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ABSTRACT
Cerebral small vessel disease (CSVD) is a very
common neurological disease in older people. It
causes stroke and dementia, mood disturbance and
gait problems. Since it is difficult to visualise CSVD
pathologies in vivo, the diagnosis of CSVD has relied
on imaging findings including white matter
hyperintensities, lacunar ischaemic stroke, lacunes,
microbleeds, visible perivascular spaces and many
haemorrhagic strokes. However, variations in the use
of definition and terms of these features have probably
caused confusion and difficulties in interpreting results
of previous studies. A standardised use of terms
should be encouraged in CSVD research. These CSVD
features have long been regarded as different lesions,
but emerging evidence has indicated that they might
share some common intrinsic microvascular
pathologies and therefore, owing to its diffuse nature,
CSVD should be regarded as a ‘whole-brain disease’.
Single antiplatelet (for acute lacunar ischaemic stroke)
and management of traditional risk factors still remain
the most important therapeutic and preventive
approach, due to limited understanding of
pathophysiology in CSVD. Increasing evidence
suggests that new studies should consider drugs that
target endothelium and blood–brain barrier to prevent
and treat CSVD. Epidemiology of CSVD might differ in
Asian compared with Western populations (where most
results and guidelines about CSVD and stroke
originate), but more community-based data and
clear stratification of stroke types are required to
address this.

INTRODUCTION
The term ‘cerebral small vessel disease
(CSVD)’ refers to a syndrome of clinical and
imaging findings that are thought to result
from pathologies in perforating cerebral
arterioles, capillaries and venules. CSVD
causes up to 45% of dementia, and accounts
for about 20% of all stroke worldwide, 25%
of ischaemic (or lacunar strokes), of whom
about 20% are left disabled.1 Cognitive
impairment, depression and gait problems
are also frequently seen in patients with
CSVD. The prevalence of lacunar stroke may
be higher in patients in China where recent
studies have suggested that lacunar infarction
accounts for 38–46% of ischaemic stroke.2 3

Generally, including in this review, CSVD is
used to describe a series of imaging changes
in the white matter and subcortical grey
matter, including recent small subcortical
infarct, lacunes, white matter hyperintensities
(WMHs), prominent perivascular spaces
(PVS), cerebral microbleeds (CMBs) and
atrophy.4 Usually, recent small subcortical
infarcts cause acute stroke symptoms,
whereas other CSVD lesions are clinically
more insidious and thus referred to as
‘silent’ lesions. However, the definitions and
terms of these lesions have varied greatly
among studies. For example, a recent review
identified 159 different names for recent
small subcortical infarcts, but these names
like ‘lacunar infarct’ were also frequently
used to describe lacunes4 5 that were not
necessarily related to symptoms and might
have been due to haemorrhage. The substan-
tial variation in the use of these terms has
probably contributed to confusion and diffi-
culties in interpreting previous research.
Therefore, in 2013, an expert workgroup on
CSVD proposed a list of standard terms to
help avoid confusion and suggests that CSVD
researchers should be encouraged to apply
these terms in future studies.4 We will also
use these terms in this review.
The different features of CSVD have long

been regarded as different types of tissue
changes. However, recent studies show that
these features are correlated, are more likely
to share common diffuse intrinsic small
vessel pathologies, and are probably also
more ‘dynamic’ than previously thought.
Advances in imaging techniques have
brought new insights into mechanisms of
CSVD. In this review, we will summarise find-
ings in recent clinical studies on CSVD,
discuss CSVD mechanisms and explore emer-
ging prevention and treatment options.

