
SUPPLEMENTAL MATERIAL 

Deep Learning for Automatically Predicting Early Hematoma Expansion in 

Chinese Patients 

 

Image acquisition 

  The baseline CT images from our study were obtained with four CT scanners: GE Optima 

CT540, SIEMENS SOMATOM Definition Flash, SIEMENS SOMATOM Force, SIEMENS 

SOMATOM Perspective. The acquisition parameters were as follows: slice thickness, 5.0mm; axial 

slice number, 27-34; voxel size, 0.3906-0.5566×0.3906-0.5566×5.0mm; matrix size, 512×512; 

field of view, 200-285×200-285mm; window width, 90HU; window level, 35HU (Supplemental 

Table1). 

 

Labeling and calculation of the hematoma volume 

  Manual segmentations for hematoma were performed on the CT scans by a single author with 

more than 10 years of experience. To assess interrater reliability, repeat manual segmentations in 

20 randomly selected cases were performed after a minimal interval of 7 days. Labels were 

manually painted on each 2-dimensional slice of each CT image applying the open-source 

software ITK-SNAP[1] (http://www.itksnap.org/). Comparing to the contralateral hemisphere, 

intracerebral hemorrhage was differentiated from intraventricular hemorrhage or subarachnoid 

hemorrhage. Based on the binary label map, the hematoma volume was then calculated. 

 

Data preprocessing 

  The CT images of our study were collected as a Digital Imaging and Communication in 

Medicine (DICOM) image series, and then were transformed to Neuroimaging Informatics 

Technology Initiative format. Each CT image was skull skipped by using Otsu`s method.[2] The 

CT images were resampling to a field of view of 112 × 112 × 160 mm and matrix size of 256 

× 256 × 32 by applying a bicubic interpolation algorithm, and then the images were windowed 

with a threshold of 0 to 100 HU. After this, normalization was performed by subtracting the mean 

value within the skull-stripped brain region and dividing by the standard deviation of the signal 

intensity of the region, and negative values were set to zero. 
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Data augmentation 

  Data augmentation were performed by applying 3-dimensional image transformation with 

scaling, translation, and rotation. For the training dataset, each CT image was randomly 

transformed by applying these three transformations using a linear interpolation algorithm. The 

scaling and translation were performed between –10% and 10% of the image size and the rotation 

between –5 and 5 degrees. The size of the training dataset was increased 10 times with these 

techniques. 

Model architecture 

  In this study, we build a two-task model based on a deep convolution neural network. The 

semantic segmentation of hematoma and the prediction of hematoma expansion were 

simultaneously working. Hematoma expansion outcome was binarized according to the volume of 

24h follow-up CT image compared to the baseline CT image(≥6 mL or ≥33%). Detail of the 

model architecture is shown in Supplemental Figure 1. 

Segmentation network 

  The segmentation network was based on U-Net[3], an encoder-decoder network for 3-

dimentional image segmentation. Our network for segmentation had 4-level architecture with 2 

down-sampling, 2 up-sampling and 1 convolution operation for bridging layer(Supplemental 

Figure 2): 32 × 256 × 256 (16 channels) → 16 × 128 × 128 (32 channels) → 8 × 64 × 

64 (64 channels) → 8 × 64 × 64 (128 channels) → 16 × 128 × 128 (64 channels) → 32 

× 256 × 256 (32 channels). The down-sampling of encoding path was performed by a 3 × 3 × 

3 three-dimensional convolution layer with 2 × 2 × 2 strides, and the up-sampling of decoding 

path was performed with a size of 2 × 2 × 2. Padding was applied in steps above. The final 

output of segmentation was performed by applying 1 × 1 × 1 convolution with sigmoid 

function, reducing the channel number to one. 

