Childs Nerv Syst 23:487–489

    PubMed  Google Scholar 

  34. Greter M, Heppner FL, Lemos MP, Odermatt BM, Goebels N, Laufer T, Noelle RJ, Becher B (2005) Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nat Med 11:328–334

    PubMed  CAS  Google Scholar 

  35. Harling Berg C, Knopf PM, Merriam J, Cserr HF (1989) Role of cervical lymph nodes in the systemic humoral immune response to human serum albumin microinfused into rat cerebrospinal fluid. J Neuroimmunol 25:2–3

    Google Scholar 

  36. Hatterer E, Davoust N, Didier-Bazes M, Vuaillat C, Malcus C, Belin MF, Nataf S (2006) How to drain without lymphatics? Dendritic cells migrate from the cerebrospinal fluid to the B-cell follicles of cervical lymph nodes. Blood 107:806–812

    PubMed  CAS  Google Scholar 

  37. Herzig MC, Van Nostrand WE, Jucker M (2006) Mechanism of cerebral beta-amyloid angiopathy: murine and cellular models. Brain Pathol 16:40–54

    PubMed  CAS  Google Scholar 

  38. Holmes C, Boche D, Wilkinson D, Yadegarfar G, Hopkins V, Bayer A, Jones RW, Bullock R, Love S, Neal JW, Zotova E, Nicoll JA (2008) Long-term effects of Abeta42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet 372:216–223

    PubMed  CAS  Google Scholar 

  39. Hutchings M, Weller RO (1986) Anatomical relationships of the pia mater to cerebral blood vessels in man. J Neurosurg 65:316–325

    Article  PubMed  CAS  Google Scholar 

  40. Johanson CE, Duncan JA, Klinge PM, Brinker T, Stopa EG, Silverberg GD (2008) Multiplicity of cerebrospinal fluid functions: new challenges in health and disease. Cerebrospinal Fluid Res 5:10

    PubMed  Google Scholar 

  41. Johnston M, Zakharov A, Papaiconomou C, Salmasi G, Armstrong D (2004) Evidence of connections between cerebrospinal fluid and nasal lymphatic vessels in humans, non-human primates and other mammalian species. Cerebrospinal Fluid Res 1:2–15

    PubMed  Google Scholar 

  42. Kalimo H, Ruchoux M-M, Vitanen M, Kalaria RN (2002) CADASIL: a common form of hereditary arteriopathy causing brain infarcts and dementia. Brain Pathol 12:371–384

    PubMed  CAS  Google Scholar 

  43. Kemppainen NM, Aalto S, Wilson IA, Någren K, Helin S, Brück A, Oikonen V, Kailajärvi M, Scheinin M, Viitanen M, Parkkola R, Rinne JO (2007) PET amyloid ligand [11C]PIB uptake is increased in mild cognitive impairment. Neurology 68:1603–1606

    PubMed  CAS  Google Scholar 

  44. Kida S, Pantazis A, Weller RO (1993) CSF drains directly from the subarachnoid space into nasal lymphatics in the rat. Anatomy, histology and immunological significance. Neuropathol Appl Neurobiol 19:480–488

    PubMed  CAS  Google Scholar 

  45. Kida S, Yamashima T, Kubota T, Ito H, Yamamoto S (1988) A light and electron microscopic and immunohistochemical study of human arachnoid villi. J Neurosurg 69:429–435

    PubMed  CAS  Google Scholar 

  46. Kido DK, Gomez DG, Pavese AMJ, Potts DG (1976) Human spinal arachnoid villi and granulations. Neuroradiology 11:221–228

    PubMed  CAS  Google Scholar 

  47. Krahn V (1981) Leukodiapedesis and leukocyte migration in the leptomeninges and in the subarachnoid space. J Neurol 226:43–52

    PubMed  CAS  Google Scholar 

  48. Krahn V (1982) The pia mater at the site of the entry of blood vessels into the central nervous system. Anat Embryol (Berl) 164:257–263

    CAS  Google Scholar 

  49. Lake J, Weller RO, Phillips MJ, Needham M (1999) Lymphocyte targeting of the brain in adoptive transfer cryolesion-EAE. J Pathol 187:259–265