Clinical lacunar stroke
A lacunar clinical syndrome could be due to
either ischaemia or a small haemorrhage.6

Many haemorrhagic strokes in older people
are also due to CSVD pathology.1 In this
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review, we will focus mainly on ischaemic CSVD.
Lacunar ischaemic stroke is defined as a stroke that is
attributable to a recent small infarct <1.5 (or some say
2) cm diameter in the white matter, basal ganglia, pons
or brainstem, and is consistent with a lacunar clinical
syndrome.7 It is commonly attributed to an abnormality
in a single small deep perforating (or lenticulostriate)
artery. On MRI, an acute lacunar infarct is shown as
hyperintense on diffusion-weighted imaging (DWI),
hypointense on an apparent diffusion coefficient map,
hyperintense on T2-weighted and fluid-attenuated inver-
sion recovery (FLAIR), hypointense on T1 and hypoatte-
nuated on CT (figure 1). It can be rounded, ovoid or
tubular.4 Generally, the Oxfordshire Community Stroke
Project (OCSP) classification, which uses only clinical
features to diagnose the stroke subtype, can predict cor-
rectly the size and location of a recent brain infarct on
imaging in 75–80% of patients with stroke.8 However, up
to 20% of acute lacunar infarcts can present with cor-
tical symptoms, and conversely cortical infarcts can
present with lacunar syndromes.9 One explanation is
that lacunar infarcts closer to the cortex are more likely
to cause cortical symptoms.9 Therefore, in studies where
stroke diagnosis relied mainly on the clinical presenta-
tions, this ‘mismatch’ may have added ‘noise’. Thus, in
epidemiology, mechanistic studies or clinical trials, it is
important to verify stroke lesions using sensitive imaging
wherever possible.

However, even with sensitive imaging like DWI, about
30% of patients with clinically definite stroke did not
show any recent ischaemic change on MRI;10 when fol-
lowed up for a year, the DWI-negative patients had just
as much recurrent stroke, dependency and cognitive
impairment as the DWI-positive patients. Therefore,
negative DWI/MRI cannot exclude stroke diagnosis.
Rapid access to scanning after stroke onset can increase
the chance of positive findings.11 It is also noteworthy
that DWI-positive lesions can be clinically ‘silent’, for
example, (1) as a second silent acute infarct in patients
presenting with stroke due to another acute symptomatic
infarct, or (2) in patients with acute haemorrhagic
stroke, and (3) in patients with severe WMHs who did
not have any overt stroke symptoms.12

In some clinical stroke classifications such as the Trial
of Org 10172 in Acute Stroke Treatment (TOAST) or
the ASCO (A: atherosclerosis; S: small-vessel disease; C:
cardiac pathology; O: other causes), another term ‘small
vessel/artery disease’ rather than ‘lacunar stroke’ is used
to represent a stroke that is supposed to be due to a
small artery occlusion. However, these classifications use
risk factors to decide the stroke subtype, not just the
clinical presentation, so as to distinguish ‘small vessel/
artery disease’ from strokes caused by large artery ath-
erosclerosis, cardiac emboli or other unknown reasons.
However, a small embolus, or atheroma in the middle
cerebral artery (MCA) or perforating arterioles can all

Figure 1 STRIVE, STandards for Reporting and Imaging of Small Vessel Disease: example findings (upper), schematic

representation (middle) and a summary of imaging characteristics (lower) of MRI features for changes related to small vessel

disease.4 DWI, diffusion-weighted imaging; FLAIR, fluid-attenuated inversion recovery; SWI, susceptibility-weighted imaging;

GRE, gradient-recalled echo.
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block the perforating arteriole, and any of these can
cause a lacunar ischaemic stroke (see figure 2).
Therefore, it might be better to focus on the clinical
presentation to assign the stroke syndrome and separ-
ately focus on the risk factors for patient management.

Risk factors and causes of lacunar infarcts
Four possible main aetiologies for lacunar ischaemic
stroke have been proposed (figure 2): atheroma of
parent arteries (usually MCA) or perforating arterioles,
embolism from the heart or carotid arteries, and intrin-
sic small vessel disease (lipohyalinosis or fibrinoid necro-
sis). Atheroma in MCA appears to cause <20% of
lacunar ischaemic stroke. In the Warfarin Aspirin
Symptomatic Intracranial Disease (WASID) trial, only
11% (38/347) of all patients with stroke were lacunar
type,13 which is surprising if MCA stenosis is supposed to
be a common cause of lacunar stroke. A recent study
also did not find any association between lacunar stroke
and MCA stenosis.14 A systematic review of Asian studies
showed that parent artery atherosclerosis accounted for
20% of single lacunar infarcts in anterior circulation ter-
ritory; however, these hospital-based studies were rather
small (n=71–118) and some were even retrospective.15