Classification network 

  The classification network was added to the bridging layer of the segmentation network 

(Supplemental Figure 1). Two 3 × 3 × 3(with 128 filters) three-dimensional convolution 

operations with padding were performed and then feature channels(size 128 × 8 × 64 × 64) 

were processed with three-dimensional global average pooling to be 128 units. The flattened 

features were connected to a unit of output applying the Sigmoid activation function for the binary 

classification work. 
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Training process 

  The deep neural network model had 3,802,578 parameters. The Adam optimizer was applied 

with back propagation. The loss function for segmentation was Dice loss (1 – Dice coefficient), 

and the loss function for classification was binary cross-entropy. The segmentation and 

classification were simultaneously trained with the cost function in the ratio 9:1 (segmentation: 

classification). The network was trained for 40 epochs totally with a batch size of 1. A multi-step 

learning rate schedule was performed with an initial learning rate of 1 × 10-4, reduced by a factor 

of 10 at 20th and 30th epoch. 

  The training process was performed with an 11-GB graphics processing unit (NVIDIA GeForce 

RTX 2080Ti). Training process took about 14 hours. The code of convolution neural network was 

written in Python 3.7(https://www.python.org/) and implemented in open-source deep learning 

framework Pytorch 1.4.0(https://pytorch.org/). 

Model evaluation 

For the segmentation task, the Dice coefficient was calculated to evaluate the segmentation 

results. 

For the classification task, the sensitivity, specificity, likelihood ratio weighted by prevalence, 

and area under the curve (AUC) were calculated based on receiver operating characteristic (ROC) 

curves (Supplemental Figure 2). 

Figures and Tables 

 

Supplemental Table1 Acquisition parameters for CT scanners 

Scanner 
GE Optima 

CT540 

SIEMENS 

SOMATOM 

Definition Flash 

SIEMENS 

SOMATOM 

Force 

SIEMENS 

SOMATOM 

Perspective 

Slice thickness, 

mm 
5.0 5.0 5.0 5.0 

Axial slice number 28~34 26~28 27 27 

Voxel size, mm 
0.4883×0.4883×

5.0 

0.3906~0.5566×

0.3906~0.5566×

5.0 

0.3906~0.4453×

0.3906~0.4453×

5.0 

0.4492×0.4492×

5.0 

Matrix size 512×512 512×512 512×512 512×512 

Field of view, mm 250×250 
200~285×

200~285 

200~228×

200~228 
230×230 

Window width 90 90 90 90 

Window level 35 35 35 35 

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance
Supplemental material placed on this supplemental material which has been supplied by the author(s) Stroke Vasc Neurol

 doi: 10.1136/svn-2020-000647–6.:10 2021;Stroke Vasc Neurol, et al. Zhong J

https://www.python.org/
https://pytorch.org/


CT indicates computed tomography. 

Supplemental Table2 Diagnostic criteria for NCCT markers[4] 

Marker Criteria 

Hypodensity 

Black hole sign 

Swirl sign 

Blend sign 

Fluid level 

Irregular shape 

Any hypodense region strictly encapsulated within the hemorrhage with any shape, 

size, and density. 

Hypoattenuating area with a density difference >28HU compared with the 

surrounding hematoma. No connection with surface outside the hematoma. 

Rounded, streak-like, or irregular region of hypo- or isoattenuation compared with the 

brain parenchyma. Does not have to be encapsulated in the ICH. 

Relatively hypoattenuating area next to a hyperattenuating area of the hematoma, with 

a well-defined margin and a density difference >18HU between the two areas. 

Presence of an area hypodense to the brain above and one hyperattenuating area 
below a discrete straight line of separation, irrespective of its density appearance.

Two or more focal hematoma margin irregularities, joined or separate from the 

hematoma edge on the axial NCCT slice with largest hematoma area. 

NCCT indicates non-contrast computed tomography. 

Supplemental Table3 Criteria for the BAT score[5] 

Points 

Blend sign 

Present 1 

Absent 0 

Any hypodensity 

Present 2 

Absent 0 

Time from onset to NCCT 

2 <2.5h 

≥2.5h 0 

NCCT indicates non-contrast computed tomography. 

Supplemental Figure 1 The architecture of the model 
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