    PubMed  CAS  Google Scholar 

  50. Lassmann H (1997) Basic mechanisms of brain inflammation. J Neural Transm Suppl 50:183–190

    PubMed  CAS  Google Scholar 

  51. Libbey JE, McCoy LL, Fujinami RS (2007) Molecular mimicry in multiple sclerosis. Int Rev Neurobiol 79:127–147

    PubMed  CAS  Google Scholar 

  52. Lowe J, Mirra SS, Hyman BT, Dickson DW (2008) Ageing and dementia. In: Love S, Louis DN, Ellison DW (eds) Greenfield’s neuropathology, 8th edn. Hodder Arnold, London, pp 1031–1152

    Google Scholar 

  53. Lue LF, Kuo YM, Roher AE, Brachova L, Shen Y, Sue L, Beach T, Kurth JH, Rydel RE, Rogers J (1999) Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer’s disease. Am J Pathol 155:853–862

    PubMed  CAS  Google Scholar 

  54. Mao X, Enno TL, Del Bigio MR (2006) Aquaporin 4 changes in rat brain with severe hydrocephalus. Eur J Neurosci 23:2929–2936

    PubMed  Google Scholar 

  55. McLean CA, Cherny RA, Fraser FW, Fuller SJ, Smith MJ, Beyreuther K, Bush AI, Masters CL (1999) Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann Neurol 46:860–866

    PubMed  CAS  Google Scholar 

  56. Miners JS, Baig S, Palmer J, Palmer LE, Kehoe PG, Love S (2008) Abeta-degrading enzymes in Alzheimer’s disease. Brain Pathol 18:240–252

    PubMed  CAS  Google Scholar 

  57. Mueggler T, Rausch M, Meyer-Luehmann M, Staufenbiel M, Jucker M, Rudin M (2004) Restricted diffusion in the brain of transgenic mice with cerebral amyloidosis. Eur J Neurosci 20:811–817

    PubMed  Google Scholar 

  58. Mutlu L, Brandt C, Kwidzinski E, Sawitzki B, Gimsa U, Mahlo J, Aktas O, Nitsch R, van Zwam M, Laman JD, Bechmann I (2007) Tolerogenic effect of fiber tract injury: reduced EAE severity following entorhinal cortex lesion. Exp Brain Res 178:542–553

    PubMed  Google Scholar 

  59. Nagasawa S, Handa H, Okumura A, Naruo Y, Moritake K, Hayashi K (1979) Mechanical properties of human cerebral arteries. Part 1: effects of age and vascular smooth muscle activation. Surg Neurol 12:297–304

    PubMed  CAS  Google Scholar 

  60. Nagra G, Koh L, Zakharov A, Armstrong D, Johnston M (2006) Quantification of cerebrospinal fluid transport across the cribriform plate into lymphatics in rats. Am J Physiol Regul Integr Comp Physiol 291:R1383–R1389

    PubMed  CAS  Google Scholar 

  61. Nicholas DS, Weller RO (1988) The fine anatomy of the human spinal meninges. A light and scanning electron microscopy study. J Neurosurg 69:276–282

    PubMed  CAS  Google Scholar 

  62. Nicoll JA, Wilkinson D, Holmes C, Steart P, Markham H, Weller RO (2003) Neuropathology of human Alzheimer disease after immunization with amyloid-beta peptide: a case report. Nat Med 9:448–452

    PubMed  CAS  Google Scholar 

  63. Oi S, Di Rocco C (2006) Proposal of “evolution theory in cerebrospinal fluid dynamics” and minor pathway hydrocephalus in developing immature brain. Childs Nerv Syst 22:662–669

    PubMed  Google Scholar 

  64. Palsdottir A, Snorradottir AO, Thorsteinsson L (2006) Hereditary cystatin C amyloid angiopathy: genetic, clinical, and pathological aspects. Brain Pathol 16:55–59

    PubMed  CAS  Google Scholar 

  65. Papaiconomou C, Bozanovic-Sosic R, Zakharov A, Johnston M (2002) Does neonatal cerebrospinal fluid absorption occur via arachnoid projections or extracranial lymphatics? Am J Physiol Regul Integr Comp Physiol 283:R869–R876