Larger and tubular lacunar infarcts might be more likely
to be caused by proximal artery diseases.16 However, the
results of both our study and the Secondary Prevention
of Small Subcortical Stokes Trial (SPS3) suggest that it is
not possible to identify the cause of a particular recent

lacunar ischaemic stroke based on its size, shape or
location.17 18

Evidence for embolism as a common cause for
lacunar ischaemic stroke is limited. Presence of cardi-
oembolic sources was found significantly less often in
lacunar than in non-lacunar ischaemic stroke.19 20 Few if
any associations were found between ipsilateral carotid
stenosis and lacunar ischaemic stroke or other features
of CSVD.21 22 In primate models, <6% of emboli
injected into carotid arteries entered the lenticulostriate
arteries, while the majority entered the cortical arter-
ies.23 Lacunar ischaemic strokes in the basal ganglia
were marginally more often associated with embolism
than those in the centrum semiovale (11% vs 3%,
respectively), but the overall rate of known embolic
sources in symptomatic lacunar ischaemic stroke was
very low (11%).18

Intrinsic small vessel pathologies remain the most
common cause of lacunar ischaemic stroke, although
the underlying mechanism is unclear. Fisher attributed
the lipohyalinosis in small arteries to hypertension.
However, the diagnosis and treatment of hypertension
were less good when Fisher was working in the 1950s
and 1960s and he may have seen some particularly
severe cases of hypertension. Now, epidemiology data
show that hypertension is equally common in non-
lacunar as in lacunar ischaemic stroke;19 and many
patients with lacunar stroke are normotensive. Similarly,
other traditional risk factors like diabetes mellitus,

Figure 2 Four possible mechanisms that cause a lacunar infarct (from bottom to top): (A) an embolus from the big arteries or

cardiac sources goes up to MCA and ends up entering and occluding lenticulostriate arteries, resulting in a lacunar lesion in

basal ganglia; (B) if the atheroma in the parent artery (ie, MCA) is positioned at the opening of its penetrating branches, it could

lead to an acute occlusion of one or several penetrating arteries, hence causing a lacunar infarct; (C) a lacunar infarct could also

be due to atheroma in the perforating artery if an acute occlusion happens; (D) intrinsic small vessel disease may lead to diffused

disrupted blood–brain barrier. If this happens at an arteriolar level, plasma fluid components would enter and deposit in the

vessel wall, resulting in narrowing of the arteriolar lumen, vessel wall thickening and eventually a secondary luminal occlusion

and traditional infarct. MCA, middle cerebral arteries.

Shi Y, Wardlaw JM. Stroke and Vascular Neurology 2016;1:e000035. doi:10.1136/svn-2016-000035 85

Open Access

 on A
pril 9, 2024 by guest. P

rotected by copyright.
http://svn.bm

j.com
/

S
troke V

asc N
eurol: first published as 10.1136/svn-2016-000035 on 30 S

eptem
ber 2016. D

ow
nloaded from

 

http://svn.bmj.com
http://svn.bmj.com
http://svn.bmj.com/


hypercholesterolaemia and smoking were as frequent in
lacunar stroke as in other ischaemic strokes.24 Risk
factor profiles of lacunar stroke seemed different in
China, but it might be too early to say so. The Beijing
stroke registry (n=1184) showed a higher proportion of
hypertension in lacunar (acute stroke symptoms+subcor-
tical lesion <2 cm diameter on acute CT/MRI) than in
non-lacunar stroke after adjusting for age and gender.3

Some other studies had similar findings, but the stroke
diagnosis varied: in some studies, the differentiation
between lacunar stroke and ‘large artery atherosclerosis’
stroke relied only on lesion size, and clinical classifica-
tion included risk factors.25 26 Additionally, most studies
were hospital-based. Hence, population scale data on
lacunar stroke are lacking. It is important to distinguish
lacunar stroke from other subtypes because of the mech-
anism, hence prevention and treatment might differ.
More data and careful separation of lacunar stroke from
other subtypes are required in future studies.

Clinically ‘Silent’ CSVD
White matter hyperintensities
WMH of presumed vascular origin are very common in
older individuals and regarded as typical signs of CSVD.
Symptoms of WMH develop insidiously, such as cognitive
impairment, dementia and depression,1 but it almost
triples the risk of stroke, doubles the risk of dementia
and increases the risk of death.27

WMHs are usually symmetrically and bilaterally distrib-
uted in the white matter including the pons and brain
stem, and also occur in deep grey matter. They appear
hyperintense to the normal brain on T2 or FLAIR MRI
(figure 1), and can be patchy or confluent depending
on their stage in development and severity.
Owing to limited pathology studies, the underlying

pathology of WMH remains imprecise. Demyelination,
loss of oligodendrocytes and axonal damage were often
reported. Diffusion tensor imaging studies provided
indirect evidence for axonal damage and impaired
white matter integrity in WMH.28 Indeed, recent evi-
dence indicates that WMHs are rather heterogeneous,
perhaps reflecting different disease stages. Reduced
density of glia and vacuolation were observed in severe
WMH suggesting end stage disease.29 Autopsy MRI
studies also found oedema that suggests leakage of fluid
from an impaired blood–brain barrier (BBB) in and
around WMH.30 31 Although these ‘white’ lesions have
until now been treated as if they were all the same, dif-
ferent degrees of ‘whiteness’ might indicate different
‘stages of formation’—some very white WMHs are prob-
ably at the end stage of disease and irreversible once
demyelination or axonal damage has happened; some
perhaps less white lesions might be reversible if they are
mainly interstitial fluid (ISF) imbalances before perman-
ent tissue damage has occurred. These observations
remain to be confirmed in larger studies. These micro-
structural changes happen in WMH, and are also
present in normal appearing white matter (NAWM).32 33

The white matter integrity in NAWM declines with
increasing closeness to the edge of WMH32 and with
more severe WMH.34

Multiple mechanisms underlying WMH such as
incomplete infarct, chronic hypoperfusion and venous
collagenous have been proposed, but evidence for each
is limited. In a pathology study (n=15), no incomplete
infarct was found in WMH.29 Though many cross-
sectional studies have found low cerebral blood flow
(CBF) to be associated with higher WMH burden, the
causality between low CBF and WMH is unclear.35 A lon-
gitudinal study (n=575) showed that more severe base-
line WMH predated CBF decline over time rather than
falling CBF predating WMH progression.36 In a post-
mortem study, some non-inflammatory, periventricular
venulopathy was observed in periventricular WMH, sug-
gesting that venous collagenosis might cause tissue
damage by vasogenic oedema and impede ISF circula-
tion.31 However, this theory remains to be confirmed in
in vivo studies. Impaired BBB was noted in WMH areas
in autopsies,29 30 which was corroborated by studies
using cerebrospinal fluid (CSF)/plasma albumin ratio37

and MRI.38–41 It is hypothesised that the disrupted BBB
would result in leakage of fluid, plasma components and
cells and eventually lead to perivascular inflammation,
demyelination and gliosis. Indeed, the formation of
WMH is likely to be multifactorial. Hypoperfusion,
venous pathologies and BBB impairment might all play
critical roles in WMH initiation or progression and inter-
act with each other, but which one is the key initial
factor remains unknown.