    PubMed  CAS  Google Scholar 

  66. Patton RL, Kalback WM, Esh CL, Kokjohn TA, Van Vickle GD, Luehrs DC, Kuo YM, Lopez J, Brune D, Ferrer I, Masliah E, Newel AJ, Beach TG, Castano EM, Roher AE (2006) Amyloid-{beta} peptide remnants in AN-1792-immunized Alzheimer’s disease patients: a biochemical analysis. Am J Pathol 169:1048–1063

    PubMed  CAS  Google Scholar 

  67. Phillips MJ, Needham M, Weller RO (1997) Role of cervical lymph nodes in autoimmune encephalomyelitis in the Lewis rat. J Pathol 182:457–464

    PubMed  CAS  Google Scholar 

  68. Phillips MJ, Weller RO, Kida S, Iannotti F (1995) Focal brain damage enhances experimental allergic encephalomyelitis in brain and spinal cord. Neuropathol Appl Neurobiol 21:189–200

    PubMed  CAS  Google Scholar 

  69. Preston SD, Steart PV, Wilkinson A, Nicoll JAR, Weller RO (2003) Capillary and arterial amyloid angiopathy in Alzheimer’s disease: defining the perivascular route for the elimination of amyloid beta from the human brain. Neuropathol Appl Neurobiol 29:106–117

    PubMed  CAS  Google Scholar 

  70. Reilly MM, Staunton H (1996) Peripheral nerve amyloidosis. Brain Pathol 6:163–177

    PubMed  CAS  Google Scholar 

  71. Rennels ML, Gregory TF, Blaumanis OR, Fujimoto K, Grady PA (1985) Evidence for a ‘paravascular’ fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res 326:47–63

    PubMed  CAS  Google Scholar 

  72. Revesz T, Ghiso J, Lashley T, Plant G, Rostagno A, Frangione B, Holton JL (2003) Cerebral amyloid angiopathies: a pathologic, biochemical, and genetic view. J Neuropathol Exp Neurol 62:885–898

    PubMed  CAS  Google Scholar 

  73. Roher AE, Kuo Y-M, Esh C, Knebel C, Weiss N, Kalback W, Luehrs DC, Childress JL, Beach TG, Weller RO, Kokjohn TA (2003) Cortical and leptomeningeal cerebrovascular amyloid and white matter pathology in Alzheimer’s disease. Mol Med 9:112–122

    PubMed  Google Scholar 

  74. Schley D, Carare-Nnadi R, Please CP, Perry VH, Weller RO (2006) Mechanisms to explain the reverse perivascular transport of solutes out of the brain. J Theor Biol 238:962–974

    PubMed  CAS  Google Scholar 

  75. Schwalbe G (1869) Der Arachnoidalraum, ein Lymphraum und sein Zusammenhang mit dem Perichoroidalraum. Zentralb Med Wiss 7:465–467

    Google Scholar 

  76. Selkoe DJ (2000) The genetics and molecular pathology of Alzheimer’s disease: roles of amyloid and the presenilins. Neurol Clin 18:903–922

    PubMed  CAS  Google Scholar 

  77. Shinkai Y, Yoshimura M, Ito Y, Odaka A, Suzuki N, Yanagisawa K, Ihara Y (1995) Amyloid beta-proteins 1–40 and 1–42(43) in the soluble fraction of extra- and intracranial blood vessels. Ann Neurol 38:421–428

    PubMed  CAS  Google Scholar 

  78. Shinkai Y, Yoshimura M, Ito Y, Odaka A, Suzuki N, Yanagisawa K, Ihara Y (1995) Amyloid beta-proteins 1–40 and 1–42(43) in the soluble fraction of extra- and intracranial blood vessels. Ann Neurol 38:421–428

    PubMed  CAS  Google Scholar 

  79. Shoesmith CL, Buist R, Del Bigio MR (2000) Magnetic resonance imaging study of extracellular fluid tracer movement in brains of immature rats with hydrocephalus. Neurol Res 22:111–116