Lacunes
The term ‘lacune’ was used by Fisher to describe a small
fluid cavity in the brain which he thought was a healed
lacunar infarct. Therefore, in CSVD research, it is very
common that terms like ‘lacunar infarction’, ‘lacunar
stroke’ and ‘silent brain infarct’ were used to refer to
the CSF-filled cavities on brain MRI or autopsy.42 In fact,
lacunes are not always ‘ischaemic’. They can also be the
residual lesion of a small haemorrhage43 (figure 3).
Also, it is common that many non-cavitated lacunar
ischaemic strokes were not counted as ‘lacunar infarcts’.
Therefore, in order to avoid more confusion, the term
‘lacune of presumed vascular origin’ was proposed to
replace ‘lacune’ and the term ‘lacunar infarct’ should
NOT be used to describe ‘lacunes’ any more.
Lacunes of presumed vascular origin are round or

ovoid, subcortical, fluid-filled cavities with a diameter of
3–15 mm. These can occur without any prior symptoms,
but can also result from a previous acute small subcor-
tical infarct or haemorrhage4 (figure 1). PVS could also
mimic lacunes when they are more than 3 mm in diam-
eter.44 Large PVS might have also been miscounted as
lacunes in many studies.42 Lacunes usually present as a
hypointense ‘hole’ on FLAIR surrounded by a hyperin-
tense rim which can help its differentiation from PVS.
However, the rim can be absent in some cases and PVS
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within extensive WMH areas may appear as if sur-
rounded by hyperintensities, so the insistence on a rim
to differentiate lacunes from PVS is not helpful in prac-
tice. Nonetheless, it is important to distinguish between
lacunes and PVS if possible, on size at least, because
they represent different pathologies as well as differ in
clinical associations and implications.
Although many lacunes might have lacked acute symp-

toms, when present in larger numbers they are associated
with dementia, cognitive impairment, gait disturbance and
increased risk of stroke.5 45 46 In the general elderly popu-
lation, the prevalence of lacunes ranges from 8% to 28%
(mean age=50–75 years).5 A systematic review suggests that
silent brain infarcts (another term sometimes used for
lacune) are more prevalent in the Asian than in the
non-Asian population.47 However, it is noteworthy that
most of these Asian studies were hospital-based, whereas
all non-Asian studies were community-based; therefore,
more relevant comparisons are needed to determine if
the prevalence of lacunes and other CSVD features does
differ between world regions and ethnic groups.

Perivascular spaces
PVS are the extension of subarachnoid spaces that sur-
round cerebral microvessels.48 They are fluid-filled
spaces that follow the course of a vessel through the
brain parenchyma.48 PVS are usually microscopic and
not detected on CT or conventional MRIs. When
enlarged, PVS are commonly seen as hyperintense on
T2 MRI, either punctuate with a diameter <3 mm if
imaged perpendicular to the course of the vessel, or
linear if imaged parallel to the course of the vessel49

(figure 1). PVS are most frequent in the inferior parts
of the basal ganglia and centrum semiovale but can also
occur in the brainstem. Though 3 mm has generally
been considered as the cut-off diameter for distinguish-
ing PVS from lacunes,44 occasional PVS could be larger
and even cause a mass effect.4 PVS usually do not have a
hyperintense rim on T2-weighted or FLAIR unless
passing through a WMH area, which can help the dis-
crimination between PVS and lacunes.
Whether PVS should be regarded as ‘lesions’ is still

controversial, as their clinical significance remains

Figure 3 Example of MRIs of a lacune from a haemorrhagic source (A,B), and from a lacunar infarct (C, D). D (the DWI) is from

the acute presentation (i.e. within a few days of the stroke), and C (the FlAIR) is weeks to months later when the lesion has

cavitated. DWI, diffusion-weighted imaging; FLAIR, fluid-attenuated inversion recovery; SWI, susceptibility-weighted imaging.
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unclear. Although a few PVS can be normal,50 numbers
of PVS increased with advancing age and other features
of CSVD.51–54 In some studies, more PVS were associated
with increased risk of dementia or worse cognitive func-
tion or hypertension.44 55 56 The mechanisms under-
lying enlarged PVS are not well understood. In normal
ageing and other neurological diseases like multiple
sclerosis, PVS are associated with inflammatory
markers.57 In CSVD, it might be a sign of impaired
BBB.39 There is also a hypothesis that visible PVS are
associated with a blockage of drainage of ISF,58 which
might be attributed to increased vessel stiffness, as arter-
ial pulsatility is thought to be a key driver of ISF drain-
age.59 They may also be a key conduit for drainage of
brain interstitial metabolic products that occurs during
sleep.60

Cerebral microbleeds
CMBs are regarded as small round and homogeneous
foci of hypointensity on T2-weighted (gradient echo)
MRI and susceptibility-weighted imaging (figure 1). In
the very few studies of radiological–pathological correl-
ation, perivascular hemosiderin-laden macrophages were
found to underlie most of the CMBs shown on MRI.
Other possible pathologies include old haematomas,
intact erythrocytes and, very rarely, vascular pseudocalci-
fication, microaneurysm and distended dissected
vessels.61 Lipofibrohyalinosis and amyloid angiopathy are
the most common vascular findings in relation to CMB.
These two vasculopathies are thought to have different
patterns of CMB distribution: CMBs in the basal ganglia,
thalamus, brainstem and cerebellum are typically attribu-
ted to lipofibrohyalinosis, whereas amyloid angiopathy is
more associated with lobar CMBs.62 However, some
studies suggest that there may be more overlap and
larger studies are awaited to confirm the specificity of
CMB distribution for particular pathologies.
Most CMBs are asymptomatic; they can be found in

healthy adults but are more often a marker of vascular
risk factor exposure or amyloid deposition.63 In addition
to its potential association with stroke, CMBs also con-
tribute to cognitive impairment and dementia, and to
transient neurological deficits.64 The prevalence of
CMBs detected in community-dwelling participants in
the Rotterdam Scan study (n=3979, mean age=60.3
years) and AGES-Reykjavik study (n=1962, mean age=76
years) was 11.1–15.3%65 66 and increased with age.66 In
patients with ischaemic stroke and non-traumatic intra-
cerebral haemorrhage, the prevalence of CMBs could
be as high as 33.5–67.5%.63 It seems that CMBs may be
more common in the Asian than in the non-Asian popu-
lation. However, the differences might be due to a
higher proportion of hypertensive patients recruited in
these Asian studies or more hospital-based than commu-
nity studies.
It is unclear whether CMBs increase the risk of haem-

orrhage in patients receiving antiplatelet or anticoagu-
lant or thrombolytic therapy and further discussion is

outside the ischaemic focus of this review. We refer the
reader to recent reviews on this topic63 67 and note that
randomised trials are needed to answer these questions.

Risk factors and causes of ‘silent’ CSVD
Increasing age is significantly associated with CSVD fea-
tures; thus, age has to be controlled for while interpret-
ing relevant studies. Modifiable risk factors including
hypertension, hypercholesterolaemia, smoking and dia-
betes mellitus are also thought to be key risk factors in
the pathogenesis of CSVD, particularly hypertension.
However, the relationship between these risk factors and
CSVD is complex. Lipohyalinosis, the typical vascular
changes of CSVD, has long been thought to result from
hypertension. The theory is supported by clinical evi-
dence showing that hypertension is more prevalent in
patients with WMH and that higher blood pressure was
associated with more severe WMH.68 A recent study
shows that vascular risk factors and large artery disease
explained only 2% of the variance in WMH, leaving
98% of the variance unexplained, providing further evi-
dence that WMHs are mostly non-atheromatous.69 This
finding may give a clue as to why risk factor modifica-
tions so far have very limited effects on preventing
WMH progression. Other important risk factors for
CSVD include other high-risk lifestyles: lack of exercise,
poor diet and smoking. High salt intake is associated
with more severe WMH through causing high blood
pressure, as well as by having direct effects on the endo-
thelium.70 Current smoking is also an independent pre-
dictor of WMH progression71 and is associated with a
high burden of combined CSVD features.72 Lack of
exercise is a risk factor for having more WMH in later
life, although it is not clear if active exercise pro-
grammes reduce WMH risk.73