    PubMed  CAS  Google Scholar 

  80. Skinningsrud A, Stenset V, Gundersen AS, Fladby T (2008) Cerebrospinal fluid markers in Creutzfeldt-Jakob disease. Cerebrospinal Fluid Res 5:14

    PubMed  Google Scholar 

  81. Springer TA (1994) Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76:301–314

    PubMed  CAS  Google Scholar 

  82. Stüve O (2008) The effects of natalizumab on the innate and adaptive immune system in the central nervous system. J Neurol Sci 274(1/2):39–41

    PubMed  Google Scholar 

  83. Sun D, Newman TA, Perry VH, Weller RO (2004) Cytokine-induced enhancement of autoimmune inflammation in the brain and spinal cord: implications for multiple sclerosis. Neuropathol Appl Neurobiol 30:374–384

    PubMed  CAS  Google Scholar 

  84. Sun D, Tani M, Newman TA, Krivacic K, Phillips M, Chernosky A, Gill P, Wei T, Griswold KJ, Ransohoff RM, Weller RO (2000) Role of chemokines, neuronal projections, and the blood–brain barrier in the enhancement of cerebral EAE following focal brain damage. J Neuropathol Exp Neurol 59:1031–1043

    PubMed  CAS  Google Scholar 

  85. Szentistvanyi I, Patlak CS, Ellis RA, Cserr HF (1984) Drainage of interstitial fluid from different regions of rat brain. Am J Physiol 246:F835–F844

    PubMed  CAS  Google Scholar 

  86. Tripathi BJ, Tripathi RC (1974) Vacuolar transcellular channels as a drainage pathway for cerebrospinal fluid. J Physiol 239:195–206

    PubMed  CAS  Google Scholar 

  87. Upton ML, Weller RO (1985) The morphology of cerebrospinal fluid drainage pathways in human arachnoid granulations. J Neurosurg 63:867–875

    PubMed  CAS  Google Scholar 

  88. van Zwam M, Huizinga R, Heijmans N, van Meurs M, Wierenga-Wolf AF, Melief M-J, Hintzen RQ, ‘t Hart BA, Amor S, Boven LA, Laman JD (2008) Surgical excision of CNS-draining lymph nodes reduces relapse severity in chronic-relapsing EAE. J Pathol (in press)

  89. Walsh DM, Minogue AM, Sala Frigerio C, Fadeeva JV, Wasco W, Selkoe DJ (2007) The APP family of proteins: similarities and differences. Biochem Soc Trans 35:416–420

    PubMed  CAS  Google Scholar 

  90. Walsh DM, Selkoe DJ (2007) Abeta oligomers—a decade of discovery. J Neurochem 101:1172–1184

    PubMed  CAS  Google Scholar 

  91. Welch K, Pollay M (1963) The spinal arachnoid villi of the monkeys Cercopithecus aethiops sabaeus and Macaca irus. Anat Rec 145:43–48

    PubMed  CAS  Google Scholar 

  92. Weller RO (1995) Fluid compartments and fluid balance in the central nervous system. In: Williams PL (ed) Gray’s anatomy, 38th edn. Churchill Livingstone, Edinburgh, pp 1202–1224

    Google Scholar 

  93. Weller RO (1998) Pathology of cerebrospinal fluid and interstitial fluid of the CNS: significance for Alzheimer disease, prion disorders and multiple sclerosis. J Neuropathol Exp Neurol 57:885–894

    PubMed  CAS  Google Scholar 

  94. Weller RO (1999) Reaction of intrathecal and epidural spaces to infection and inflammation. In: Yaksh TL (ed) Spinal drug delivery. Elsevier, Amsterdam, pp 297–315

    Google Scholar 

  95. Weller RO (2005) Microscopic morphology and histology of the human meninges. Morphologie 89:22–34

    PubMed  CAS  Google Scholar 

  96. Weller RO, Kida S, Zhang ET (1992) Pathways of fluid drainage from the brain–morphological aspects and immunological significance in rat and man. Brain Pathol 2:277–284

    PubMed  CAS  Google Scholar 

  97. Weller RO, Massey A, Newman TA, Hutchings M, Kuo YM, Roher AE (1998) Cerebral amyloid angiopathy: amyloid beta accumulates in putative interstitial fluid drainage pathways in Alzheimer’s disease. Am J Pathol 153:725–733