CSVD as a ‘whole-brain disease’
Common small vessel pathologies and BBB impairment
were found in clinically evident and covert CSVD fea-
tures, suggesting that CSVD should be regarded as a
whole-brain disease rather than be treated separately as
individual conditions. Small penetrating vessels and the
endothelium, which forms the BBB, are diffuse in the
brain. Various studies also demonstrate that all these
CSVD features were associated with each other: patients
with small vessel stroke (TOAST classification) or
lacunar stroke (OCSP classification) had more WMH
than those who had other stroke subtypes;74 75 more
than 90% of incident lacunes appeared at the edge of
WMH or had a partial overlap with WMH in 365 patients
with Cerebral Autosomal-Dominant Arteriopathy with
Subcortical Infarcts and Leukoencephalopathy
(CADASIL);76 visible PVS were frequently seen in
patients with lacunar stroke, WMH and lacunes; CMBs
were also associated with WMH and lacunar stroke.63

When counting the presence of any CSVD as the total
CSVD score, patients with lacunar stroke had a
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significantly higher CSVD burden than those with cor-
tical stroke.72

Why do some CSVD lesions cause stroke while others
are ‘silent’? One explanation is the locations of lesions.
A study using probability mapping shows that lesions
presenting with stroke were predominantly located in or
near the primary motor and sensory tracts, whereas
silent lesions were mostly in the basal ganglia and
centrum semiovale away from these main tracts.77

Another explanation could be the levels of vessels where
the vascular pathologies happened. In general, dis-
rupted BBB would enable plasma fluid components and
blood cells to enter the vessel wall, leading to disintegra-
tion of the vessel wall and fibrin deposition. If this
happens at arterioles where there is smooth muscle, the
components deposited in the arteriolar wall could result
in dilation and narrowing of the vessel lumen and vessel
wall thickening, which would eventually precipitate
inflammation, platelet adhesion, luminal occlusion and
thus traditional infarct. However, at the capillary level
where there is no smooth muscle between the epithe-
lium and brain tissue, the leaky BBB would cause direct
damage in the tissue, such as oedema and demyelin-
ation in white matter tracts. Further studies to assess

changes over time in lesion development and symptoms
are required to find out the reasons.

CSVD as a ‘dynamic disease’
There is increasing evidence showing that CSVD is more
dynamic than originally thought. Lesions progress over
time and the long-term outcome and impact on brain
damage vary. Cavitation is not the only fate of acute
lacunar ischaemic stroke.78 An acute lacunar ischaemic
stroke can also disappear or resemble a WMH (figure 4).
In a prospective study (n=90), definite cavitation (ie, that
looked like a lacune) was only present in 20% of patients,
and was marginally associated with increasing time from
stroke onset to follow-up scans. A large proportion of
lacunar lesions remained looking like WMH. Thus, only
calculating cavitated lacunes could lead to a large under-
estimation of lacunar ischaemic stroke burden. Similarly,
WMH burden is likely to be overestimated without previ-
ous scans of index stroke lesions.
The evolution of WMH also varies. The single stron-

gest predictor of WMH progression is high baseline
WMH,79 80 with little progression in punctate WMH but
rapid progression in confluent WMHs.81 The Austrian
Stroke Prevention Study, a community-based study,

Figure 4 Long-term appearances of lacunar infarcts (arrows: old stroke lesion on the follow-up scans). DWI, diffusion-weighted

imaging; FLAIR, fluid-attenuated inversion recovery; WMH, white matter hyperintensity.
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reported WMH progression in about 18% of participants
with vascular risk factors.79 WMH can also cavitate to
take on the appearance of lacunes and they can also
disappear—these dynamic features are only now being
realised. Though early microstructural impairment
could be detected in NAWM contouring WMH, not all
NAWM will eventually develop into WMH.82 The level of
NAWM deterioration was also strongly associated with
WMH severity, regardless of distance from the WMH.32

The variance in long-term changes of CSVD lesions
might reflect different pathologies underlying the
similar appearance on imaging, for example, reversible
lacunar ischaemic stroke lesions versus those that cavi-
tated, or NAWM in patients with mild WMH versus in
extensive WMH. Serial imaging studies using advanced
techniques like cerebral vascular reactivity, BBB and CBF
imaging and use of higher fields, for example, 7 tesla
MRI might help differentiate these changes.83

Treatments for CSVD
Management of traditional risk factors is still the main
approach for treating or preventing CSVD, despite the
fact that most of these treatments have not yet shown
ideal effects on long-term outcome. Antihypertensive
treatment produced contradictory results: it reduced
WMH progression in some observational studies84 but
showed little or no effects in randomised controlled
trials.85 86 Although hypertension has been reported to
be highly associated with CSVD, other factors may be
involved or be influenced by genetic factors,87 yet more
evidences are required. Likewise, most lipid-lowering
treatment had neutral results in preventing WMH, like
pravastatin.88 Post hoc analysis of a 2-year follow-up study
from Hong Kong showed that statins might be able to
delay WMH progression in patients with severe baseline
WMH.89 Statins might also have other therapeutic
effects including anti-inflammatory and proendothelial
activities.90 Likewise, subgroup analysis of the VITAmins
TO Prevent Stroke (VITATOPS) MRI substudy shows
that vitamin B supplementation may reduce WMH pro-
gression in patients with severe baseline CSVD.91

Studies of treatment specifically targeting lacunar
stroke are limited.90 Apart from the SPS3 trial, there are
very few clinical trials of antiplatelets where the results
were reported by stroke subtype, and, except trials of
cilostazol92 93 which has weak antiplatelet effects,94 are
especially scarce in Asian populations. Although some
trials reported the proportion of lacunar stroke in their
study population, the diagnostic criteria varied consider-
ably and the results were not always reported by sub-
group. A systematic review of randomised trials found
that any single antiplatelet appeared beneficial for sec-
ondary prevention of lacunar stroke,95 but the SPS3 trial
showed that long-term dual antiplatelet treatment
doubled the risk of bleeding without reducing the risk of
stroke recurrence in patients with recent lacunar stroke.
Also, blood pressure lowering did not show significant

reduction in recurrent lacunar stroke in the SPS3 trial,
although it was consistent with a modest benefit.96

Prevention and treatment of CSVD in the future
should consider targeting the BBB, brain endothelium
and microvascular function. There are multiple poten-
tial endothelial targets, such as the nitric oxide/cyclic
guanylate monophosphate (cGMP) system and prosta-
cyclin/cyclic AMP (cAMP) system.90 Therefore, interven-
tions that could induce cAMP or cGMP or reduce their
degradation appear promising. There are several
licensed drugs that have these properties like some
nitric oxide donors and phosphodiesterases-5 inhibi-
tors,90 while others are still in development. More
experimental studies should be encouraged. However, in
the meantime, management of these traditional risk
factors according to guidelines should still be encour-
aged except to avoid long-term dual antiplatelet drugs.
In conclusion, CSVD is not just a collection of individual

brain lesions, but is both a ‘dynamic’ and ‘whole-brain’
disease. All CSVD subtypes might share some common
intrinsic CSVD aetiologies. Some pathological changes at
the early stage of the disease could be reversible, but will
gradually worsen and become irreversible as the damage
in vessels and tissues accumulates. Modification of trad-
itional risk factors and a healthy lifestyle are currently the
most important prophylactic and therapeutic approaches
for CSVD indefinitely and until more specific treatments
are available. Apart from the trials of cilostazol which have
mostly been conducted in China or Japan, in general,
large clinical trials of CSVD treatments targeting the Asian
population are lacking, especially in lacunar stroke.
Community-based studies of CSVD prevalence and pro-
gression are also needed to determine if prevalence genu-
inely differs in different world regions or ethnic groups.
Future studies in CSVDs should stratify by stroke subtype
and by MRI diagnosis and measure risk factors carefully.
Clinical trials and experimental studies targeting endothe-
lium and BBB integrity should be pursued.
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