    PubMed  CAS  Google Scholar 

  98. Weller RO, Nicoll JA (2005) Cerebral amyloid angiopathy: both viper and maggot in the brain. Ann Neurol 58:348–350

    PubMed  Google Scholar 

  99. Weller RO, Shulman K (1972) Infantile hydrocephalus: clinical, histological, and ultrastructural study of brain damage. J Neurosurg 36:255–265

    PubMed  CAS  Google Scholar 

  100. Weller RO, Subash M, Preston SD, Mazanti I, Carare RO (2008) Perivascular drainage of amyloid-beta peptides from the brain and its failure in cerebral amyloid angiopathy and Alzheimer’s disease. Brain Pathol 18:253–266

    PubMed  CAS  Google Scholar 

  101. Weller RO, Wisniewski H (1969) Histological and ultrastructural changes with experimental hydrocephalus in adult rabbits. Brain 92:819–828

    PubMed  CAS  Google Scholar 

  102. Weller RO, Wisniewski H, Ishii N, Shulman K, Terry RD (1969) Brain tissue damage in hydrocephalus. Dev Med Child Neurol Suppl 20:1–7

    PubMed  CAS  Google Scholar 

  103. Weller RO, Wisniewski H, Shulman K, Terry RD (1971) Experimental hydrocephalus in young dogs: histological and ultrastructural study of the brain tissue damage. J Neuropathol Exp Neurol 30:613–626

    PubMed  CAS  Google Scholar 

  104. Wilcock DM, Rojiani A, Rosenthal A, Subbarao S, Freeman MJ, Gordon MN, Morgan D (2004) Passive immunotherapy against Abeta in aged APP-transgenic mice reverses cognitive deficits and depletes parenchymal amyloid deposits in spite of increased vascular amyloid and microhemorrhage. J Neuroinflammation 1:24

    PubMed  Google Scholar 

  105. Williams PL (ed) (1995) Gray’s anatomy, 38th edn. Churchill Livingstone, Edinburgh

    Google Scholar 

  106. Wisniewski HM, Wegiel J (1994) Beta-amyloid formation by myocytes of leptomeningeal vessels. Acta Neuropathol (Berl) 87:233–241

    CAS  Google Scholar 

  107. Zakharov A, Papaiconomou C, Koh L, Djenic J, Bozanovic-Sosic R, Johnston M (2004) Integrating the roles of extracranial lymphatics and intracranial veins in cerebrospinal fluid absorption in sheep. Microvasc Res 67:96–104

    PubMed  CAS  Google Scholar 

  108. Zhang-Nunes SX, Maat-Schieman ML, van Duinen SG, Roos RA, Frosch MP, Greenberg SM (2006) The cerebral beta-amyloid angiopathies: hereditary and sporadic. Brain Pathol 16:30–39

    PubMed  CAS  Google Scholar 

  109. Zhang ET, Inman CB, Weller RO (1990) Interrelationships of the pia mater and the perivascular (Virchow–Robin) spaces in the human cerebrum. J Anat 170:111–123

    PubMed  CAS  Google Scholar 

  110. Zhang ET, Richards HK, Kida S, Weller RO (1992) Directional and compartmentalised drainage of interstitial fluid and cerebrospinal fluid from the rat brain. Acta Neuropathol 83:233–239

    PubMed  CAS  Google Scholar 

  111. Zwillinger H (1912) Die Lymphbahnen des oberen Nasalschnittes und deren Beziehungen zu den perimeningealen Lymphraumen. Arch Laryngol Rhinol 26:66–78

    Google Scholar 

Download references

Acknowledgments

We wish to thank Dr. Anton Page for assistance with the illustrations. This study was supported by the Alzheimer Research Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roy O. Weller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weller, R.O., Djuanda, E., Yow, HY. et al. Lymphatic drainage of the brain and the pathophysiology of neurological disease. Acta Neuropathol 117, 1–14 (2009). https://doi.org/10.1007/s00401-008-0457-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00401-008-0457-0

Keywords

Navigation